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Introduction

The main result of this paper is Theorem 5 belo^v which gives an answer
to a question put by R. Grothmann concerning a uniqueness criterion for re-
presenting measures of logarithmic potentials. The key to the proof are pro-
positions 3 and 4. In terms of the "fine topology " one might restate Proposi-
tion 3 as follows: the fine closure and the natural closure of a connected subset
of C coinside. We remark that this result is true only for the fine topology
associated with the logarithmic (2-dimensional) potential theory. Its proof is
based on an elementary — fairly known — inequality. For the sake of complete-
ness we prove it in Proposition 1. Proposition 4 is based on a regularity criterion
for boundary points due to O. Frostman which will be remembered in Proposi-
tion 2.

Throughout this paper we shall use the following notations:

2) y,A: the characteristic function of the set A.
3) H/ : the solution on an open set G of the Dirichlet problem with boun-
dary value /.

1. Some auxiliary results

Proposition 1. Let FdC\ {0} be closed, denote F*: = {x^R: * = | * U
:=XF andf*:=XF*. Then we have for any R>0:

Proof. Assume R= 1 and denote by

— w\

the Green function of D(0, 1). Take v a (positive) measure on D(0, 1) and
denote by λ the measure defined by



830 A. CORNEA

where φ is a continuous function with compact support on D(Q, 1). Further

put

( g(z, w)dv(w) , *e Z)(0, 1) ,
J 0(0,1)

the Green potential of z/. Analogously pλ will be defined. By a straightfor-

ward calculation one sees that for any #eZ)(0, 1)

From this inequality we get for any #eZ)(0, 1)

Indeed we have:

Using the obvious equalities

we get in a similar way

Assume now FdD(Q, 1)\{0} and let ε>0 be given. Then we may find a
measure z> such that pv> 1 on ί1 and

Using the first part of the proof we have pλ> 1 on ί1* hence

Since ̂ v(0)=^λ(0) we get

The required inequality follows now making 8 tend to 0. If F is arbitrary,
denote by

Fn :=
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and use the relations:

Proposition 2. L#ί G be a domain of C possessing a Green function and
denote by gb the Green function of G with pole at b^G. Then for any open set
UdG and any boundary point b e 9 U which is regular for the Dirichlet problem on

=U we have gb=H£b on U.

Proof. Assume U is connected and denote for any weN by Un:=U\J
, Ijri). Fix αe?7 and putga (resp.^*) the Green function of U (resp. Un)

with pole at a. We show first that g%— lim^Λ on U. Indeed if we denote

• au-»R lfn :=g°' onD(b' 1/M)n9[/

fa' ~* /. :=0 on QU\D(b, l/»)

We have on U

The equality ga=limg%» on U, follows now from the fact that the harmonic
»->00

measure on U of the sets D(b, l/n)Γ\QU goes to 0 for ra-»oo and that (/„)„«=# is
a decreasing sequence of bounded functions.
We show that

limtf -(ft) = 0 .
«•><»

Let us denote

M: - .
u:=Q onG\U

< ^ v / x - . ,(resp. «.:G\ {«>-»« ).
Mn := U on Lr\Un

For any disc

, r>0

we have u^Hu on Z). Using the fact that on G\{α}\{έ} we have w=lim un weΛ «->•<»
get

From the fact that b was assumed regular we have

lim u(z) = 0
«-> 0

and therefore
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lim Hf <*•'>(*) = 0
r->0

thus we get limn^00gatt(b)=Q.
The proposition follows now from

Λ(*)^H?,(β)^Hf» =gβ(b)-g? (b) .

Proposition 3. Let s be a superharmonic function on an open set U C Cy

Abe a connected set in C and z e U Π A. Then we have

s(z) — lim inf s(w) .

Proof. We may assume that A contains more than one point and that #=0.
Replacing if necessary U by a smaller open set and s by s-\-c for a suitable c&R%

we may also assume that s>0. Take αreΛ, a< lim inf s(w) and R^R% such
w+Q,u>GlT(\A

that {*€=C: \x\=R} ΓΊ^Φ0, D(Q, 2R)dU and *><* on £>(0, 2/2) Π A Denote

G :- {*£ΞZ>(0, 2Λ): *(#)><*} U {*€ΞC: |*|>/2}.

The set G is open and contains A. Let 5 be the connected component of G

containing A. We have Oe/ϊ and {#eC: |*| =jR} Π-BΦ0. Choose (#Λ)Λ€ΞΛr a
sequence in jBf|-D(0, jR) converging to 0 and construct for any n^N a con-

nected compact set KndB such that zn^Kn and {#eC: |*| =1?} ΓΊΛζ,Φ0 (for
instance a polygonal curve linking zn with the boundary of D(0, jR)). Since the

superharmonic function — s is non-negative and >1 on Kn for any n^Ny we

have ί(0)>αH^;fΛJΓ»(0). Using now proposition 1 we have lim H&S f >

= 1 hence ί(0)>α. Because α was arbitrary and s is lower semicontinuous we

get

s(0) = lim inf s(w) .

Proposition 4. L0£ f/, G ie open subsets of C such that G has only regular
boundary points and G is compact and is contained in U. Then for any super-
harmonic function s on U which is harmonic on G we have £=H? on G.

Proof. Replacing if necessary U by a smaller open set and s by s+c for
a suitable c&R we may assume that s>0. Using the Riesz representation
theorem we may consider s of the form s(z):=fg(z, w)dμ(w) where g is the
Green function of U and μ a positive Radon-measure on U. Since s is harmo-

nic on G we have μ(G)=0. Fix a point #eG and denote by μt the harmonic
measure of G at #, i.e. the positive Radon-measure on the boundary of G for
which
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H/(#) = \fdμz /continuous on QG .

Using proposition 2 we have for any we9G, g(z, w)=/^( , w)dμz. From the
theorem of Fubini we have

H?(*) - J Sdμ. = ^gdμdμ. = j j gdμ.dμ = J g(x, }dμ = s(z) .

2. The main theorem

Theorems. Let s,t be superharmonic functions on C and AdC. The
functions s and t are equal if following conditions are fulfilled:
1) s=t on A,
2) both s and t are harmonic on the complement of A,
3) if A is not bounded then

liminf JΦ Φ-oo, liminf *(*) Φ-oo,
*+~ log |*| *-><*» log I jar I

4) if A is bounded then

liminf -M- = lim ίnf -M_φ-oo ,
*->~ log 1^1 *•>«> log|#|

5) the set A has finitely many bounded connected components each of which con-
sisting of more than one point.

Proof. Assume that A is bounded and let (^4;.);.=1>...tft be the connected
components of A. From proposition 3 we have for any^, \<tj<^ny s=t on A^
and therefore s=t on A= U j=ιt...tnAj.
Put G the unbounded connected component of C\A. Also from proposition
3 we get that C\A has only regular boundary points hence from proposition 4
s=t on every bounded component of C\A i.e. on the set C\A\G. It remained
only to show that s=t on G. We may assume

liminf **) = -1 = liminf )̂ .
*->~ log |^| *-*~ log |^|

Then we have:

s(») = M(*)— log I % I , t(z) = »(«)— log |*|,

where u and v are harmonic on G and bounded in a neighborhood of oo. For
f such that {seC: |*| >r} cG denote

Gf:={*eG:|*|<r} and f,:=\~n' °V
on 9Cz
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Again from proposition 4 we have on Gr

H?' = s, H?' = *,

and since s=t on 9G we get

s-t = Hf;.

By a straightforward calculation one may show that limH//=0, and thus s=t

on G. Let now A be unbounded, assume that Q&Ά and fix a negative real
number

α<min ( lim inf -̂ -, lim inf-^-
\ *->~ log I z I *•*•"• log I z I

Further denote:

A :=

The functions s*, ί* are superharmonic on C\{0} and from the above condition
3) they are non-negative on a nieghbourhood of 0, hence they may be extended
to superharmonic functions on the whole of C. Obviously they are equal on
A*, and applying proposition 3 we have s*=t* on the closure of each connected
component of A*. Since the union of these closures is a set having only finitely
many connected components and is a bounded set we get from the first part of the
proof $#=*#, hence s=t.

DEFINITION. For a measure μ on C with compact carrier, we shall denote
by

l log-
JC Z —\Z — W\

the logarithmic potential of μ.

Corollary 6. Let KdC be connected and compact and let μ, v be two meas-
ures on K. Then we have :

μ(K) = v(K) and pμ. = pv on K=^pμ. = pv on C .

Proof. If K={a}, a^C we have μ=μ(K)8a=v. Assume that K has
more than one point. By a direct calculation we have

lim -f&L = -μ(K) .
«*~ log |ar I
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Thus condition 4) of the theorem 5 is fulfilled because μ(K)=v(K).

REMARK. Let Ac.C be given. For a point #eC denote

Az := {x^R: Iw^A, \z—w\ = x}.

Put also

Joo :== {x^R: 3z&A9 |*|-1 = x}.

We may generalize the above theorem 5 by replacing the condition 5) there with
the following less restrictive one:

5*) for any z^Ά the set Ag is "not thin at 0".
As an example consider the following condition :

5**) for any z&A there exists r(#)eΛj such that

and if A is not bounded there exists reJSf such that

[0,

Indeed using arguments like in the proof of proposition 1 one may show first
that if Ag is not thin at 0 then A is not thin at %. From this result we deduce:

s(s) = lim inf s(w) ,
to * zt w eJ.

for any z^Ά and any superharmonic function s.

REMARK. Generalizations of theorem 5 to higher dimensions might be
obtained by generalizing condition 5* which might be viewed as a thinness pre-
serving property by certain projections. First we show that Lipschitz maps
preserve thinness.

Proposition 7. Let Ac.Rd, a<ΞRd\A, btΞRd, M(=R*, and T: A-»Rd, be
such that:

If A is thin at a then T(A) is thin at b.

Proof. For any Radon measure μ denote by pμ the Newtonian potential
generated by μ. If A is thin at a and a^A then there exists a measure v such
that

P v(«) < + °° > lim p v(#) =
Λ->α, x^A

Let us denote by λ the measure defined by
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There exists ceΛt such that:

p*°T>cp, on A,

Then we

Proposition 8. Fix v^Rd with |M|=1. For any x&R* put Tv(x): =

#— <#, vyv. 1/Ac.R* is thin at 0 and sup^ ̂ <1, then TJA) is thin at 0.
**A \\χ\\

CONJECTURE. A set A^Rd is thin at 0 if there exist vly v2, v^Rd with
||̂ .|| = l,y=l, 2, 3 linearly independent and such that TVJ(A) is thin at 0, j—
1 2 ^1, ^*, O.

REMARK. The above conjecture is true if the set A is contained in a set of
the form U y^o^y where Gy is a Lipschitz manifold (graph of a Lipschitz function).
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