HEREDITARY RINGS AND RELATIVE PROJECTIVES

Manabu HARADA

(Received February 8, 1991)

We have given some characterizations of right Nakayama rings related to almost relative projectives or almost relative injectives [12]. In this paper we shall study particularly the condition (C) (resp $\left(\mathrm{C}^{*}\right)$) in [12]. Let R be a right artinian ring and let M, N, U and V be R-modules. (C): M is almost N / N^{\prime} ' projective for any submodule N^{\prime} of N, provided M is almost N-projective (resp. $\left(\mathrm{C}^{*}\right): U$ is almost V^{\prime}-injective for any submodule V^{\prime} of V, provided U is almost V-injective). We shall replace the role of N (resp. V) by that of M (resp. U) in the above.

We shall give several characterizations of semi-primary rings whose Jacobson radical is square-zero in the above manner and in the similar manner for relative projectives, respectively. Further from those viewpoints we shall characterize a certain type of hereditary rings over which every submodule of any indecomposable quasi-projective module is also quasi-projective (cf. [6]), and two-sided Nakayama rings with radical square-zero, respectively.

1. Relative projectives

In this paper we always assume that R is a ring with identity. Every module M is a unitary right R-module. We shall denote the length, the Jacobson radical and an injective hull of M by $|M|, \mathrm{J}(M)$ and $\mathrm{E}(M)$, respectively. By $\operatorname{Soc}(\mathrm{M})$ and $\operatorname{Soc}_{\mathrm{i}}(M)$ we denote the socle and the ith lower Loewy series of M. We follow [4] and [11] for definitions of almost relative projectives and almost relative injectives.

In this section we study some conditions below, when M is N-projective for R-modules M and N (resp. U is V-injective for R-modules U and V).
M / M^{\prime} is N-projective and
M^{\prime} is N-projective
for any submodule M^{\prime} of M, provided M is N-projective. (resp.
U^{\prime} is V-injective and
U / U^{\prime} is V-injective
for any submodule U^{\prime} is of U, provided U is V-injective).
We first give a remark on the above conditions. Take any R-module T. Then R is always T-projective as R-modules. If we assume (E) (resp. (F)) for R, then every factor module R / I (resp. I) is T-projective, and hence R / I (resp. I) is projective, where I is a right ideal of R. Therefore R is semi-simple (resp. right hereditary). Further let M be a quasi-projective module. Then M is M projective. If (F) holds true, N is M-projective for any submodule N of M, and hence N is N-projective (cf. [16], §16), i.e. N is quasi-projective. Hence (F) implies
(G) every submodule of finitely generated and quasi-projective module P is quasi-projective,
which was studied in [6].
In the following we shall skip proofs for injectives if they are dual to ones for projectives.

Lemma 1. Let $M \subset N$ be R-modules and S a simple R-module. Assume that S is isomorphic to a sub-factor module T / N of M. If S is M-projective, then there exists a simple submodule S^{\prime} of M such that $T=S^{\prime} \oplus N$.

Proof. This is clear from the following diagram:

where h is the given isomorphism of S to T / N.
Proposition 1. Let R be a semi-perfect ring. Then the following conditions are equivalent :

1) (E) holds ture when M and N are any local modules.
$\left.1^{*}\right)\left(E^{*}\right)$ holds true when U and V are any uniform modules.
2) R is semi-simple.

Proof. 1) $\rightarrow 2$) Let e be a primitive idempotent. Since $e R$ is $e R$-projective, $e R / e J$ is $e R$-projective by (E). Hence $e J=0$ from Lemma 1. The remaining parts are similar.

Theorem 1. Let R be a (right) artinian ring. Then the following conditions are equivalent :

1) (F) holds true when M and N are any local modules.
1^{*}) (F^{*}) holds true when U and V are any uniform modules.
2) R is a (right) hereditary ring with $J^{2}=0$.
3) Every proper submodule of any local module is projective.
3^{*}) Every proper factor module of any uniform module is injective.
4) (F) holds true when M and N are any finitely generated R-modules.
4^{*}) (F^{*}) holds true when U and V are any finitely generated R-modules.
5) (F) holds true when M is finitely generated and quasi-projective.
6) (G) holds ture.

Proof. 1) $\rightarrow 2$) Let e be a primitive idempotent and $e J / e J^{2}=\Sigma_{i} \oplus S_{i}$, where the S_{i} are simple. Assume $S_{1} \sim f R / f J$ for a primitive idempotent $f . e R / e J^{2}$ is $f R / f J^{2}$-projective by [1], p. 22, Exercise 4. Since $S_{1} \subset e R / e J^{2}, S_{1}$ is $f R / f J^{2}$-projective by (F). Hence $f J=0$ by Lemma 1, and S_{1} is projective. Accordingly $e J / e J^{2}$ is projective and hence $e J=e J^{2} \oplus \Sigma_{i} \oplus S_{i}^{\prime} ; S_{i}^{\prime} \sim S_{i}$ for all i. Therefore $e J=\Sigma_{i} \oplus S_{i}{ }^{\prime}$ is projective and so $e J^{2}=0$. Thus R is a (right) hereditary ring with $J^{2}=0$ [2].
$2) \rightarrow 3$) We assume that R is a hereditary ring with $J^{2}=0$. Since $e J$ is projective and semi-simple, every factor module of $e J$ is projective. Hence every proper submodule D / A of $e R / A$ is projective.
3) $\rightarrow 1$) This is trivial.
$\left.1^{*}\right) \rightarrow 2$) and 2$) \rightarrow 3^{*}$) They are dual to 1$) \rightarrow 2$) and 2) $\rightarrow 3$), respectively.
$2) \rightarrow 4$) Let R be a right artinian hereditary ring with radical square-zero. Then J is semisimple and projective. Let M be a finitely generated R-module and $P=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{n} R$ a projective cover of M, i.e. $M \sim P / Q$. Let A be any submodule of P containing Q. Since P is a lifting module, $P=P_{1} \oplus P_{2}, A \supset$ P_{1} and $A \cap P_{2}$ is small in P_{2}. Let π_{i} be the projection of P onto P_{i}. Put $Q_{i}=$ $Q \cap P_{i}$ and $Q^{i}=\pi_{i}(Q)$. Then $h: Q^{2} / Q_{2} \sim Q^{1} / Q_{1}$ (see [11], p. 449) and $P /\left(Q_{1} \oplus Q_{2}\right)$ $=P_{1} / Q_{1} \oplus P_{2} / Q_{2} \supset A /\left(Q_{1} \oplus Q_{2}\right)=P_{1} / Q_{1} \oplus\left(A \cap P_{2}\right) / Q_{2} \supset Q /\left(Q_{1} \oplus Q_{2}\right)$. Since $A \cap P_{2}$ $=\pi_{2}(A) \subset J\left(P_{2}\right), A \cap P_{2}$ is semisimple and projective. Hence $\left(A \cap P_{2}\right) / Q_{2}=Q^{2} /$ $Q_{2} \oplus Q^{*} / Q_{2}$ for some submodule Q^{*} of A and $P_{1} / Q_{1} \oplus\left(A \cap P_{2}\right) / Q_{2}=P_{1} / Q_{1} \oplus\left(Q^{2} /\right.$ $\left.Q_{2}\right)(h) \oplus Q^{*} / Q_{2} ; Q /\left(Q_{1} \oplus Q_{2}\right)=\left(Q^{2} / Q_{2}\right)(h)=\left\{q+Q_{2}+h\left(q+Q_{2}\right) \mid q \in Q^{2}\right\}$. Therefore $A / Q \sim\left(A /\left(Q_{1} \oplus Q_{2}\right)\right) /\left(Q /\left(Q_{1} \oplus Q_{2}\right)\right) \sim P_{1} / Q_{1} \oplus Q^{*} / Q_{2}$. Now P_{1} is a projective cover of P_{1} / Q_{1}, since P is that of M, and we assume that M is N-projective for a finitely generated R-module N. Let θ be any homomorphism of P_{1} to N. Then θ is trivially extendible to a homomorphisms θ^{\prime} of P to N. Since $\theta^{\prime}(Q)$ $=0$ by [1], p. 22, Exercise 4, $\theta\left(Q_{1}\right)=0$. Therefore P_{1} / Q_{1} is N-projective. Since $\left(A \cap P_{2}\right) / Q_{2}$ (and hence Q^{*} / Q_{2}) is projective, A / Q is N-projective. Therefore (F) holds true for any finitely generated R-modules.
$4) \rightarrow 1$) and $\left.4^{*}\right) \rightarrow 1^{*}$) Those are trivial.
2) $\rightarrow 4^{*}$) Assume that R is (right) hereditary. Let $U \supset U^{\prime}$ and V be finitely generated R-modules. We may assume $E=\mathrm{E}(U)=\mathrm{E}\left(U^{\prime}\right) \oplus E_{2}$ and put $\mathrm{E}\left(U^{\prime}\right)=$ E_{1}. Since U^{\prime} is essential in $E_{1}, U^{\prime} \supset \operatorname{Soc}\left(E_{1}\right)$. Furthermore since $E_{1} / \operatorname{Soc}\left(E_{1}\right)$ is
semisimple and injective by 2), so is U^{*} / U^{\prime} for any submodule $U^{*}\left(\supset U^{\prime}\right)$ in E_{1}. Now $\bar{E}=E / U^{\prime}=\bar{E}_{1} \oplus \bar{E}_{2} \supset U / U^{\prime}=\bar{U}$, where $\bar{E}_{1}=E_{1} / U^{\prime}$ and $\bar{E}_{2}=\left(E_{2}+U^{\prime}\right) / U^{\prime} \sim E_{2}$ (via ρ). Let π_{i} be the projection of \bar{E} onto \bar{E}_{i}. Put $\bar{U}^{i}=\pi_{i}(\bar{U})$ and $\bar{U}_{i}=\bar{E}_{1} \cap \bar{U}$. Then $h: \bar{U}^{2} / \bar{U}_{2} \sim \bar{U}^{1} / \bar{U}_{1}$ and $\bar{E}_{1}=\bar{U}_{1} \oplus \bar{U}^{*} \oplus \bar{E}^{*}$, since \bar{E}_{1} is semisimple, where τ : $\bar{U}^{1} / \bar{U}_{1} \sim \bar{U}^{*}$. Let ν be the natural epimorphism of \bar{U}^{2} to $\bar{U}^{2} / \bar{U}_{2}$. $\bar{U} / 1 / \bar{U}_{1}\left(\subset \bar{E}_{1}\right)$ being injective, $\tau h \nu$ is extended to $\sigma: \bar{E}_{2} \rightarrow \bar{E}_{1}$ with $\sigma\left(\bar{U}_{2}\right)=0$. Further $\bar{E}=E_{1} \oplus$ $\bar{E}_{2}(\sigma)$ and $\bar{U}=\bar{U}_{1} \oplus \bar{E}_{2}(\sigma) \cap \bar{U}$. Assume that U is V-injective and take a homomorphism $\theta: V \rightarrow \bar{E}_{2}(\sigma)$. We have the natural isomorphism $\mu: \bar{E}_{2}(\sigma) \rightarrow \bar{E}_{2},(\mu(x+$ $\sigma(x))=x$ for $\left.x \in \bar{E}_{2}\right)$. Put $\theta^{*}=\rho \mu \theta: V \rightarrow E_{2} \subset E_{1} \oplus E_{2}$. Then $\theta^{*}(V) \subset E_{2} \cap U$ by [1], Proposition 4.5. Hence $\theta(V) \subset \mu^{-1} \rho^{-1}\left(E_{2} \cap U\right)=\mu^{-1}\left(\bar{E}_{2} \cap \bar{U}\right)=\left(\bar{E}_{2} \cap \bar{U}\right)(\sigma)=$ $\bar{E}_{2} \cap \bar{U} \subset \bar{U}$ for $\sigma\left(\bar{U}_{2}\right)=0$. Accordingly $\theta(V) \subset \bar{U} \cap \bar{E}_{2}(\sigma)$ and hence $\bar{U} \cap \bar{E}_{2}(\sigma)$ is V-injective. Furthermore \bar{U}_{1} is injective. Therefore \bar{U} is V-injective.
4) $\rightarrow 5$) This is trivial.
$5) \rightarrow 6) \quad$ This is shown before Lemma 1.
$6) \rightarrow 2$) This is due to [6].
In Proposition 1 we have used a fact that (E) (resp. (E^{*})) holds true for local modules $M=e R / A$ and $N=e R / B$, i.e., M and N have the same projective cover $e R$, where e runs through over all the primitive idempotents (resp. for unifrom modules U and V in $E(S)$, where S runs through over all the simple modules). On the other hand, we have used, in Theorem 1, a fact that (F) holds true for local modules $e R / A$ and $f R / C$. From this observation we restrict ourselves to a case $e \sim f$ in (F). By (H) (resp. $\left(\mathrm{H}^{*}\right)$) we denote the condition (F) (resp. (F^{*})) satisfied only for $M=e R / A$ and $N=e R / B$, where A, B are submodules of $e R$ and e is any primitive idempotent (resp. only for U and V in $\mathrm{E}(S)$ and S is any simple module). Similarly we define (I) where the quasi-projective module P in (G) is indecomposable.

We note the following fact. Let T be the basic ring of R. It is well known that the category of all the right R-modules is equivalent to that of all the right T-modules. Further the local modules correspeond to each other. Hence we may assume that R is a basic ring when we study local modules.

In general we do not know a characterization of rings with (H). However we study it in a praticular case.

Lemma 2. Assume $J^{2}=0$. Let A be an R-module. Consider a diagram

for $B \subset C \subset e R$. If h is not an epimorphism, then there exists $\tilde{h}: A \rightarrow e R / B$ with $\nu \tilde{h}=h$.

Proof. The above diagram induces

If $h(A) \neq e R / C, h(A) \subset e J / C$. Since $e J$ is semi-simple and $\nu^{-1}(h(A)) \subset e J / B$, the lemma is clear.

Proposition 2. Let R be semi-perfect. If (H) holds true, then 1$):$ eJe $=0$ for each primitive idempotent e, and 2): (I) holds true.

Proof. 1): Let x be an element in $e R e$. Then $e R \supset x e R \sim e R / A$ for some A. Since $e R$ is $e R$-projective, $e R / A$ is also $e R$-projective by (H). Hence $A=0$ or $A=e R$ by [1], p. 22, Exercise 4. Therefore $e J e=0.2$) is given before Lemma 1.

Corollary 1. Let R be a basic and right artinian ring. Let $1=e_{1}+e_{2}+\cdots$ $+e_{n}$, where $\left\{e_{i}\right\}$ is a set of mutually orthogonal primitive idempotenmts. 1): If $n=$ $1,(H)$ holds ture if and only if R is a division ring. 2): If $n=2$, (H) holds true if and only if $J^{2}=0$ and $e_{i} J e_{i}=0$ for $i=1,2$. 3): If $J^{2}=0,(H)$ holds true if and only if $e_{i} J e_{i}=0$ for all i. 4): If (H) holds true, then $J^{n}=0$.

Proof. 1) is clear from Proposition 2. Assume $1=e_{1}+e_{2}$ and (H). Then if $e_{1} J \neq 0$, by Proposition $2 \operatorname{Soc}\left(e_{1} R\right) \sim\left(e_{2} R / e_{2} J\right)^{(t)}$; the direct sum of t-copies of $e_{2} R / e_{2} J$. Since $e_{1} R$ is $e_{1} R$-projective, $e_{2} R / e_{2} J$ is $e_{1} R$-projective by (H). Hence $e_{1} J e_{2} J=0$. Similarly $e_{2} J e_{1} J=0$. Therefore $J^{2}=\Sigma e_{i} J e_{j} J=0$. In the same manner we can show that for each e_{i} there exists $e_{j}\left(\neq e_{i}\right)$ such that $e_{i} J e_{j} J=0$. Hence $J^{n}=0$. Finally assume $J^{2}=0$ and $e_{i} J e_{i}=0$ for all i. Then $e J$ is smisimple, and hence (H) holds true by Lemma 2.

We refer [7], [11] and [12] for definitions of Nakayama rings and coNakayama rings.

Corollary 2. Let R be a right Nakayama ring. Then (H) holds true if and only if $e_{i} J e_{i}=0$ for all i.

Proof. "only if" part is given in Proposition 2. We note that if R is right Nakayama, then $e_{i} J e_{i}=0$ if and only if any two of distinct (simple) subfactor modules of $e_{i} R$ are not isomorphic to each other for all i. We suppose $e_{i} J e_{i}=0$. Assume that $e R / e J^{j}$ is $e R / e J^{i}$-projective. Then $i \leqq j$. Take any diagram:

Put $e J^{k^{\prime}} \mid e J^{j} \sim f R / f J^{q}$ for a primitive idempotent f. Since $h\left(e J^{k^{\prime}} \mid e J^{j}\right)=e J^{k^{\prime}} \mid e J^{k}$ by the initial remark, the above diagram induces the following

$$
\begin{gathered}
f R / f J^{q} \\
\mid h^{\prime} \\
f R / f J^{q-y} \xrightarrow{\nu^{\prime}} f R / f J^{q-x} \longrightarrow 0
\end{gathered}
$$

where $y<x, f R / f J^{q-x} \sim h\left(e J^{k^{\prime}} \mid e J^{j}\right)$ and $f R / f J^{q-y} \sim e J^{k^{\prime}} \mid e J^{i}$. Since h^{\prime} is given by a unit in $f R f$ and $y=j-i \geqq o$, we obtain $\tilde{h}^{\prime}: f R / f J^{q} \rightarrow f R / f J^{q-y}$ with $\nu^{\prime} \tilde{h}^{\prime}=h^{\prime}$. Therefore we get $\tilde{h}: e J^{k^{\prime}} \mid e J^{j} \rightarrow e R / e J^{i}$ with $\nu \tilde{h}=h$.

If R is right Nakayama, then (I) holds true, however (H) does not in general. Hence though (G) and (F) are equivalent over right artinian rings, (I) and (H) are not. Further we have $e_{i} J e_{i}=0$ for every hereditary ring, and we shall show in the next section that (H) holds true only on very special hereditary rings.

2. Hereditary rings with (H)

In the last part of the previous section, we consider the property (H). We shall study artinian hereditary rings with (H) in this section. Now we assume that R is a (basic and artinian) hereditary ring. Then R has the following form by [8], Theorem 1

$$
\left(\begin{array}{cccccc}
K_{1} & M_{12} & M_{13} & \cdots \cdots & & M_{1 n} \tag{1}\\
0 & K_{2} & M_{23} & \cdots \cdots & & M_{2 n} \\
& & & \cdots \cdots & & \\
0 & & & & K_{n-1} & M_{n-1 n} \\
0 & & & & 0 & K_{n}
\end{array}\right)
$$

where the $e_{i i}$ are matrix units, the $K_{i}=e_{i i} R e_{i i}$ are division rings and the $M_{i j}=$ $e_{i i} R e_{j j}$ are $K_{i}-K_{j}$ bimodules.

Let R be as in (1) and $e_{i}=e_{i i}$. We observe submodules in $e_{1} R$, Let $B \supset A$ be any submodules in $e_{1} J$. Then $e_{1} R / A$ is always $e_{1} R / K_{1} A$-projective by [1], p. 22, Exercise 4. Since B is projective, and hence a lifting module, $B=B_{1} \oplus B_{2}$ and $A \supset B_{2}, B_{1} \cap A=A_{1}$ is small in B_{1}. We can assume $B_{1}=\left(e_{a} R\right)^{*\left(t_{a}\right)} \oplus\left(e_{b} R\right)^{*\left(t_{b}\right)}$ $\oplus \cdots \oplus\left(e_{m} R\right)^{*\left(t_{m}\right)}$, where $a<b<\cdots<m, f_{i}: e_{i} R \sim\left(e_{i} R\right)^{*}$ is given by an element in $M_{1 i}$. Let $A_{1}{ }^{i j}$ be the projection of A_{1} into the j th component of $\left(\left(e_{i} R\right)^{*}\right)^{\left(t_{i}\right)}$.

Then $A_{1} \subset \Sigma \oplus A_{1}{ }^{i j}$. Since B_{1} is a projective cover of $B_{1} / A_{1}, B / A\left(=B_{1} / A_{1}\right)$ is $e_{1} R / K_{1} A$-projective if and only if

$$
\begin{equation*}
K_{1} A \supset \sum_{k=a}^{m} \sum_{j=1}^{t^{k}} M_{1 k} f_{k}^{-1}\left(A_{1}^{k j}\right), \text { where } K_{1}=e_{1} R e_{1} . \tag{*}
\end{equation*}
$$

Conversely if $e_{1} R / A$ is $e_{1} R / C$-projective, then $K_{1} A \subset C$ by [1], p. 22, Exercise 4, and furthermore if B / A is $e_{1} R / K_{1} A$-projective, then B / A is $e_{1} R / C$-projective for $C \supset K_{1} A \supset \operatorname{Hom}_{R}\left(B, e_{1} R\right) A$. Therefore
(H) holds true if and only if $(*)$ holds ture, where e_{1} and $A \subset B$ run through over all the primitive idempotents and the submodules in $e_{1} R$, respectively.
We shall consier the same criterion for (I). Assume $K_{1} A=A$ in the above. Let A_{i}, B_{i} be as above. Then B / A is quasi-projective if and only if for the same decomposition of B_{1} as above
$A_{1}=\Sigma_{i} \Sigma_{j} \Sigma_{k \leq i} \Sigma_{p=1}^{t^{k}} f_{k p} M_{k i} f_{i}^{-1}\left(A_{1}^{i j}\right)$, where the indices i, j and k run in the decomposition of B_{1} and $f_{k p}=f_{k}: e_{k} R \rightarrow$ (the p-th component of $\left(e_{k} R\right)^{*\left(t_{k}\right)}$.

From now on we always assume that R is a basic and hereditary ring with (I) given in (1). Since $e_{1} J$ is projective,

$$
\begin{equation*}
e_{1} J \stackrel{g}{\sim} e_{k} R \oplus e_{s} R \oplus \cdots, \tag{2}
\end{equation*}
$$

$$
\text { where } e_{i}=e_{i i} \text { and } 1<k, s \cdots .
$$

We put $g^{-1}\left(e_{i} R\right)=\left(e_{i} R\right)^{\prime} \subset e_{1} J$ and $g^{-1}\left(M_{i p}\right)=M_{i p}{ }^{\prime} \subset e_{1} J$.
Proposition 3. Let R be a basic and hereditary ring with (I). Assume $e_{1} J \sim e_{k} R \oplus e_{s} R \oplus \cdots$ as in (2), where $k<s$. Then 1): either $M_{k p}=0$ or $M_{s p}=0$ $(s \leqq p)$, provided $M_{p q} \neq 0$ for some $q(>p)\left(M_{s s}=K_{s}\right)$. 2): If (H) holds and $e_{k} J \neq$ $0, M_{1 k}$ is cyclic as a $K_{1}-K_{k}$ bimodule.

Proof. 1) Since $\operatorname{Hom}_{R}\left(e_{s}^{\prime} R, e_{k}{ }^{\prime} R\right)=0, K_{1} M_{k p}{ }^{\prime} R \subset \Sigma_{b \leq k} \oplus\left(e_{b} R\right)^{\prime} \subset e_{1} J$, where the b are indices in (2). Hence $K_{1} M_{k p}{ }^{\prime} R \cap M_{s p}{ }^{\prime} R \subset\left(\Sigma_{b \leq k} \oplus\left(e_{b} R\right)^{\prime}\right) \cap\left(e_{s} R\right)^{\prime}=0$. Now we may assume $M_{p q}^{\prime}=0$ for all $q^{\prime}\left(p<q^{\prime}<q\right)$ and $M_{p q} \neq 0$. We note $K_{1} M_{k p}{ }^{\prime} R=K_{1} M_{k p}{ }^{\prime} \oplus K_{1} M_{k p}{ }^{\prime} M_{p q} \oplus \cdots \oplus K_{1} M_{k p}{ }^{\prime} M_{p n}$ and $M_{s p}{ }^{\prime} R=M_{s p}{ }^{\prime} \oplus M_{s p}{ }^{\prime} M_{p q}$ $\oplus M_{s p}{ }^{\prime} M_{p q+1} \oplus \cdots \oplus M_{s p}{ }^{\prime} M_{p n}$. Put $A=K_{1} M_{k p}{ }^{\prime}\left(M_{p q} \oplus M_{p q+1} \oplus \cdots\right)+B$, where $B=$ $K_{1} M_{s p}{ }^{\prime}\left(M_{p q+1} \oplus \cdots\right)$. Since $B \subset M_{1 q+1} \oplus \cdots \oplus M_{1 n}$ and $K_{1} M_{k p}{ }^{\prime} R \cap M_{s p}{ }^{\prime} R=0$, $\left(K_{1} M_{k p}{ }^{\prime} R+M_{s p}{ }^{\prime} R+B\right) / A \sim K_{1} M_{k p}{ }^{\prime} \oplus M_{s p}{ }^{\prime} \oplus M_{s p}{ }^{\prime} M_{p q}(=D)$. A being characteristic in $e R, e R / A$ is $e R / A$-projective, and hence D is quasi-projective by (I). Since $K_{1} M_{k p}{ }^{\prime}$ and $M_{s p}{ }^{\prime}$ are K_{p}-modules, we obtain a non-zero homomorphism $h: K_{1} M_{k p}^{\prime} \rightarrow M_{s p}{ }^{\prime}$, provided $M_{k p} \neq 0$ and $M_{s p} \neq 0$. Take a diagram

where π is the projection and ν is the natural epimorphism. (Note that all the maps are R-homomorphisms.)
Then there exists $\tilde{h}: D \rightarrow D$ with $\nu \tilde{h}=\nu h$. Hnce $0 \neq \tilde{h}\left(K_{1} M_{k p}{ }^{\prime}\right) \subset\left(M_{s p}{ }^{\prime}+M_{s p}{ }^{\prime} M_{p q}\right)$ $\cap M_{1 p}=M_{s p}{ }^{\prime}$. However $K_{1} M_{k p}{ }^{\prime} M_{p q} \subset A$ and the natural map $M_{s p} \otimes_{K^{s}} M_{p q} \rightarrow$ $M_{s p} M_{p q}$ is an isomorphism by [8], Theorem 1, a contradiction. Therefore either $M_{k p}=0$ or $M_{s p}=0$.
2) Assume (H) and $e_{k} J \neq 0$. We apply (*) to $A=m_{1 k} e_{k} J \subset B=\left(e_{k} R\right)^{\prime}$, where $m_{1 k} \neq 0$ in $M_{1 k}$ gives f_{k}. Then $K_{1} m_{1 k} e_{k} J=K_{1} m_{1 k} K_{k} e_{k} J=M_{1 k} e_{k} J$. Since the natural maps $M_{1 k} \bigotimes_{K^{k}} e_{k} J \rightarrow M_{1 k} e_{k} J$ and $K_{1} m_{1 k} K_{k} \bigotimes_{K^{k} e_{k}} J \rightarrow K_{1} m_{1 k} K_{k} e_{k} J$ are isomorphisms by [8], Theorem 1, $K_{1} m_{1 k} K_{k}=M_{1 k}$.

Corollary 1. Let R be a hereditary ring as in Proposition 3 and let k and s be as above. We assume (I). If either $M_{k p^{\prime}} \nsubseteq \operatorname{Soc}\left(e_{k} R\right)$ or $M_{s p^{\prime}} \nsubseteq \operatorname{Soc}\left(e_{s} R\right)$ for some p^{\prime}, then $M_{k p^{\prime}}=0$ or $M_{s p^{\prime}}=0$. Hence any simple sub-factor modules of $e_{k} R$ are never isomorphic to any ones of $e_{s} R$, provided they are not derived from their socles.

Proof. From the assumption and [8], Theorem 1, there exists an integer q^{\prime} such that $M_{p^{\prime} q^{\prime}} \neq 0$.

Corollary 2. Let R be as in Corollary 1. We gather together isomorphic components in (2) and put $e_{1} J=\left(\left(e_{k} R\right)^{\prime}\right)^{\left({ }^{(}{ }_{k}\right)} \oplus\left(\left(e_{s} R\right)^{\prime}\right)^{\left(n_{s}\right)} \oplus \cdots$. Then $\left(\left(e_{k} R\right)^{\prime}\right)^{\left(n_{k}\right)}$ is characteristic in $e_{1} R$, provided $e_{k} J \neq 0$.

Proof. Let u, u^{\prime} and k be indices in (2). If $k>u, M_{u k}=0$ from Proposition 3, and hence $\operatorname{Hom}_{R}\left(e_{k} R, e_{u}{ }^{\prime} R\right)=0$ for any $u^{\prime} \neq k$. Therefore $K_{1}\left(e_{k} R\right)^{\prime} \subset$ $\left(\left(e_{k} R\right)^{\prime}\right)^{\left(n_{k}\right)}$.

We shall study the remaining part on Corollary 1 , namely $M_{k q} \subset \operatorname{Soc}\left(e_{k} R\right)$. Let D_{1} and D_{2} be division rings and $M_{1}, M_{2} D_{1}-D_{2}$ bimodules. Put $M=M_{1} \oplus$ M_{2}. Consider the following condition: for any element $m=m_{1}+m_{2} ; m_{i} \in M_{i}$

$$
\begin{align*}
& D_{1} m D_{2}=D_{1} m_{1} D_{2} \oplus D_{1} m_{2} D_{2}, \text { i.e., for any } D_{1}-D_{2} \text { submodule } N \text { of } M, N= \\
& M_{1} \cap N \oplus M_{2} \cap N . \tag{3}
\end{align*}
$$

If $D_{1}=D_{2}$ are fields and the M_{i} are usual $D_{1}-D_{1}$ bimodules, then M does not satisfy (3). Assume next that there exists a non-trivial automorphism σ of D_{1}. Let $M_{1}=D_{1} m_{1}=m_{1} D_{1}$ be a usual $D_{1}-D_{1}$ bimodule. Put $M_{2}=D_{1} m_{2}$ and define
$m_{2} d=d^{\sigma} m_{2}$ for $d \in D_{1}$. Then $M=M_{1} \oplus M_{2}$ satisfies (3) as $D_{1}-D_{1}$ bimodules.
Proposition 4. Let R be a hereditary ring with (I) as in Proposition 3. 1): Let $e_{k} R$ and $e_{s} R$ be as in (2). Assume $0 \neq M_{i p} \subset \operatorname{Soc}\left(e_{i} R\right) \subsetneq e_{i} R$ for some p and $i=k, s(k \neq s)$. Then $K_{1} M_{k p}^{\prime}$ and $K_{1} M_{s p}{ }^{\prime}$ satisfy (3) as $K_{1}-K_{p}$ bimodules. 2): If $n_{k}>1$ in Corollary 2 and $e_{k} J \neq 0$, we assume $\left(\left(e_{k} R\right)^{\prime}\right)^{\left(n_{k}\right)}=X_{1} \oplus X_{2}$; the X_{i} are characteristic in $e_{1} R$. If X_{i} contains a non-zero right K_{p}-module Y_{i} contained in $\operatorname{Soc}\left(e_{k} R^{\prime}\right)^{\left(n_{k}\right)}$ for $i=1,2$, then $K_{1} Y_{1}$ and $K_{1} Y_{2}$ satisfy (3) as $K_{1}-K_{p}$ bimodules.

Proof. Assume $k<s$. Then $K_{1} M_{i p}{ }^{\prime} \subset\left(\left(e_{i} R\right)^{\prime}\right)^{\left(n_{i}\right)}$ from Corollary 2 for $i=$ k,s. Let m_{i} be any element in $K_{1} M_{i q}{ }^{\prime}$ and put $A=K_{1}\left(m_{k}+m_{s}\right) K_{p^{\prime}}$ which is a characteristic submodule in $e_{1} R$ and is contained in $\left(\left(e_{k} R\right)^{\prime}\right)^{\left(n_{k}\right)} \oplus\left(\left(e_{s} R\right)^{\prime}\right)^{\left(n_{s}\right)}(=F)$. Then F / A is F / A-projective from (I). Hence A is also a characteristic submodule in F, since A is small in F. Accordingly $A \supset K_{1} m_{k} K_{p} \oplus K_{1} m_{s} K_{p} \supset A$. We can show 2) in the same manner.

In the above, we studied the structure of R, provided $e_{1} J$ was a direct sum of distinct projective modules $e_{k} R$. We can not easily describe the structure of R, even though $e_{1} J \sim e_{k} R$. Here we shall explore several examples. It is clear, from Proposition 2, that every hereditary ring with $J^{2}=0$ satisfies (H). Let $K_{1} \supset K_{2}$ and K_{3} be fields such that K_{1} has a K_{2}-automorphism σ and [K_{1} : $\left.K_{2}\right]=2$. Take the $M=M_{1} \oplus M_{2}$ after (3). Then M satisfies (3), if $\sigma \neq 1$, and put

$$
R_{o}=\left(\begin{array}{lll}
K_{2} & K_{1} & M \\
0 & K_{1} & M \\
0 & 0 & K_{1}
\end{array}\right) \quad\left(R_{o}^{\prime}=\left(\begin{array}{ccc}
K_{1} & K_{1} & M_{13} \\
0 & K_{1} & M_{23} \\
0 & 0 & K_{3}
\end{array}\right)\right),
$$

where the $M_{i 3}$ are any $K_{i}-K_{3}$ bimodules such that $R_{o}{ }^{\prime}$ is hereditary. Set $M_{o}=\left(m_{1}+m_{2}\right) K_{1}$ in M and $A=e_{22} M_{o} e_{33}$ in R_{0}. Then $e_{12} A$ is a characteristic submodule of $e_{11} R$. However $A\left(\subset B \sim e_{11} J\right)$ is not a characteristic submodule of $e_{22} R$, provided $\sigma \neq 1$. We note $e_{11} J \sim e_{22} R$. Hence (I) does not hold true from ($*^{\prime}$). If $\sigma=1$,(H) holds true (see R_{1} below). Further R_{0} is a K_{2}-algebra and satisfies all the conditions in Theorem 2 below, except the condition: $K_{1}=$ K_{2}. On the other hand $R_{0}{ }^{\prime}$ satisfies (H) from (${ }^{*}$).

We can easily show

$$
R_{1}=\left(\begin{array}{llll}
K_{1} & K_{1} & K_{1} & M \\
0 & K_{1} & 0 & M_{1} \\
0 & 0 & K_{1} & M_{2} \\
0 & 0 & 0 & K_{1}
\end{array}\right) \quad\left(R_{1}^{\prime}=\left(\begin{array}{llll}
K_{2} & K_{1} & K_{1} & M \\
0 & K_{1} & 0 & M_{1} \\
0 & 0 & K_{1} & M_{2} \\
0 & 0 & 0 & K_{1}
\end{array}\right)\right)
$$

is hereditary ring with (H), provided $\sigma \neq 1 . \quad e_{11} J \sim e_{22} R_{1} \oplus e_{33} R_{1}$, and $\left(0,0,0, M_{1}\right)$
$=\operatorname{Soc}\left(e_{2} R_{1}\right),\left(0,0,0, M_{2}\right)=\operatorname{Soc}\left(e_{33} R_{1}\right)$, and R_{1} does not satisfy (I), provided $\sigma=1$. $R_{1}{ }^{\prime}$ does not satisfy (I) for all σ.
Put

$$
R_{2}=\left(\begin{array}{lll}
K_{1} & K_{1} & K_{1} \\
0 & K_{2} & K_{2} \\
0 & 0 & K_{2}
\end{array}\right) \quad\left(R_{2}{ }^{\prime}=\left(\begin{array}{ccc}
K_{2} & K_{1} & K_{1} \\
0 & K_{2} & K_{2} \\
0 & 0 & K_{2}
\end{array}\right)\right)
$$

Then R_{2} is hereditary and $e_{11} J \sim e_{22} R_{2} \oplus e_{22} R_{2} . \quad R_{2}$ satisfies (H). Contrarily $R_{2}{ }^{\prime}$ does not satisfy (I) by Proposition 4.
Put

$$
R_{3}=\left(\begin{array}{lll}
K_{1} & K_{1} & K_{1} \bigotimes_{K_{2}} K_{1} \tag{2}\\
0 & K_{2} & K_{1} \\
0 & 0 & K_{2}
\end{array}\right)
$$

R_{3} does not satisfy (I) from (*'). In $R_{2} \operatorname{Soc}\left(e_{11} R_{2}\right)$ does not contain proper characteristic submodules, however $\operatorname{Soc}\left(e_{11} R_{3}\right)$ does a characteristic submodule $K_{1}(0,0,1 \otimes 1+v \otimes 1)(=A)$ in R_{3}, which does not satisfy ($*^{\prime}$) for $A \subset B=e_{11} J$, where $K_{1}=K_{2} \oplus v K_{2}$.

It is very hard for the author to interpret generally $\left(*^{\prime}\right)$ in terms of structures of R. Hence in the last part of this section, we shall determine the structure of a basic and hereditary algebra over a field K which satisfies (I) and assumption:

$$
K_{1}=K_{2}=\cdots=K_{n}=K \text { in (1) }
$$

From now on we always assume that R is such an algebra. Then every submodule in $e_{i} R$ is characteristic. Further (3) is never staisfied. Hence $e_{i} J \sim$ $e_{i(1)} R \oplus e_{i(2)} R \oplus \cdots ; i(k) \neq i(s)$ for $k \neq s$, from Proposition 4, if $e_{i(j)} R$ is not simple.

Thus if R satisfies (I), then

$$
\begin{align*}
& e_{1} J \sim e_{i(1)} R \oplus e_{i(2)} R \oplus \cdots \oplus e_{i(p)} R \tag{4}\\
& \quad \oplus\left(e_{j(1)} R\right)^{\left(m_{1}\right)} \oplus\left(e_{j(2)} R\right)^{\left(m_{2}\right)} \oplus \cdots \oplus\left(e_{j(q)} R\right)^{\left(m_{q}\right)},
\end{align*}
$$

where $e_{i(u)} J \neq 0$ for each u and $e_{j(v)} J=0$ for each v. We note
(5) \quad if $M_{k t} \neq 0$ for any k and $t=$ some $j(a)$ in the above, then $M_{k t} \subset \operatorname{Soc}\left(e_{k} R\right)$.

Further from [8], Theorem 1, if a simple component in $\operatorname{Soc}\left(e_{i} R\right)$ is isomorphic to a submodule in $M_{j p} \subset e_{j} R$, then $M_{j p} \subset \operatorname{Soc}\left(e_{j} R\right)$ (cf. (5)).

The following lemma is well known (see [9]).
Lemma 3. Let M and N be R-modules such that every sub-factor module
of M is never isomorphic to any one of N. Then $P=M \cap P \oplus N \cap P$ for any submodule P of $M \oplus N$.

In the similar manner to the proof of Proposition 3, we can obtain the following lemma.

Lemma 4. Let R be the algebra as above. We assume (I). Then if $M_{j k} \neq$ 0 for some $j, k(j \neq k)$, i.e., $M_{i j} \nsubseteq \operatorname{Soc}\left(e_{i} R\right)$, then $\left|M_{i j}\right| \leqq 1$ for all $i(<j)$.

We assume

$$
\begin{equation*}
M_{i j}=u_{i j} K \text { or }=0 \tag{6}
\end{equation*}
$$

The following lemma is clear.
Lemma 5. Let R be a hereditary algebra in (1) whose structure is as in (6). Then every sub-factor module of $e_{i(r)} R$ is never isomorphic to any sub-factor module of $e_{i(s)} R$, where $i(r)$ and $i(s)$ are indices in (4) ($s \neq r$) and e_{1} in (4) runs through all e_{j}.

Theorem 2. Let K be a field and R a basic and right artinian hereditary K-algebra such that $R / J \sim \Sigma \oplus K$. Then R satisfies (I) if and only if R has the following structure:

1) $R / \operatorname{Soc}(R)$ is an algebra as in (6).
2) Any simple component in $\operatorname{Soc}\left(e_{i(k)} R\right)$ is never isomorphic to any one in $\operatorname{Soc}\left(e_{i\left(k^{\prime}\right)} R\right)$ for $k \neq k^{\prime}$, where $i(k), i\left(k^{\prime}\right)$ run through over all the indices in (4) and e_{1} in (4) runs through over all the primitive idempotents.

In this case (H) and (I) are equivalent to each other.
Proof. Suppose (I). Then we obtain 1) from Lemma 4 and 2) from Proposition 4. Conversely we assume 1) and 2). Then from Lemma $5 e_{i} J$ has the following direct decomposition for each i : $e_{i} J \sim D \oplus \Sigma_{k} \oplus F_{k}$; i) D is semi-simple, and ii) the F_{k} are indecomposable and non-simple projectives $\left(=e_{\rho(k)} R\right)$ and every simple sub-factor module of F_{k} is never isomorphic to any one of $F_{k^{\prime}}$ for all $k \neq k^{\prime}$. Let R be of the form (1). By induction on n, the degree of matrix, we shall show (H). We assume that (H) holds true for $M=e_{j j} R / A^{\prime}$ and $N=e_{j j} R / B^{\prime} ;$ all $j>1$, and we shall show that (H) holds true for $e_{11} R / A$ and $e_{11} R / B$. Put $e_{11}=e$, and assume that $e R / A$ is $e R / B$-projective. Then $A \subset B$. Take a proper submodule C / A of $e R / A$ and consider a diagram

Since $h(C / A) \subset e J / E$, we can derive the diagram from the above

From $e J \supset A$, we can easily see from i), ii), (5) and Lemma 3 that $A=\left(A \cap D^{*}\right)$ $\oplus \Sigma_{k} \oplus\left(A \cap F_{k}\right)$ after a little change of a direct decomposition of $e J:=D^{*} \oplus \Sigma_{k} \oplus$ F_{k}, where D^{*} is semi-simple (cf. [9], the proof of Proposition 8). Further noting that $A \cap D^{*}$ is a direct summand of D^{*}, i.e., $D^{*}=D_{1}^{*} \oplus\left(A \cap D^{*}\right)$ and that $D_{1}^{*} \oplus \Sigma_{k} \oplus F_{k} \supset B /\left(A \cap D^{*}\right) \supset \Sigma_{k} \oplus\left(A \cap F_{k}\right)$, we obtain further direct decompositions

$$
\begin{aligned}
& e J=\left(A \cap D^{*}\right) \oplus D_{1}^{*} \oplus \Sigma_{k} \oplus F_{k} \supset B=\left(A \cap D^{*}\right) \oplus\left(B \cap D_{1}^{*}\right) \oplus \Sigma_{k} \oplus \\
& \left(B \cap F_{k}\right) \supset A=\left(A \cap D^{*}\right) \oplus \Sigma_{k} \oplus\left(A \cap F_{k}\right) .
\end{aligned}
$$

From the above observation, let $C=C^{\prime} \oplus \Sigma_{k} \oplus\left(C \cap F_{k}\right) \supset A=A^{\prime} \oplus \Sigma_{k} \oplus\left(A \cap F_{k}\right)$, where $C^{\prime} \supset A^{\prime}$ are semi-simple. Then $C / A=C^{\prime} \mid A^{\prime} \oplus \Sigma_{k} \oplus(C \cap F) /\left(A \cap F_{k}\right)$. In order to show that C / A is $e R / B$-projective, we may show that each simple component C_{i}^{*} of $C^{\prime} \mid A^{\prime}\left(\operatorname{resp} .\left(C \cap F_{k}\right) /\left(A \cap F_{k}\right)\right)$ is $e R / B$-projective. Hence we can replace C / A by C_{i}^{*} or $\left(C \cap F_{k}\right) /\left(A \cap F_{k}\right)$ in (7). We have similar decompositions

$$
\begin{aligned}
& e J=D^{\prime} \oplus \Sigma_{k} \oplus F_{k} \supset E=E^{\prime} \oplus \Sigma_{k} \oplus\left(E \cap F_{k}\right) \supset B=B^{\prime} \oplus \Sigma_{k} \oplus\left(B \cap F_{k}\right) \\
& \text { and } D^{\prime} \supset E^{\prime} \supset B^{\prime} \supset A^{\prime} \text {. }
\end{aligned}
$$

Then we have $\nu=\nu_{1}+\nu_{2}$ and $h=h_{1}+h_{2}$, where $\nu_{1}: D^{\prime}\left|B^{\prime} \rightarrow D^{\prime}\right| E^{\prime}, \nu_{2}: \Sigma_{s} \oplus\left(F_{s} \mid\right.$ $\left.\left(B \cap F_{s}\right)\right) \rightarrow \Sigma_{s} \oplus\left(F_{s} /\left(E \cap F_{s}\right)\right), h_{1}: X \rightarrow D^{\prime} \mid E^{\prime}$ and $h_{2}: X \rightarrow \Sigma_{s} \oplus\left(F_{s} /\left(E \cap F_{s}\right)\right)$, where $X=C_{i}^{*}$ or $\left(C \cap F_{k}\right) /\left(A \cap F_{k}\right)$. Since $D^{\prime} \supset E^{\prime} \supset B^{\prime}$ are semi-simple, we obtain

$$
\tilde{h}_{1}: X \rightarrow D^{\prime} \mid B^{\prime} \text { with } \nu_{1} \tilde{h}_{1}=h_{1} .
$$

Assume first $X=C_{i}^{*}\left(\sim e_{j(p)} R\right)$. If $h_{2}\left(C_{i}^{*}\right) \neq 0$, then there exists k such that $h_{2}\left(C_{i}^{*}\right) \subset\left(M_{\rho(k) j(p)}+\left(E \cap F_{k}\right)\right) /\left(E \cap F_{k}\right)$ and $M_{\rho(k) j(p)} \subset \operatorname{Soc}\left(F_{k}\right)$ by ii) and (5). Then we can derive the following diagram:

$$
\left(\operatorname{Soc}\left(F_{k}\right)+\left(B \cap F_{k}\right)\right) /\left(B \cap F_{k}\right) \xrightarrow{\nu_{2}} \underset{\substack{* \\ \boldsymbol{\nu}_{2} \\\left(\operatorname{Soc}\left(F_{k}\right)+\left(E \cap F_{k}\right)\right) /\left(E \cap F_{k}\right) \longrightarrow 0}}{h_{2}}
$$

Since $\operatorname{Soc}\left(F_{k}\right)$ is semi-simple, we obtain also

$$
\tilde{h}_{2}: C_{i}^{*} \rightarrow\left(\operatorname{Soc}\left(F_{k}\right)+\left(B \cap F_{k}\right)\right) /\left(B \cap F_{k}\right) \subset F_{k} /\left(B \cap F_{k}\right) \text { with } \nu_{2} \tilde{h}_{2}=h_{2} .
$$

Finally assume $X=\left(C \cap F_{k}\right) /\left(A \cap F_{k}\right)$. Then $h_{2}(X) \subset F_{k} /\left(E \cap F_{k}\right)$ by ii). Moreover since $A \cap F_{k} \subset B \cap F_{k}, F_{k} /\left(A \cap F_{k}\right)$ is $F_{k} /\left(B \cap F_{k}\right)$-projective. Hence there exists

$$
\tilde{h}_{2}: X \rightarrow F_{k} /\left(B \cap F_{k}\right) \text { with } \nu_{2} \tilde{h}_{2}=h_{2}
$$

by induction hypothesis. Therefore C / A is $e R / B$-projective. Thus (H) holds true and hence (I) does.

We can completely determine the styles of hereditary algebras in Theorem 2. Let M_{1}, M_{2} be non-zero K-vector spaces. Then there are only three styles of the above algebras, when $n=3$.

$$
\left(\begin{array}{lll}
K & M_{1} & M_{2} \\
0 & K & 0 \\
0 & 0 & K
\end{array}\right),\left(\begin{array}{lll}
K & 0 & M_{1} \\
0 & K & M_{2} \\
0 & 0 & K
\end{array}\right) \text { and }\left(\begin{array}{ccc}
K & K & M_{1} \oplus M_{2} \\
0 & K & M_{1} \\
0 & 0 & K
\end{array}\right)
$$

We note that R_{0} before Lemma 3 shows that Theorem 2 is not true if $K \neq$ K_{i} for some i and $R_{0}{ }^{\prime}$ is a hereditary algebra with (H) as right $R_{o}{ }^{\prime}$-modules, but not as left $R_{o}{ }^{\prime}$-modules, if $K_{1}=K_{2}=K_{3}$ and $M_{i j}=K_{1} \oplus K_{1}$.

3. Almost relative projectives and almost relative injectives

In this section we shall study the same problem for almost relative projectives (resp. injectives). We consider the following conditions:
(J) $\quad M / M^{\prime}$ is almost N-projective and
(K) M^{\prime} is almost N-projective
for any submodule M^{\prime} of M, provided M is almost N-projective.
(resp.
(J^{*}) U^{\prime} is almost V-injective and
(K^{*}) U / U^{\prime} is almost V-injective
for any submodule U^{\prime} of U, provided U is almost V-injective).
Proposition 5. Let R be a perfect ring. (J) holds true when M and N are any local modules (resp. any $M=e R / A$ and $N=e R / B$ for a fixed primitive idempotent e) if and onld if R is a right Nakayama ring with $J^{2}=0$ (resp. eR is a uniserial module with $(e J)^{2}=0$ and $\left.|e R|<\infty\right)$.

Proof. Since $f R$ is almost $e R / A$-projective for any submodule A of $e R$, $f R / B$ is almost $e R / A$-projective by (J). Hence R is a ring stated in the proposition by [11], Theorem 3. The converse is clear from the same theorem. We can use [12], Theorem 4 in case of $M=e R / A$ and $N=e R / B$.

Proposition 5*. Let R be as above. (J^{*}) holds true when U and V are any uniform modules (resp. any submodules U and V in $\mathrm{E}(S)$ for a fixed simple module S) if and only if R is right co-Nakayama ring with $J^{2}=0$ (every simple sub-factor module of E, execpt $\operatorname{Soc}(E)$ and $E / \mathrm{J}(E)$, is not isomorphic to S).

Similarly to Theorem 2 in [12], we have

Proposition 6. Let R be a two-sided artinian ring. Then the following conditions are equivalent:

1) (J) holds true for any finitely generated (and indecomposable) modules M and N.
1^{*}) (J^{*}) holds true for any finitely generated (and indecomposable) modules U and V.
2) R is a two-sided Nakayama ring with $J^{2}=0$.
3) Any two of finitely generated R-modules are mutually almost relative projective.

Proof. 2) \rightarrow) If R is a two-sided Nakayama ring with $J^{2}=0$, then every finitely generated and indecomposable R-module is local. Hence 3) holds true by [11], Theorem 3.

1) $\rightarrow 2$) Let (J) hold ture. Assume $e_{1} J \sim e_{2} J$ via f for primitive idempotents e_{1} and e_{2}. Put $N=\left(e_{1} R \oplus e_{2} R\right) /\left\{x+f(x) \mid x \in e_{1} J\right\}$. Since $e_{1} R$ is (almost) N-projective, $e_{1} R / e_{1} J$ is almost N-projective by 1). Then N is decomposable by [12], Lemma 3. Hence R is left Nakayama by [15], Lemmas 2.1 and 4.3. Therefore R is two-sided Nakayama.

The remaining implications are clear.
Proposition 7. Let R be a perfect ring. Then the following conditions are equivalent:

1) (K) holds ture when M and N are any local modules.
$\left.1^{*}\right)\left(K^{*}\right)$ holds ture when U and V are any uniform modules.
2) $J^{2}=0$.
3) Let M and N be any local modules. Then every proper submodule of M is almost N-projective.
4) Every module is almost R-projective.

Proof. 1) $\rightarrow 2$) Let $e J^{n-1} \neq 0$ and assume $n>2$. We put $\bar{e} \bar{R}=e R / e J^{n-1} \supset$ $\bar{e} \bar{J}^{n-2}=e J^{n-2} / e J^{n-1}$. Then $\bar{e} \bar{J}^{n-2}$ is semi-simple and let $\bar{e} \bar{J}^{n-2}=\bar{B}_{1} \oplus \bar{B}_{2} \oplus \bar{B}_{3} \oplus \cdots$, where the \bar{B}_{i} are simple, and $e J^{n-2} \supset B_{i} \supset e J^{n-1}$. Since $e J e e J^{n-1} \subset e J^{n}, e R / e J^{n-1}$ is almost $e R / e J^{n}$-projective by [5], Proposition 2. Hence $B_{i} / e J^{n-1}$ is almost $e R /$ $e J^{n}$-projective by 1). Take a diagram

where h is the inclusion.
Since $n>2, B_{i} \subset e J$ and h is not an epimorphism. Therefore there exists a simple submodule K in $e R / e J^{n}$ with $B_{i} / e J^{n}=K \oplus e J^{n-1} / e J^{n}$ (cf. Lemma 1). Hence
$B_{i} / e J^{n} \subset \operatorname{Soc}\left(e R / e J^{n}\right) . \quad$ Since $e J^{n-2}=\Sigma_{i} B_{i}, e J^{n-2} / e J^{n}=\Sigma_{i} B_{i} / e J^{n} \subset \operatorname{Soc}\left(e R / e J^{n}\right)$. Hence $0=\operatorname{Soc}\left(e R / e J^{n}\right) J \supset\left(e J^{n-2} / e J^{n}\right) J$, and so $e J^{n-1}=e J^{n}$, a contradiction. Accordingly $n \leqq 2$.
$2) \rightarrow 3$) Since $J^{2}=0, e J$ is semi-simple. Let D / A be any proper submodule of $e R / A$. Then D / A is semi-simple. In order to show 3) we may assume that D / A is simple. Take a diagram:

$$
\underset{f R / B \xrightarrow{\nu} \stackrel{\substack{D / A \\ \nu}}{\downarrow^{2}} \boldsymbol{h} / C \longrightarrow 0}{ }
$$

If h is an epimorphism, $C=f J$, and hence putting $h^{-1} \nu=\tilde{h}$, we have $h \tilde{h}=\nu$. If h is not an epimorphism, we can find $\tilde{h}: D / A \rightarrow f J / B \subset f R / B$ with $\nu \tilde{h}=h$ by Lemma 2.
3) $\rightarrow 1$) This is trivial.
$\left.1^{*}\right) \rightarrow 2$) and 2) $\rightarrow 1^{*}$) Those are dual to 1$) \rightarrow 2$) and 2) $\rightarrow 1$), respectively.
$4) \rightarrow 2$) Since $e R / e J$ is almost $f R$-projective, $0=f J e e J=f J e J$ for any primitive idempotents e and f. Hence $J^{2}=\Sigma_{i j} e_{i} J e_{j} J=0$, where $1=\Sigma_{i} e_{i}$.
2) $\rightarrow 4$) Let M be an R-module. Take a projective cover P of M. Then $M \sim P / Q$ and $Q \subset P J$. Let θ be any element in $\operatorname{Hom}_{R}(P, e J)$. Then $\theta(Q) \subset$ $\theta(P J) \subset e J^{2}=0$. Hence M is almost $e R$-projective by [13], Theorem 2, and M is almost R-projective by [10], Theorem 2.

Remark. 1) Related to Proposition 7, we note that if every indecomposable module is R-projective, then R is semi-simple.
2) In the above 1) $\rightarrow 2$), we have used a fact that (K) holds true only for hollow modules $M=e R / A$ and $N=e R / B$. Further the property in Proposition 7 is left and right symmetric.

Finally we study (K) for any finitely generated R-modules M and N.
First we assume (K) only in case of M is an indecomposable and projective module. Then since $e R$ is a (almost) N-projective for any finitely generated R-module N, R satisfies (17) in [14] (cf. the remark in §4 of [14]), and hence R is a right almost hereditary ring given in Theorem 3 of [14]. As a consequence in this case (K) holds true when M is a finitely generated projective module.

Proposition 8. Let R be a (two-sided) artinian ring. Then (K) holds true for any finitely generated R-modules M and N if and only if R is a right almost hereditary ring with $J^{2}=0$ and (K) holds true when N is local.

Proof. Assume (K). Then R is right almost hereditary as above and $J^{2}=$ 0 by Proposition 7. Conversely, we assume that R is a (basic) right almost hereditary ring with $J^{2}=0$. Let M be a finitely generated R-module and P a projective cover of M. Let T be a submodule of P containing $Q(P / Q \sim M)$.

Since $J^{2}=0, T / Q \sim P_{1} / Q_{1} \oplus Q^{*} / Q_{2}$ as in the proof of 2) $\rightarrow 4$) of Theorem 1 , where $Q^{*} \subset \mathrm{~J}\left(P_{2}\right)$. Hence since Q^{*} / Q_{2} is a direct summand of $\mathrm{J}\left(P_{2}\right), Q^{*} / Q_{2}$ is almost projective by assumption. Suppose that M is almost N-projective for a finitely generated R-module N. We first assume that N is indecomposable. If N is not local, M is N-projective by [10], Theorem 1. Hence P_{1} / Q_{1} is N-projective by the proof of 2$) \rightarrow 4$) of Theorem 1 . Therefore T is almost N-projective. We have the same result for a local module by assumption. Hence we obtain (K) by [10], Theorem 2.

Corollary 1. Let R be a right Nakayama, right almost hereditary ring with $J^{2}=0$. Then (K) holds ture for any finitely generated R-modules M and N.

Proof. Since R is a right Nakayama ring with $J^{2}=0$, the set of local modules consists of $\{e R, e R / e J\}_{e}$. Hence by Proposition $7(\mathrm{~K})$ holds true when N is local.

Next we shall study (K) when M is quasi-projective. The following corollary corresponds to the equivalence 1) and 5) in Theorem 1.

Corollary 2. Let R be a (two-sided) artinian ring. Then the following conditions are equivalent:

1) (K) holds true when M is an indecomposable and quasi-projective module.
2) (K) holds true when M is finitely generated and quasi-projective.
3) R is a right almost hereditary ring with $J^{2}=0$.

Proof. We assume 1). Then $J^{2}=0$ from the proof of Proposition 7. We have shown before Proposition 8 that R is a right almost hereditary ring. Hence we obtain 3). Conversely we assume 3). Let M be a finitely generated and quasi-projective module. We shall use the same notations as in the proof of Proposition 8. Then $P=P_{1} \oplus P_{2}$ and $Q=Q_{1} \oplus Q_{2}$, since M is quasi-projective. Hence if P / Q is almost N-projective, so is P_{1} / Q_{1}. Therefore we obtain 2) from the proof of Proposition 8.

Let $K_{1} \supsetneq K_{2}$ be fields. Then

$$
R=\left(\begin{array}{lll}
K_{2} & K_{1} & 0 \\
0 & K_{1} & K_{1} \\
0 & 0 & K_{1}
\end{array}\right)
$$

is a right Nakayama and right almost hereditary ring with $J^{2}=0$, which is neither hereditary nor two-sided Nakayama. Since R is not left almost hereditary, (K) is not left and right symmetric for finitely generated R-modules. We note that we can not replace "quasi-projective" in 5) of Theorem 1 by "indecomposable and quasi-projective" (cf. 2) in Corollary 2 above).

References

[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Pure and Appl. 84, Marcel Dekker, Inc., New York and Basel.
[2] M. Auslander: On the dimension of modules and algebras III, Nagoya Math. J. 9 (1955), 67-78.
[3] G. Azumaya, F. Mbuntum and K. Varadajan: On M-projective and M-injective modules, Pacific J. Math. 59 (1975), 9-16.
[4] Y. Baba: Note on almost injectives, Osaka J. Math. 26 (1989), 687-697.
[5] Y. Baba and M. Harada: On almost projectives and almost injectives, Tsukuba J. Math. 14 (1990), 53-69.
[6] K.R. Fuller: Relative projectivity and injectivity classes determined by simple modules, J. London Math. Soc. 5 (1972), 423-431.
[7] -: On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
[8] M. Harada: Hereditary semiprimary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966), 463-484.
[9] -: Generalizations of Nakayama rings V, Osaka J. Math. 24 (1987), 373389.
[10] M. Harada and T. Mabuchi: On almost relative projectives, Osaka J. Math. 26 (1989), 837-848.
[11] M. Harada and A. Tozaki: Almost M-projectives and right Nakayama rings, J. Algebra 122 (1989), 447-474.
[12] M. Harada: Characterizations of Nakayama rings, to appear.
[13] —: Note on almost relative projectives and almost relative injectives, to appear.
[14] -: On almost hereditary rings, Osaka J. Math. 28 (1991), 793-809.
[15] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-643.
[16] R. Wisbauer: Grundlagen der Moduln und Ringtheorie, Handbuch fur Studium und Forschung, Verlag Reinhard Fischer.

Department of Mathematics Osaka City University
Sugimoto 3, Sumiyoshi-Ku
Osaka 558, Japan

