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We have given some characterizations of right Nakayama rings related to
almost relative projectives or almost relative injectives [12]. In this paper we
shall study particularly the condition (C) (resp (C1)) in [12]. Let R be a right
artinian ring and let M,N, U and V be Λ-modules. (C): M is almost N/N'-
projective for any submodule N' of ΛΓ, provided M is almost ΛΓ-projective (resp.
(C1): U is almost F'-injective for any submodule V of V, provided U is almost

F-injective). We shall replace the role of N (resp. V) by that of M (resp. U)

in the above.
We shall give several characterizations of semi-primary rings whose Jacob-

son radical is square-zero in the above manner and in the similar manner for

relative projectives, respectively. Further from those viewpoints we shall char-
acterize a certain type of hereditary rings over which every submodule of any
indecomposable quasi-projective module is also quasi-projective (cf. [6]), and
two-sided Nakayama rings with radical square-zero, respectively.

1. Relative projectives

In this paper we always assume that R is a ring with identity. Every
module M is a unitary right jR-module. We shall denote the length, the Jacobson
radical and an infective hull of M by \M\9 ](M) and E(M), respectively. By
Soc(M) and Soc^M) we denote the socle and the ίth lower Loewy series of M.

We follow [4] and [11] for definitions of almost relative projectives and almost
relative injectives.

In this section we study some conditions below, when M is ΛΓ-projective

for JR-modules M and N (resp. U is F-injective for jR-modules U and F).

(E) M\M' is N-projective and

(F) M' is N-projective

for any submodule M' of M, provided M is N-projective.

(resp.

(E*) U' is V-injective and

(F1) U/U' is V-injective
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for any submodule U' is of U, provided U is V-ίnjective).

We first give a remark on the above conditions. Take any Λ-module T.

Then R is always T-projective as Λ-modules. If we assume (E) (resp. (F)) for

R, then every factor module jR/7 (resp. I) is T-projective, and hence R/I {resp.

I) is projective, where / is a right ideal of R. Therefore R is semi-simple (resp.

right hereditary). Further let M be a quasi-projective module. Then M is M-
projective. If (F) holds true, N is M-projective for any submodule N of M,

and hence TV is JV-projective (cf. [16], §16), i.e. N is quasi-projective. Hence

(F) implies

(G) every submodule of finitely generated and quasi-projective module
P is quasi-projective,

which was studied in [6].

In the following we shall skip proofs for injectives if they are dual to ones
for projectives.

Lemma 1. Let MdN be R-modules and S a simple R-module. Assume
that S is isomorphic to a sub-factor module T/N of M. If S is M-projective, then

there exists a simple submodule S' of M such that T=S'@N.

Proof. This is clear from the following diagram:

,s1 \k
M >M/N >0

where h is the given isomorphism of 5 to TIN.

Proposition 1. Let R be a semi-perfect ring. Then the following conditions
are equivalent :

1) (E) holds ture when M and N are any local modules.
I1) (£*) holds true when U and V are any uniform modules.
2) R is semi-simple.

Proof. 1)—*2) Let e be a primitive idempotent. Since eR is e/?-projec-
tive, eR/eJ is ^-projective by (E). Hence eJ=Q from Lemma 1. The re-
maining parts are similar.

Theorem 1. Let R be a (right) artίnίan ring. Then the following condi-
tions are equivalent:

I) (F) holds true when M and N are any local modules.
II) (F*) holds true when U and V are any uniform modules.



HEREDITARY RINGS 813

2) R is a (right) hereditary ring with /^O.

3) Every proper submodule of any local module is protective.

31) Every proper factor module of any uniform module is injective.

4) (F) holds true when M and N are any finitely generated R-modules.
4*) (ί1*) holds true when U and V are any finitely generated R-modules.

5) (F) holds true when M is finitely generated and quasi-projective.
6) (G) holds ture.

Proof. l)->2) Let e be a primitive idempotent and eJ/eJ2=Σi($Si, where

the S{ are simple. Assume S^fR/fJ for a primitive idempotent /. eR/eJ2 is

/R///2-projective by [1], p. 22, Exercise 4. Since S^eR/eJ2, Sλ is /R///-pro-

jective by (F). Hence fJ=Q by Lemma 1, and Sλ is projective. Accordingly
ejlej2 is projective and hence eJ=eJ2®'Σi®Si

f'9 S/^Si for all /. Therefore

0/=2f 0*Sf ' is projective and so eJ2=Q. Thus R is a (right) hereditary ring

withya=0[2].

2)->3) We assume that R is a hereditary ring with J2=Q. Since e/ is

projective and semi-simple, every factor module of ej is projective. Hence
every proper submodule D/A of eR/A is projective.

3)-*l) This is trivial.

l*)->2) and 2)^3*) They are dual to l)-*2) and 2)->3), respectively.

2)->4) Let R be a right artinian hereditary ring with radical square-zero.

Then / is semisimple and projective. Let M be a finitely generated .R-module
and P=elR®e2R® ®enR a projective cover of M, i.e. M~P/Q. Let A be

any submodule of P containing Q. Since P is a lifting module, P=P10P2, A"D

Pl and A ΠP2 is small in P2. Let π{ be the projection of P onto Pf . Put Qf=

g nPt- and ρ^^ρ). Then h: Q^Q^Q^Q, (see [11], p. 449) and P/ίftθρ.)

=PιlQι®P2lQ2^AI(Ql®Q2) = PJQl®(AΓiP2)IQ2^QI(Qι®Q2)' Since ^ΠP2

=π2(A)c:J(P2), AΠP2 is semisimple and projective. Hence (AΓiP2)IQ2=Q2l

O20ρ*/ρ2 for some submodule £>* of ^ and Pl/Q1®(AΓ[P2)/Q2=PιlQι®(Q2l

Q*)(Q®Q*IQ* QI(Qι®Q2) = (Q2/Q2)(h)=i9+Q2+h(q+Q2)\q^Q2}. There-

fore ^/ρ~ί^/(ριθρ2))/(ρ/(ριθρ2))~Λ/0ιθ0*/ρ2. Now Λ is a projective
cover of PilQi, since P is that of M, and we assume that M is Λ/-projective for
a finitely generated Λ-module N. Let 0 be any homomorphism of Pl to N.

Then 0 is trivially extendible to a homomorphisms θ' of P to N. Since 0'(ρ)

=0 by [!]> P 22> Exercise 4, 0(00=0. Therefore Pj^ is W-projective. Since
(A Π P2)/02 (and hence Q*IQ2) is projective, A/Q is Λ^-projective. Therefore (F)

holds true for any finitely generated Λ-modules.

4)-*l) and 4*)->l*) Those are trivial.

2)-»4f) Assume that R is (right) hereditary. Let f/Z) Ur and V be finitely

generated Λ-modules. We may assume E=E(U)=E(U')(&E2 and put E(t/')=

Eλ. Since [/' is essential in E19 Z/'DSoc^). Furthermore since ίΊ/Soc^) is
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semisimple and injective by 2), so is U*/U,f for any submodule J7*(D U') in Eλ.
NowE=EIU'=E1®E2^U/U'=U, where E^EJU' and E2=(E2+U')/U'~E2

(via p). Let π{ be the projection of E onto 1?, . Put Ui=πi(U) and £7,=^ n #.

Then h: U^Uz^U1/^ and 51=^1φt7*φJB*1, since ̂  is semisimple, where T:

UlIUl~U*. Let ? be the natural epimorphism of 0_2 to 02/U2. W/U^EJ

being injective, τ/b is extended to σ: E2-^El with 0 (£72)=0. Further E=Eλ®

E2(σ) and U=Uί®E2(σ) Γ\ t7. Assume that U is F-injective and take a homo-

morphism 0: V-*E2(σ). We have the natural isomorphism μ: -Z?2(<r)->52, (μ(Λ7+
σ(*))=* for x<=E2). Put Θ*=pμθ: V-^E^E^E^ Then 0*(F)c£2n Z7 by
[1], Propo_sition 4.5. Hence θ(V)C.μ~Y\E2 nU)=μ-\E2 Π U)=(E2 Π σ)(σ)=
E2nUdU for σ(Z72) - 0. Accordingly (9( F) C f/ Π E2(σ)_ and hence C7 Π E2(σ) is
F-injective. Furthermore C/j is injective. Therefore U is F-injective.

4)->5) This is trivial.
5)->6) This is shown before Lemma 1.

6)-^2) This is due to [6].

In Proposition 1 we have used a fact that (E) (resp. (E*)) holds true for
local modules M=eR/A and N=eR/B, i.e., M and N have the same projective

cover eR, where e runs through over all the primitive idempotents (resp. for
unifrom modules U and V in E(S), where S runs through over all the simple
modules). On the other hand, we have used, in Theorem 1, a fact that (F)
holds true for local modules eR/A and/R/C. From this observation we restrict
ourselves to a case e~f'm (F). By (H) (resp. (H1)) we denote the condition (F)
(resp. (F1)) satisfied only for M=eR/A and N=eR/B, where A, B are submodules
of eR and e is any primitive ίdempotent (resp. only for U and V in E(S) and S is
any simple module). Similarly we define (I) where the quasi-projective module
P in (G) is indecomposable.

We note the following fact. Let T be the basic ring of R. It is well known
that the category of all the right Λ-modules is equivalent to that of all the right
T-modules. Further the local modules correspeond to each other. Hence we
may assume that R is a basic ring when we study local modules.

In general we do not know a characterization of rings with (H). However
we study it in a praticular case.

Lemma 2. Assume J2=Q. Let A be an R-module. Consider a diagram

A

eR/B - » eR/C - » 0

for Bc.Cc.eR. If h is not an epimorphism, then there exists Jt: A-^-eR/B with
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Proof. The above diagram induces

A

>h(A) - > 0

If h(A)*eRIC, h(A)c.eJ/C. Since ej is semi-simple and v'\h(Λ))c:eJIBy

the lemma is clear.

Proposition 2. Let R be semi-perfect. If (H) holds true, then 1): eJe—Q
for each primitive idempoterίt e, and 2) : (/) holds true.

Proof. 1): Let x be an element in eRe. Then eR'DxeR^^eRjA for some
A. Since eR is &R-ρrojective, eR/A is also &R-projective by (H). Hence A=0
or A=eR by [1], p. 22, Exercise 4. Therefore eje=0. 2) is given before
Lemma 1.

Corollary 1. Let R be a basic and right artίnian ring. Let l=el+e2+
+£w, where {e{} is a set of mutually orthogonal primitive idempotenmts. 1): If n—
1, (H) holds ture if and only if R is a division ring. 2): If n—2, (H) holds true
if and only if J*=Q and eJe~Q for i= 1, 2. 3) : // ̂ =0, (if) holds true if and
only if eJe—Q for all i. 4): If (H) holds true, then Jn=0.

Proof. 1) is clear from Proposition 2. Assume l=e1-\-e2 and (H). Then

if #1/4=0, by Proposition 2 Soc(^)^^/^2/)(/); the direct sum of ί-copies of
e2R\e2J. Since eλR is ^jR-projective, e2R/e2J is ^Λ-projective by (H). Hence
elJe2J=Q. Similarly e2Je1J=Q. Therefore J2=Σ ^/^/=0. In the same
manner we can show that for each e{ there exists ^.(Φ^ ) such that eiJejJ=Q.

Hence J"=Q. Finally assume j^O and eijei=0 for all i. Then ej is smi-
simple, and hence (H) holds true by Lemma 2.

We refer [7], [11] and [12] for definitions of Nakayama rings and co-

Nakayama rings.

Corollary 2. Let R be a right Nakayama ring. Then (H) holds true if and
only if e{Je~§for all i.

Proof, "only if" part is given in Proposition 2. We note that if R is
right Nakayama, then £//£,•=() if and only if any two of distinct (simple) sub-
factor modules of e{R are not isomorphic to each other for all /. We suppose
e.Je~Q. Assume that eR/eJ3 is £jR/ς/'-ρrojective. Then i^j. Take any dia-

gram:
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i*
eR/ejk - » o

Put eJk'leJ'~fRlfJq for a primitive idempotent /. Since h(ejk'/ejj)=ejk'lejk

by the initial remark, the above diagram induces the following

fRIfJ

where y<x, fR/fJq-χ~h(eJk'/eJj) and fR/fJq~y~*/*'/*/':. Since h' is given by a
unit in/R/andj -y-z ̂ o, we obtain h': fRlfJ9-^fR/fJg~y with v'h'=W. There-
fore we get A: ejk /eJ'-^eR/eJ* with z>A=A.

If .R is right Nakayama, then (I) holds true, however (H) does not in gen-
eral. Hence though (G) and (F) are equivalent over right artinian rings, (I)
and (H) are not. Further we have £,-/£, =-^0 for every hereditary ring, and we
shall show in the next section that (H) holds true only on very special hereditary
rings.

2. Hereditary rings with (H)

In the last part of the previous section, we consider the property (H). We
shall study artinian hereditary rings with (H) in this section. Now we assume
that R is a (basic and artinian) hereditary ring. Then R has the following form
by [8], Theorem 1

(1)

where the en are matrix units, the Ki=eiίReii are division rings and the M,-—
e^Rβjj are K{—Kj bimodules.

Let R be as in (1) and ei=eii. We observe submodules in ^Λ, Let BID A
be any submodules in eλj. Then e±R\A is always ^/ί/Xj^ί-projective by [1],
p. 22, Exercise 4. Since B is projεctive, and hence a lifting module, B=B1®B2

and AnB2, B, Π A=A1 is small in Bλ. We can assume Bl=(eβR)*(t^®(e6R)*(tι^
® ®(emR)*(t>»\ where a<b< <m, f { : fyR^^J?)* is given by an element in
M!,-. Let A f J be the projection of A, into the jih component of ((0fJ?)*)(*Λ

1 ΊΓ M M< Λ.J 1V112 ΪVJ-13

O T ? 1\/Γ
Λ.2 ^23

0
\0

M \ιyιln λ

2n

Kn., Mn.ln

0 K. I
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Then ^CΣΘA". Since Bl is a projective cover of B1/AlyBIA(=B1IAl) is
-projective if and only if

(*) K,A D Σ*.: Σ/-5* Mlkfk-\A*)y where ̂ =

Conversely if ^jR/^4 is ^JR/C-projective, then X^cC by [1], p. 22, Exercise 4,
and furthermore if B/A is e^/^A -projective, then B/A is ^.R/O-projective for
CzDX^DHomXJ?, ̂ A Therefore

(H) holds true if and only if (*) holds ture, where eλ and AdB run through
over all the primitive idempotents and the submodules in e^R, respectively.
We shall consier the same criterion for (I). Assume KλA=A in the above.

Let Af, Bf be as above. Then B/A is quasi-projective if and only if for the
same decomposition of Bl as above

Al = ^i^jΊίk^pJ^fkpMkifi-\Al

ii)> where the indices ij and k run
(*') in the decomposition of Bλ and fkp=fk ekR-^>(the p-th component of

From now on we always assume that R is a basic and hereditary ring with
(I) given in (1). Since eλ] is projective,

(2) eJ

where ei=eii and

We put r W)=te*)'c:*/ and g-\Mip)=Mip'deJ.

Proposition 3. Let R be a basic and hereditary ring with (/). Assume

eιJ~ekR®esR®" & in (2)^ where k<s. Then 1): either Mkp=0 or M$p=0
(s^ p), provided M^ΦO for some q(>p) (MSS=KS). 2): // (H) holds and
0, Mlk is cyclic as a Kl-Kk bίmodule.

Proof. 1) Since Hom^R, ek'R)=Q, ^M^/ΛcΣ^^Θ^^'c^/, where
the b are indices in (2). Hence KlMkp'R^Msp

tRc:(^b^k®(ebRy)^(esRy=Q.
Now we may assume Mpq'=Q for all q'(p«l'<c[) and MMΦO. We note
KlMkp

fR=K1Mkp

f®K1Mkp

fMpq®'-®K1Mkp

/Mpn and Msp

fR=Msp

fφMsp

fMpq

®Msp'Mpq+1®. ®Msp'Mpn. Put A=KlMkp'(Mp,®Mpi+l® )+B9 where B=

£ιMf/(M,f+1θ ) Since BcMlf+1 0-®Mlw and JK1M4/ΛnM./Λ=0,
(^M^/Λ+M^/Λ+^/^-^M^/eM^'θM./M^-Z)). A being character-
istic in &R, ^jR/^4 is ^Λ/^4-projective, and hence D is quasi-projective by (I).
Since ^M^' and Msp are ^-modules, we obtain a non-zero homomorphism
A: KlMkp'-+M$p\ provided Mkp*Q and MS^ΦO. Take a diagram
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D

D — > 0/M,/M,,= jζM,θM, — > o

where π is the projection and v is the natural epimorphism. (Note that all the
maps are Λ-homomorphisms.)

Then there exists h: D^D with vh=vh. Hnce OΦA(X1MA/)c(Λ/ί/+M,/Mίί)
Γ\Mlp=Mέp. However K^M^'M^A and the natural map M9p®κMptΓ*

M3pMpq is an isomorphism by [8], Theorem 1, a contradiction. Therefore either
Mkp=G or M,,=0.

2) Assume (H) and ekJΦQ. We apply (*) to A=mlkekJc.B=(ekR)',
where mlk^pQ in M1Λ grres/Λ. Then KlmlkekJ=KlmlkKkekJ=MlkekJ. Since the

natural maps Mlk®κkekJ-*MlkekJ and KλmlkKk® κ^ek] ̂ K^rn^K^] are isomor-
phisms by [8], Theorem 1, K1mlkKk=Mlk.

Corollary 1. Let R be a hereditary ring as in Proposition 3 and let k and

s be as above. We assume (I). If either Mkp'<$:Soc(ekR) or M^/ctzSoc^^jR) for
some p' , then Mkp'=Q or Msps=Q. Hence any simple sub-factor modules of ekR
are never ίsomorphic to any ones of esRy provided they are not derived from their

socles.

Proof. From the assumption and [8], Theorem 1, there exists an integer
q' such that M^/ΦO.

Corollary 2. Let R be as in Corollary 1. We gather together isomorphic

components in (2) and put ̂ /^((^O^θίί^)')^®— τhen (foW*' is

characteristic in e^R, provided ekj=£θ.

Proof. Let uy u' and k be indices in (2). If k>u, Muk=0 from Proposi-
tion 3, and hence Ή.omR(ekR, eu'R)=Q for any u'^pk. Therefore

We shall study the remaining part on Corollary 1, namely MkqdSoc(ekR).
Let Z>! and D2 be division rings and M19 M2 D1—D2 bimodules. Put M=
M2. Consider the following condition: for any element m=m1-{-m2'y

, i.e., for any Dl—D2 submodule N of M, N=

If D1=D2 are fields and the Mi are usual D1—D1 bimodules, then M does not
satisfy (3). Assume next that there exists a non-trivial automorphism σ of Dλ.
Let M1=D1ml=m1D1 be a usual D1—D1 bimodule. Put M2=Dlm2 and define
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m2d=d*mϊ for Then Λf=Af10Λf2 satisfies (3) as D1—Dl bimodules.

Proposition 4. Let R be a hereditary ring with (I) as in Proposition 3.

1): Let ekR and esR be as in (2). Assume OΦΛf^cSocfojRjC^ R for some p
and i=k,s(k*s). Then KλM^ and K^M^ satisfy (3) as Kλ-Kp bimodules.

2): Ifnk>l in Corollary 2 and ekJ=£Q, we assume ((ekRY)(n^=X1®X2] the X{

are characteristic in e^R. If X{ contains a non-zero right Kp-module Y{ con-
tained in Soc(ekR'Yn*> for ί=l,2, then K^ and K^ satisfy (3) as K^Kp

bimodules.

Proof. Assume k<s. Then K^p'C.^R)')^ from Corollary 2 for i=
k,s. Let iff, be any element in KιMit' and put A=K1(mk+mg)K^ which is a

characteristic submodule in ^jR and is contained in ((^-R)')^®^^)')^ (=F).
Then F/A is ίy^4-projective from (I). Hence A is also a characteristic submodule
in F9 since A is small in F. Accordingly Al^K^mkKp®K^mJίp1^A. We can
show 2) in the same manner.

In the above, we studied the structure of R, provided e^J was a direct sum
of distinct projective modules ekR. We can not easily describe the structure
of R, even though eιJ<^>>ekR. Here we shall explore several examples. It is
clear, from Proposition 2, that every hereditary ring with J2— 0 satisfies (H).
Let Kλ~DK2 and K3 be fields such that Kτ has a K2-a.utomoτphism σ and [jfiΓji
K2]=2. Take the Λf=M10Λf2 after (3). Then M satisfies (3), if σφl, and
put

' K2 KI M

R0 = I 0 K! M

.0 0 X, 0 0

where the M, 3 are any K{—K3 bimodules such that R0

f is hereditary. Set

M0=(ml+m2)Kι m M and ^=^22^0^33 m R0- Then 1̂2̂ 4 is a characteristic
submodule of enR. However A(dB^^enJ) is not a characteristic submodule

of e^jR, provided σφl. We note tfn/^tf^ Hence (I) does not hold true
from (*'). If σ=l, (H) holds true (see Λx below). Further R0 is a J^2-algebra
and satisfies all the conditions in Theorem 2 below, except the condition: XΊ=

ίΓ2. On the other hand R0' satisfies (H) from (*).

We can easily show

/K, Kι K, M \
0 K! 0 M1

0 0 K! Mt

\ 0 0 0 K!

fK2K1K1M\

0 0 Kt M2

\ 0 0 0 Jζ /

is hereditary ring with (H), provided σφl. enJ'^e2ίR1®e33R1, and (0, 0, 0, MI)
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= Soc(02/?1), (0,0,0,M2)=Soc(^33/?1), and R1 does not satisfy (I), provided σ=l.
jR/ does not satisfy (I) for all σ.
Put

0 K2 K2 (R2' = 0 K2 K2).

0 0 K2I \0 0

Then R2 is hereditary and enJ~~e22R2(&e22R2. R2 satisfies (H). Contrarily R2

does not satisfy (I) by Proposition 4.
Put

(cf.R2)

κ2

R3 does not satisfy (I) from (*'). In R2 Soc(tfnjR2) does not contain proper
characteristic submodules, however Soc(^uJ?3) does a characteristic submodule
^(0,0,1(8)1+^®!) (=A) in 7?3, which does not satisfy (*') for AdB=-enJ9

where K1=K2®vK2.
It is very hard for the author to interpret generally (*') in terms of struc-

tures of R. Hence in the last part of this section, we shall determine the struc-
ture of a basic and hereditary algebra over a field K which satisfies (I) and as-

sumption:

From now on we always assume that R is such an algebra. Then every sub-
module in βfR is characteristic. Further (3) is never staisfied. Hence ei]

f^
e^Rφe^Rφ i(Λ)Φi(j) for &Φί, from Proposition 4, if ei(j)R is not simple.

Thus if R satisfies (I), then

\ '
m

q)

where £,-(«)/Φθ for each u and £,(»)/—0 f°r each v. We note

(5) if MjHφO/or any k and t=some j(a) in the above, then MktdSoc(ekR).

Further from [8], Theorem 1, if a simple component in Soc(^ jR) is isomorphic
to a submodule in M.pCLβjR, then Mjpc:Soc(ejR) (cf. (5)).

The following lemma is well known (see [9]).

Lemma 3. Let M and N be R-modules such that every sub-factor module
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of M is never isomorphic to any one of N. Then P=M fϊ P@N Π P for any sub-
module P ofM®N.

In the similar manner to the proof of Proposition 3, we can obtain the fol-

lowing lemma.

Lemma 4. Let R be the algebra as above. We assume (I). Then z/M^Φ

Ofor somej,k(j*k), i.e., M^ctSocfoJ?), then \Mif\ ^1 for all i(<j).

We assume

(6) M{j = u{jK or = 0.

The following lemma is clear.

Lemma 5. Let R be a hereditary algebra in (1) whose structure is as in
(6). Then every sub-factor module of eίMR is never isomorphic to any sub-factor

module of e^R, where i(r) and i(s) are indices in (4) (sφr) and e1 in (4) runs through
aller

Theorem 2. Let K be a field and R a basic and right artinian hereditary
K-algebra such that R/J~Σ®K. Then R satisfies (I) if and only if R has the
following structure:

1) R/Soc(R) is an algebra as in (6).
2) Any simple component in Soc(^(A)l?) is never isomorphic to any one in

Soc(ei(ft').R) for k=%=k'', where i(k), i(k') run through over all the indices in (4) and
e1 in (4) runs through over all the primitive idempotents.

In this case (H) and (I) are equivalent to each other.

Proof. Suppose (I). Then we obtain 1) from Lemma 4 and 2) from
Proposition 4. Conversely we assume 1) and 2). Then from Lemma 5 efj
has the following direct decomposition for each z: efJ^^D®^Σ,k®Fk] i) D is
semi-simple, and ii) the Fk are indecomposable and non-simple projectives
(=ep(Λ)jR) and every simple sub-factor module of Fk is never isomorphic to

any one of ¥# for all k^k'. Let R be of the form (1). By induction on n,
the degree of matrix, we shall show (H). We assume that (H) holds true for

M=ejjR/Af and N=ejjR/B'; all;>l, and we shall show that (H) holds true for

enR/A and e^R/B. Put en=e, and assume that eR/A is &R/J3-projective.
Then AdB. Take a proper submodule C/A of eR/A and consider a diagram

C/A

I*V Ψ

eRIB >eR/E »0

Since h(C/A)c:eJ/Ey we can derive the diagram from the above
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CfA

From eJl)A, we can easily see from i), ii), (5) and Lemma 3 that A=(AΓi D*)
®I,k®(AnFk) after a little change of a direct decomposition of ej: = D*ΘΣ*Θ
Fk, where Z)* is semi-simple (cf. [9], the proof of Proposition 8). Further not-
ing that A Π D* is a direct summand of D*, i.e., D*=D? ®(A Π D*) and that
Z>?ΘΣΛ0FΛ^5/(^nl>*):3Σ*θ(^nFΛ), we obtain further direct decomposi-
tions

(A Π D*)θ(£ Π Z>?)0Σ,0

From the above observation, let C=
where C'D-4' are semi-simple. Then C/^=C7^/0Σ4θ(Cnίl)/( 4nίi). In
order to show that CfA is ^JR/JS-projective, we may show that each simple com-
ponent Cf of C'fA' (resp. (CΓ\Fk)l(A[\F^) is ^/5-ρrojective. Hence we can
replace Of A by Cf or (C (Ί Fk)/(A Γ\ Fk) in (7). We have similar decompositions

Then we have z/^^+z/a and h=hl+h29 where ^: D'/B'-*D'/E', v2: ΣS

(5 n^-Σ^W^Π^)), AI : X-*D'/E' and A2: X-+2,®(F.I(E Πί1,)), where
X=Cf or (C Π jFi)/(-4 Πίi). Since D'l)E'^)B' are semi-simple, we obtain

Aj : X-»D'IB' with z/A - ̂  .

Assume first X=Cf^ej^R). If Λ2(Cf)φO, then there exists Λ such that
h2(Cf)C(Mp(tW+(EnFk))l(Ef]F,) and Mp(ί) .(ί) C Soc(ί;) by ii) and (5).
Then we can derive the following diagram:

c?

(Soc(F4)+(B n F,))I(B n ί1*) - * (SocίF^+ίE1 n F^KE n ί1*) — > o

Since Soc(Z^) is semi-simple, we obtain also

h2: Cf-»(Soc(Fk)+(BnFk))/(BnFk)cιFk/(BnFk) with v2h2 = h2 .

Finally assume X=(C Π Fk)/(A Π FΛ). Then Λ2(^Γ) CjFA/(£: Π Fk) by ii). More-
over since Af}FkC.BnFk, Fkl(AΓ(Fk) is Fk/(B Π FA)-projective. Hence there
exists
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%2: X-*Fkl(B{\Fk) with v2h2 = h2

by induction hypothesis. Therefore C/A is &R/S-projective. Thus (H) holds
true and hence (I) does.

We can completely determine the styles of hereditary algebras in Theorem
2. Let MU M2 be non-zero X'-vector spaces. Then there are only three styles

of the above algebras, when n=3.

and / K K Ml®M2\

K Ml

0 0 K

We note that R0 before Lemma 3 shows that Theorem 2 is not true if K Φ
K{ for some ί and R0' is a hereditary algebra with (H) as right jR/-modules, but
not as left ^/-modules, if K1=K2=K3 and Mij=K1φKl.

3. Almost relative projectives and almost relative injectives

In this section we shall study the same problem for almost relative projec-
tives (resp. injectives). We consider the following conditions:

(J) M/M' is almost N-projective and
(K) M' is almost N-projective
for any submodule M' of M, provided M is almost N-projective.

(resp.
(Jf) U' is almost V-injective and
(K*) U\U' is almost V-injective

for any submodule U' of U, provided U is almost V-injective).

Proposition 5. Let R be a perfect ring. (J) holds true when M and N
are any local modules (resp. any M=eR/A and N—eRjE for a fixed primitive

idempotent e) if and onld if R is a right Nakayama ring with J*=0 (resp. eR is
a uniserial module with (ej)2=0 and \ eR \ < oo).

Proof. Since fR is almost β/?/^4-projective for any submodule A of eR,
fR/B is almost £/?/^4-projective by (J). Hence R is a ring stated in the proposi-

tion by [11], Theorem 3. The converse is clear from the same theorem. We
can use [12], Theorem 4 in case of M=eR/A and N=eR,IB.

Proposition 5*. Let R be as above. (/*) holds true when U and V are any

uniform modules (resp. any submodules U and V in E(S) for a fixed simple module
S) if and only if R is right co-Nakayama ring with J2—0 (every simple sub-factor

module of E, execpt Soc(E') and Ej](E), is not isomorphίc to S).

Similarly to Theorem 2 in [12], we have
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Proposition 6. Let R be a two-sided artinian ring. Then the following con-
ditions are equivalent :

1) (/) holds true for any finitely generated (and indecomposable) modules M

and N.
1*) (/*) holds true for any finitely generated (and indecomposable) modules U

andV.
2) R is a two-sided Nakayama ring with J2= 0.
3) Any two of finitely generated R-modules are mutually almost relative pro-

jective.

Proof. 2)-»3) If R is a two-sided Nakayama ring with/2=0, then every

finitely generated and indecomposable Λ-module is local. Hence 3) holds true
by [11], Theorem 3.

l)->2) Let (J) hold ture. Assume £ι/~£2/ via/ for primitive idempotents
el and e2. Put N=(elR®e2R)/{x+f(x)\x^e1J}. Since eλR is (almost) ΛΓ-pro-
jective, e^R\e^J is almost JV-projective by 1). Then N is decomposable by [12],
Lemma 3. Hence R is left Nakayama by [15], Lemmas 2.1 and 4.3. Therefore
R is two-sided Nakayama.

The remaining implications are clear.

Proposition 7. Let R be a perfect ring. Then the following conditions are

equivalent :
1) (K) holds ture when M and N are any local modules.

lf) (K*) holds ture when U and V are any uniform modules.
2) y=o.
3) Let M and N be any local modules. Then every proper submodule of M

is almost N-projectίve.
4) Every module is almost R-projective.

Proof. l)->2) Let ς/'^ΦO and assume n>2. We put gR=
ej»-2=ej*-2jίejn-1. Then ej»~2 is semi-simple and let gJ -^B&
where the B{ are simple, and eJn'2^B^eJn"1. Since ejeej*~lc:ejn, eR\e]n~λ

is almost ^/^/Λ-ρrojective by [5], Proposition 2. Hence jB^/ς/ "1 is almost eR/
£/n-projective by 1). Take a diagram

B,leJ->

I"
eR/eJ" > eR/eJ"-1 > 0

where h is the inclusion.

Since n>2, jBt Ce/ and h is not an epimorphism. Therefore there exists a sim-

ple submodule K in eR/eJ" with Bi/eJn=K®eJ*-1/eJ* (cf. Lemma 1). Hence
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Soc(eRleJn). Since ej'~2 = Σ,.5,., eJ'-'/eJ* = XA/«Γ C SoφR/ef).
Hence 0=Soc(eJR/e/*)y^(e/"~2/e/<')/, and so eJH~1=ef, a contradiction. Ac-
cordingly w^2.

2)-*3) Since J2—0, ej is semi-simple. Let D/A be any proper submodule
of eRIA. Then D/A is semi-simple. In order to show 3) we may assume that
DjA is simple. Take a diagram:

D\A

\k
1'

> /R/C - > 0

If /r is an epimorphism, C=fJ, and hence putting h~1v=h, we have hh=v.
If A is not an epimorphism, we can find fi: DIA-^fJ/BCLfR/B with vh=h by
Lemma 2.

3)->l) This is trivial.
l*)->2) and 2)->lf) Those are dual to l)-^2) and 2)->l), respectively.
4)->2) Since eR/eJ is almost /R-projective, Q=fJeeJ=fJeJ for any primi-

tive idempotents £ and/. Hence J2='ΣijeiJejJ=(), where 1— Σ t̂ .
2)->4) Let M be an Λ-module. Take a projective cover P of M. Then

M~PIQ and £>cP/. Let (9 be any element in HomR(P,eJ). Then 0(£>) C
θ(PJ)CleJ2=0. Hence Λf is almost ^-projective by [13], Theorem 2, and M
is almost Λ-projective by [10], Theorem 2.

REMARK. 1) Related to Proposition 7, we note that if every indecomposable
module is R-projective, then R is semi-simple.

2) In the above l)->2), we have used a fact that (K) holds true only for
hollow modules M=eRjA and N—eRfB. Further the property in Proposition 7
is left and right symmetric.

Finally we study (K) for any finitely generated jR-modules M and N.
First we assume (K) only in case of M is an indecomposable and projective

module. Then since eR is a (almost) ΛΓ-projective for any finitely generated
jR-module N, R satisfies (17) in [14] (cf. the remark in §4 of [14]), and hence
R is a right almost hereditary ring given in Theorem 3 of [14]. As a consequence
in this case (K) holds true when M is a finitely generated projective module.

Proposition 8. Let R be a (two-sided) artinian ring. Then (K) holds true
for any finitely generated R-modules M and N if and only if R is a right almost
hereditary ring with /2— 0 and (K) holds true when N is local.

Proof. Assume (K). Then R is right almost hereditary as above
0 by Proposition 7. Conversely, we assume that R is a (basic) right almost
hereditary ring with J2—®. Let M be a finitely generated Λ-module and P a
projective cover of M. Let T be a submodule of P containing Q
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Since /=0, 77£?~Pi/£i0£>*/jE?2 as in the proof of 2)->4) of Theorem 1, where
£>*C J(P2). Hence since Q*/Q2 is a direct summand of J(P2), j2*/£>2 is almost
projective by assumption. Suppose that M is almost ΛΓ-projective for a finitely

generated jR-module N. We first assume that N is indecomposable. If ΛΓ is

not local, M is Λf-projective by [10], Theorem 1. Hence PilQi is JV-projective

by the proof of 2)->4) of Theorem 1. Therefore T is almost ΛΓ-projective. We

have the same result for a local module by assumption. Hence we obtain (K)

by [10], Theorem 2.

Corollary 1. Let R be a right Nakayama, right almost hereditary ring with

J2=Q. Then (K) holds ture for any finitely generated R-modules M and N.

Proof. Since R is a right Nakayama ring with/2— 0, the set of local mod-

ules consists of {eR, eR\e]}e. Hence by Proposition 7 (K) holds true when N
is local.

Next we shall study (K) when M is quasi-projective. The following corol-

lary corresponds to the equivalence 1) and 5) in Theorem 1.

Corollary 2. Let R be a (two-sided} artίnian ring. Then the following con-
ditions are equivalent :

1) (K) holds true when M is an indecomposable and quasi-projective module.
2) (K) holds true when M is finitely generated and quasi-projective.
3) R is a right almost hereditary ring with J2=Q.

Proof. We assume 1). Then /2=0 from the proof of Proposition 7. We

have shown before Proposition 8 that R is a right almost hereditary ring. Hence

we obtain 3). Conversely we assume 3). Let M be a finitely generated and

quasi-projective module. We shall use the same notations as in the proof of

Proposition 8. Then P=P1ξ$P2 and Q=Qι®Q2^ since M is quasi-projective.

Hence if P/Q is almost ΛΓ-projective, so is Pi/Qi Therefore we obtain 2) from
the proof of Proposition 8.

Let K^K2 be fields. Then

R =

is a right Nakayama and right almost hereditary ring with/2—0, which is neither
hereditary nor two-sided Nakayama. Since R is not left almost hereditary, (K)

is not left and right symmetric for finitely generated 7?-modules. We note that

we can not replace "quasi-projective" in 5) of Theorem 1 by *'indecomposable
and quasi-projective" (cf. 2) in Corollary 2 above).
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