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Introduction

The main result of this paper is Theorem 5 below which gives an answer
to a question put by R. Grothmann concerning a uniqueness criterion for re-
presenting measures of logarithmic potentials. The key to the proof are pro-
positions 3 and 4. In terms of the “fine topology” one might restate Proposi-
tion 3 as follows: the fine closure and the natural closure of a connected subset
of C coinside. We remark that this result is true only for the fine topology
associated with the logarithmic (2-dimensional) potential theory. Its proof is
based on an elementary—fairly known—inequality. For the sake of complete-
ness we prove it in Proposition 1. Proposition 4 is based on a regularity criterion
for boundary points due to O. Frostman which will be remembered in Proposi-
tion 2.

Throughout this paper we shall use the following notations:
1) D(O, r):={z&C:|z|<r}, rER¥,
2) X,: the characteristic function of the set 4.
3) Hf: the solution on an open set G of the Dirichlet problem with boun-
dary value f.

1. Some auxiliary results

Proposition 1. Let FCC\{0} be closed, denote F*:={xcR:x=|z|,
2€F}, fi=Xp and f*:=Xp. Then we have for any R>0:

H7©BN\F(0) > HPORN(0) .
Proof. Assume R=1 and denote by

|1—2w|

, , weD(0, 1),
- % weD(0, 1)

g: (2, w)—log

the Green function of D(0, 1). Take » a (positive) measure on D(0, 1) and
denote by A the measure defined by
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Me) =, #lwl)dv(w),

where ¢ is a continuous function with compact support on D(0, 1). Further
put

p\,:z—>s gz, w)ydv(w), zeD(,1),

D(0,1)

the Green potential of ». Analogously p, will be defined. By a straightfor-
ward calculation one sees that for any 2 € .D(0, 1)

g1z, lwl)>g(z ).
From this inequality we get for any z&D(0, 1)
2132 p(3)
Indeed we have:
2(121) = { g(121, wiin@) = {g(121, |w])dv@) = gz, w)ds(w)
= 1(3).

Using the obvious equalities

=g(0, |w]), weD(0, 1)

£(0, w) = log

||
we get in a similar way
24(0) = 2:(0) .

Assume now FcD(0, 1)\ {0} and let £>0 be given. Then we may find a
measure » such that p,>1 on F and

PAO)SHPODV(0) 6
Using the first part of the proof we have p,>1 on F* hence
DH=HZON
Since p,(0)=p,(0) we get
HPO(0)462 p,(0) 2 HAOD'(0).

The required inequality follows now making & tend to 0. If F is arbitrary,
denote by

F,:= {z€F: |2|<1—1/n} neEN,
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and use the relations:

H2ODVF(0) = lim,,.. HZOD\Fx(0) |

H2OD\F*((0) = lim,, .. HAD\FiQ)
Proposition 2. Let G be a domain of C possessing a Green function and
denote by g, the Green function of G with pole at b=G. Then for any open set

U c G and any boundary point b= oU which is regular for the Dirichlet problem on
U we have g;—H; on U.

Proof. Assume U is connected and denote for any nEN by U,:=U U
D(b, 1/n). Fix acU and put g¥ (resp. g'*) the Green function of U (resp. U,)
with pole at a. We show first that gl =lim gJ* on U. Indeed if we denote

1= gUn D(b, 1 U
ioU—r on Db, /1) N9
foi=0 on dU\D(b, 1/n)
We have on U
gl»=gl+H7,.
The equality g :}’im gY» on U, follows now from the fact that the harmonic

measure on U of the sets D(b, 1/n) N QU goes to 0 for n—co and that (f,),ey is
a decreasing sequence of bounded functions.
We show that

lim gZ#(b) = 0 .
Let us denote
|u:=gY on U\ {a}
u:=20 on G\U ’
|u, 1= gUn on U,\ {a}

. . G - R : :
(resp. u,: G\ {a} u, :=0 on G\U, )

u: G\{a} - R

For any disc
D := D@, ry\cDcG\{a}, >0
we have , <H, on D. Using the fact that on G\ {a}\ {} we have u=lim u, we
get n>
lim gZ#(b) = lim u,(b)<H(b) .

From the fact that b was assumed regular we have

lim %(2) =0

250

and therefore
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lim H?®"(b) = 0
>0

thus we get lim, .. g5 *(b)=0.

The proposition follows now from

&) =H{ (a)=H(a) = g,(6)—g]*(b) .

Proposition 3. Let s be a superharmonic function on an open set UCC,
A be a connected set in C and U NA. Then we have
s(z) = lim inf s(w)
wrz,wET N4
Proof. We may assume that 4 contains more than one point and that 2=0.
Replacing if necessary U by a smaller open set and s by s+-c¢ for a suitable cE R¥

we may also assume that s>0. Take aER, a< lgm 1;1f s(w) and ReR¥ such
w»0,wET N4

that {z=C: |2|=R} N4=@, D(0, 2R)c U and s>a on D(0,2R)N A. Denote
= {g&D(0, 2R): s(2)>a} U {z=C: |2|>R}.

The set G is open and contains A. Let B be the connected component of G
containing 4. We have 0€B and {€C: |2| =R} NB=+@. Choose (2,),cy a
sequence in BN D(0, R) converging to 0 and construct for any #EN a con-
nected compact set K,C B such that 2,€K, and {z€C: |z|=R} NK,=0 (for
instance a polygonal curve linking 2, with the boundary of D(0, R)). Since the

superharmonic function is is non-negative and >1 on K, for any nEN, we
a
have s(0)>aH7%:5\*(0). Using now proposition 1 we have lim Hp®:P\5+(0)

=1 hence s(0)>a. Because o was arbitrary and s is lower semicontinuous we
get
$0) = liminf s(a0)
Proposition 4. Let U, G be open subsets of C such that G has only regular

boundary points and G is compact and is contained in U. Then for any super-
harmonic function s on U which is harmonic on G we have s=H¢ on G.

Proof. Replacing if necessary U by a smaller open set and s by s-c¢ for
a suitable c€R we may assume that s>0. Using the Riesz representation
theorem we may consider s of the form s(2):=[g(2, w)du(w) where g is the
Green function of U and g a positive Radon-measure on U. Since s is harmo-
nic on G we have x(G)=0. Fix a point G and denote by u, the harmonic
measure of G at 2, i.e. the positive Radon-measure on the boundary of G for
which
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HS(2) = S fdu, f continuous on 6G .

Using proposition 2 we have for any wedG, g(z, w)=/ g(+, w)du,. From the
theorem of Fubini we have

HE () = | sdi, = { edudp, = (| gdn.dn = |z, -)au = s2).

2. The main theorem

Theorem 5. Let s, t be superharmonic functions on C and ACC. The
Sfunctions s and t are equal if following conditions are fulfilled :
1) s=ton A,
2) both s and t are harmonic on the complement of A,
3) if A is not bounded then

liminf *&) 4 oo, liminf-2%) 4 oo,
Pres loglzl P loglz[

4) if A is bounded then

lim inf —®)_ — lim inf %) 4+ o

== log|z| == log|z| ’

5) the set A has finitely many bounded connected components each of which con-
sisting of more than one point.

Proof. Assume that 4 is bounded and let (4,);,,..,. be the connected
components of 4. From proposition 3 we have for any j, 1<j<n, s=ton 4,,

and therefore s=t on A=U ;... 4;.
Put G the unbounded connected component of C\A4. Also from proposition
3 we get that C\ 4 has only regular boundary points hence from proposition 4
s=t on every bounded component of C\4 i.e. on the set C\A\G. It remained

only to show that s=¢ on G. We may assume

lim inf —®)_ — 1 — lim inf _2®3)_
== log|z2| == log|z|

Then we have:
(%) = u(x)—log|z|, #(2) = v(z)—log|z],

where u# and v are harmonic on G and bounded in a neighborhood of oo. For
rER¥* such that {z€C: |2| >r} CG denote

U—ov on {z€C: |z|=71}

G’ = {zeG.|z|<r} and fr = { 0 on oG
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Again from proposition 4 we have on G,
HEr—s, Hfr =1,
and since s=t on 8G we get
s—t = Hf".
By a straightforward calculation one may show that 11112 Hfr=0, and thus s=¢

on G. Let now 4 be unbounded, assume that 04 and fix a negative real
number

a<min (h'm inf &) _ 1im infﬁ.).
== log|z| == log|z|

Further denote:
Ay = {2eC\{0}: 1/z€ 4},

sx(?) 1= s(z7N)+a log| 2], zeC\ {0} ,
tx(2) : = t(z7Y)+alog| 2|, zeC\ {0},

The functions sy, ¢4 are superharmonic on C\{0} and from the above condition
3) they are non-negative on a nieghbourhood of 0, hence they may be extended
to superharmonic functions on the whole of C. Obviously they are equal on
Ay, and applying proposition 3 we have sy=t, on the closure of each connected
component of Ay. Since the union of these closures is a set having only finitely
many connected components and is a bounded set we get from the first part of the
proof sy=14, hence s=¢.

DeriNiTION. For a measure g on C with compact carrier, we shall denote
by

Puiz— Sclog du(w), zeC,

lz2—w|
the logarithmic potential of u.

Corollary 6. Let K CC be connected and compact and let p, v be two meas-
ures on K. Then we have:

w(K)=v(K) and pp =p, on K= p.=p, on C.

Proof. If K={a}, acC we have p=p(K)8,=v. Assume that K has
more than one point. By a direct calculation we have

lim 243 _ _ Kx).
== log|z|
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Thus condition 4) of the theorem 5 is fulfilled because u(K)=»(K).
RemarRk. Let ACC be given. For a point 2&C denote
A, := {x=R: weAd, |z3—w| = x}.
Put also
A. = {x€R: 3z 4, |z|1 = x}.
We may generalize the above theorem 5 by replacing the condition 5) there with
the following less restrictive one:
5%) for any x4 the set A, is “not thin at 0.

As an example consider the following condition:
5%%)  for any s A there exists r(2) E R¥ such that

10, r(z)[c 4, ,
and if A is not bounded there exists r € R% such that
[0, r]c 4.

Indeed using arguments like in the proof of proposition 1 one may show first
that if A4, is not thin at 0 then A is not thin at 2. From this result we deduce:
5(2) = lim inf s(w) ,

wrz, wEA
for any 2= 4 and any superharmonic function s.
REMARK. Generalizations of theorem 5 to higher dimensions might be
obtained by generalizing condition 5% which might be viewed as a thinness pre-

serving property by certain projections. First we show that Lipschitz maps
preserve thinness.

Proposition 7. Let ACR?, ac R\A, beR’, McR*, and T: A—R*, be
such that:
x, y€A = ||[T(x)—T()l<M|lx—yll ,
x€A = |[b—T(x)|=M||la—x|| .

If A is thin at a then T(A) is thin at b.

Proof. For any Radon measure u denote by p,. the Newtonian potential
generated by u. If 4 is thin at @ and a4 then there exists a measure v such
that

P(@)<-+oo, }iﬁAPv(x) = +-oo.

g

Let us denote by A the measure defined by
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- SRJ foTdv, fECURY.

There exists c€ R* such that:

proT >cp, on A4,
2AB)=<c7'p\(a).
Then we have

AB)<teo, lim  py(y) = +oo.

y>b, yETCA)
Proposition 8. Fix veR? with ||v||=1. For any xR* put T,(x):=
x—<x, v>o. If ACR? is thin at 0 and sup<’i’_|’|’><1, then T,(A) is thin at 0.
X

I€EA
CoNJECTURE. A set AER? is thin at 0 if there exist v;, v,, v,€ R? with
llv;ll=1, j=1, 2, 3 linearly independent and such that 7,,(4) is thin at 0, j=
1,2, 3.

RemARk. The above conjecture is true if the set 4 is contained in a set of
the form U%.,G; where G, is a Lipschitz manifold (graph of a Lipschitz function).
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