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1. Introduction

Let G be a connected reductive linear algebraic group defined over a finite

field Fβ/. We put

Then the q'-th power Frobenius map σ: G-+G induces on G an involutory

automorphism τ: g-^τg with the fixed point set

We are concerned with the irreducible representations of the Hecke algebra

H(G, Gτ), or, almost equivalently, with the zonal spherical functions on the

subfield symmetric space G/GT. (A similar object, in the category of real Lie

groups, is also being studied; see, e.g., [9], [24].) In the present paper, we

take up the following problem:

(A) Classify the irreducible representations of H(G, Gr), and determine

their dimensions.

Since the classification of the irreducible representations of G is well-understood

by works of G. Lusztig (see [21]), we can reduce problem (A) to the following

one:
(A') For each irreducible character % of G determine the multiplicity

;#τ(%)— <lg r, %> with which % appears in the induced character lcr.

For an irreducible character X of G, let £τ(%) be the twisted Frobenius-

Schur indicator [13]:

*This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education,
Science and Culture.
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We extend mr( ) and £τ( ) to linear functions on the space Cl(G) of class func-

tions on G. The fundamental relation between cτ( ) and mr( ) is:

(1.1) *,(*) = *τ(f*(X)) ,

where ί*: C/(G)->C/(G) is the twisting operator, introduced in [11] and studied

intensively by T. Asai [2], [3] and F. Digne and J. Michel [8]. We also have

[13]

0 otherwise

for an irreducible character % of G.

If % is a uniform function, i.e. a linear combination of Deligne-Lusztig virtual
characters [6], then, by Asai [3], we know:

(1.3)

By (1.1)-(1.3), we have

ΐ f ''"'V *V

otherwise

for a uniform irreducible character % of G. Since almost all irreducible char-
acters are uniform, we might say that the induced character \cr is "almost" mul-
tiplicity-free. For a not necessarily uniform irreducible character %, the cal-

culation of wτ(%) is reduced to solving the following problems (A'a), (A'b):

(A'a) Determine <£*(%), η) for any irreducible character η of G.
(A'b) Determine cr(η) for any irreducible character η of G such that

<**(%), ?>*0.
Thanks to the works of Asai [2] [3] and Digne and Michel [8], we already know
quite a lot concerning problem (A'a). So we concentrate on problem (A'b).

First we take up the case when % is unipotent. Assume that G is simple mod-

ulo its center. If G is of exceptional type, we further assume that the charac-
teristic is good. Then we can determine £τ(%) for unipotent irreducible charac-

ters % of G. Once we know these values, Asai's results [2] combined with
(1.1) allow us to compute τwτ(%) for unipotent %'s. See the formula (5.1.2).

The values £τ(%) and mτ(%) for unipotent %'s are given in 5.3 for exceptional

groups, and in 5.4 and 6.2-6.3 for classical groups. A part of our result can

be stated as follows. (Recall [21] that unipotent characters are partitioned into

"families" and that each family contains a unique "special" unipotent character.)

Theorem 1.4. (i) Let G be a connected reductive group wίhch is simple

modulo its center and is split over a finite field, and σ: G-+G the corresponding
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Frobenius map. When G is of exceptional type, we assume that the characteristic
is good. Let % be a unίpotent irreducible character of G^G^, and λχ the root of

1 associated with % by Lusztig [21; Ch. 11] in connection with the eigenvalues of
σ2 on l-adic cohomology spaces of "Deligne-Lusztίg varieties X(w)". Then we have

Cτ(x) = ίλ* if λ* = ±1'
i 0 otherwise.

(ii) Under the same notation as in (i), let %0 be a special unίpotent character

of G, and ΓXo the finite group associated [21] with %0 Then τ̂(%0) & eqijud to the
number of conjugate classes 0/ΓXo contained in {a^TχQ\a2=l}, if X0 is "not excep-
tional" , i.e. if X0 is not in the families corresponding to 512 dimensional representa-

tions of the Weyl group of type E7 or to 4096 dimensional representations of the Weyl

group of type E&. If %0 is exceptional, then mr('X>Q)= 1.
Moreover, when G is of classical type, we have

mτ(X) = 0

for any non-special unipotent character %.

In determining £τ(%) and mr(%) for non-unipotent characters %, we must restrict

ourselves to the case when G is a classical group with connected center (see

(6.4.1)). (In order to be able to treat a more general case, Asai's result [3] must
be generalized.) Then, using results of Lusztig [21] and Asai [3], we show in

Theorem 6.4.3 that the problem can be reduced to the case of unipotent charac-

ters already mentioned. Thus pioblem (A) is solved completely when G is a

classical gruop with connected center.

The author wishes to express his thanks to S. Kato for interesting comments
and stimulating discussions.

NOTATION. For a set Xy \X\ denotes its cardinality. If r is a transfor-
mation of X, we put

Xr= {xt=X\rx=x}.

If the inverse element x~l^X is defined for any x^X, we put

Let Y be a subset of X, and/ a map from X to another set. Then / 1 Y denotes

the restriction of /to Y. Let G be a group, g an element of G, and S a subset
of G. Then

If G is a finite group, G denotes the set of irreducible complex characters of
G. Let H be a subgroup of G, and φ a class function on H. Then φG is the
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class function on G induced from φ, and, for g^G, gφ is the class function on

*# defined by

-1) = φ(h), h(ΞH.

2. Preliminaries

2.1. Let G be a finite group containing a normal subgroup G of index 2.

Let

For XeG, we define the twisted Frobenius-Schur indicator £T(X) by

/O 1 1 \ „ //\/\ I /πr i — i 't-i /V//TΛ Λ\ I /*> I —1(2.1.1) cr(X) = \(jr\ l 2 ] X > ( g g ) = \G\ l

or, equivalently, by

We have the following generalization of a theorem of Frobenius and Schur.

Theorem 2.1.3 ([13]). (i) We have

_ (±1 if τ% = %,

I 0 otherwise.

where the bar means the complex conjugation.
(ii) Assume that τ*=l. Let Mχ 'be a G-module affording X&O. Then

cr(X,)= I (resp. —1) ;/ and only if there exists a non-zero symmetric (resp. skew
symmetric) bilinear form B( , ) on Mχ such that

»ι,τ^ ^2) = B(ml,m2), g<= G, m

We also have the following generalization of a result of G. W. Mackey.

Theorem 2.1.4 ([13]). Let H be a sjubgroup of G such that τ2^H, and
D_τ a set of representatives of the double cosets THxH, x^G, such that r(ΓHxH)~1=
rHxH. Let a be a (possibly reducible] character of H. For x^D_τ, let τxa a
be the character h-*a (x~l r"1 fax) a(h) of rxHΓiH. Choose an element zx of
Λffn τ J f f τΛ?-1. Then:

(i) H(τxίr2x)=<^τ^x9

τxHΓ\Hy contains TXHΓ\H as a normal subgroup of
index 2.

(ii) There exist characters (rxa a)± of H(τx, τ2x) such that



SYMMETRIC SPACES OVER FINITE FIELDS 763

and that

(iii) P

cτ(αG)= Σ I^T*,**,)!'1 Σ {Γ« «)+-rα β) } 00
*ez>_τ ^ezrcτΛf,τ^Λ)

- Σ crtχ(a\r*Hr\H).
**D-T

2.2. Let 6? be a connected linear algebraic group over an algebraically
closed field K. Let σ be a surjective endomorphism of G such that

We put
G = Gj.

Then the cyclic group <τ> of order 2 acts on G by

τ# = σΛ?, x<=G.

Hence

G τ-G σ .

We also put

G — <τ> G (semi-direct product).

By a theorem of Lang and Steinberg, any^eG can be written as

(2.2.1) * = "(O«,

with some ag^G.

Lemma 2.2.2. (i) Let g be an element of G, and ag as in (2.2.1). Then

is again an element of G, and its G-conjugacy class does not depend on the choice

of a,g. Moreover, the transformation

on the space of class functions on G is unitary with respect to the standard hermitian

inner product < , >.

(ii) Let g be an element of G. Then t(rgg) is an element of Gτί and its Gτ-

conjugacy class CIG (t(Tgg)) depends only on the G-conjugacy class Clc(rg) of τg.

The correspondence
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gives a bίjection between the conjugacy classes of G contained in the coset rG and

the conjugacy classes of Gτ. Moreover, we have

for

Both parts (i) and (ii) are special cases of [11 Lem. 2.2]. In fact, by putting
m=l and replacing σ with σ2 (resp. by putting m=2) in [loc. cit.], we get (i)
(resp. (ii)).

For a class function % on G, we put

We also define the number £τ(%) by the formula (2.1.1). The main result of
this section is:

Theorem 2.2.3. (i) Let % be a class function on G. Then

mτ(%) = cr(t*(X)) .

(ii) Let X(=0 be such that %=**(%). Then

if rX = X ,
mβt) = *τ(%) = , Λ .

otherwise.

(in) LetX<=G. Put

Then

(iv) Let % e G. If mr(X) Φ 0, then there exists an -η e 0 such that <ί*(%), -η>
φO, cτ(97)Φθrarf^τ-^.

(v) L ί̂ %e<2. T/" cτ(%)Φθ, ίAm ίA^r^ *#wfr «/ί 77 eί^ ί̂ A that

Proof. Part (i) follows from Lemma 2.2.2 and the definitions of mτ( ) and
£τ( ). Part (ii) follows from part (i) and Theorem 2.1.3. To prove part (iii),
we write

<*(%) = Σ«,7
•ηss

with <?neC. Since ί* is unitary, we have

(2.2.4) Σ K I 2 = 1
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By part (i), we have

(2.2.5) mτ(%) = Σ a
*?

Hence, by Theorem 2.1.3, (2.2.4), and the Cauchy inequality,

Thus we get part (iii). Part (iv) follows from (2.2.5). Part (v) is similar.

REMARK 2.2.6. By Theorem 2.2.3, for the calculation of mτ(X,) for a given

% GΞ G, it is enough to solve the following two problems:
(a) Determine <**(%), η} for any -η eG.
(b) Determine cτ(η) (=1, — 1 or 0) for any η£ΞO such that <**(%), 77>ΦO.

3. Deligne-Lusztig virtual characters

In this section, we apply Theorem 2.2.3 to the case when G is a finite re-
ductive group, and % is a Deligne-Lusztig virtual character of G.

Henceforth, G denotes a connected reductive linear algebraic group over
an algebraically closed field K of positive characteristic p. Let q be a positive
integral power of p. Let σ be an endomorphism of G whose square σ2 is a
q-th power Frobenius map of G with respect to an ^-rational structure of G.
As in Section 2.2, we put G=Gσ?ί and consider the involutive automorphism
r: χ-+τχ=*x of G.

3.1. Let T be a <r2-stable maximal tours of G, and θ a character of Γ= TV.
Let rr[0]=r?[0] be the character of the Deligne-Lusztig virtual representation

R?[θ] of G [6].

Lemma 3.1.1. (i) rτ[θ]=rτ[&\ .

(ϋ) *(

Proof. Part (i) follows from [6; 4.2] and the fact [6; p. 123] that rτ[θ] is
integer valued on the unipotent elements. Part (ii) follows from the definition
of R!jj,[θ] and standard properties of /-adic cohomology.

The following result is of fundmaental importance for us.

Theorem 3.1.2 (Asai [3; 2.4.1]). For any σ2-stable maximal torus T and
any character θ of T^) we have

t*(rτ[θ]) = rτ[θ] .

By Theorem 3.1.2 and Theorem 2.2.3, we get:

Theorem 3.1.3. Let % be a uniform function on G, i.e. a linear combina-
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tion of Deligne-Lusztig virtual characters.

(i) We have

(ii) IfX<ΞO,then

( I if TX = %,
= cr(X) = I J

7 .
v ; (0 otherwise.

(iiΐ) Ifmτ(X)3=Q (rap. £T(%)ΦO), ίfow ίλm? ewfr anη&ό such that <•>?, %>
ΦO

3.2. Let S=SG be the set of σ^-stable semisimple conjugacy classes of the
dual group [6] £r* of G. Then S can be identified with the set of geometric

conjugacy classes of pairs (T, θ) of σ2-stable maximal tori T and characters θ
of T=Ta?. For (s)^Sy let ό^ be the set of irreducible characters of G con-

tained in some virtual character rτ[θ] such that (ϊ7, #)e(ί). Then [6; 10.1]
we have a partition

f * ~ I I i*

We denote by (G/GT)A the set of irreducible characters of G contained in IGT.

Theorem 3.2.1. Let (s) e S=SG. Then Oω contains an element of (G/GT)Λ

if and only if

words, we have a partition

(G/GT)Λ= U

o/(G/Gτ)
Λ into non-empty parts:

Proof. Let cc be an element of (G/GT)A, and ($) an element of *S such that

. Put

Then α(ί) is a linear combination of {?γ[0]|(jP, 5)e(ί)} by [6; 7.5]. Since

we have
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for some μ^όω by Theorem 3.1.3 (iii). By Theorem 2.1.2 (i), such μ satisfies

V = ?z

Hence, by Lemma 3.1.1, we have

This proves the only-if-part. To prove the converse, we embed G in a group
£?! with connected center and the same derived group. Let (ί)e(5G)_<Γ. Then
there exists an element (s1)^(SGl),<Γ which corresponds to (s) under the canonical
map (??->(?*. Since the if-part of (i) holds for G replaced by G± (this follows
from Theorem 3.2.2 below), there exists an irreducible character X1 of G1=(Gl)σ?
contained in (G1/(G1)T)

A Π όxij The irreducible components of %j | G are con-
tained in (£(,), and at least one of them is contained in (G/GT)Λ. Hence
(G/GT)

Λ Π όω is non-empty. This proves the if-part.

Theorem 3.2.2. Assume that the center of G is connected. Let (s)
Let pω and ρ(S) be the elements of OM defined by Deligne and Lusztig [6; 10.7].
Then

and

Proof. By the definition of p(,), p(S) and Lemma 3.1.1, we see that p(5) and
P(S) are linear combinations of rτ[θ], (Γ, θ)^(s), and satisfy rp^=ρω and
τp(S)=p(s). Hence the theorem follows from Theorem 3.1.3 (ii).

Let T be a σ-stable maximal torus, and T= Tj. Then the subgroup Γ_τ

of G will be called a τ-anisotroρic maximal torus of G, or a maximal torus of
the symmetric space G/GT. The "small" Weyl group

= (NG(T)/T)σ

(as compared to the "big" Weyl group

acts on Γ_τ, hence on (T"_T)Λ. An element φ of (T_r)
A is said to be in general

position if the stabilizer of φ in WW(T) is trivial.

Lemma 3.2.3. Let T and φ be as above. We define θφ

θφ(t) = φ(
rrί t ) , t^T.

(i) The following conditions for θt=fare equivalent, (a) rθ= 9, (b) θ \ Tr=l,
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(c) θ=θφfor some φ(Ξ(T-τ)
A.

(ii) Assume that the center of G is connected Then £>e(7Lτ)
Λ is in general

position if and only if θφ is in general position in the sense of [6] (i.e. the stabilizer

ofθφ in W(2\T) is trivial).

Proof (i) We have Γτ= {τtt\f e T} (resp. T_τ= {τrlt \ t e T} ) Hence (a)
and (b) (resp. (b) and (c)) are equivalent.

(ii) If θ=θφ is not in general position, then, by [6; 5.13], the stabilizer
(in the sense of [loc. cit.]) Zθ of θ in NG(T)/T is a non-trivial subgroup generat-
ed by reflections. Since τθ=θ"\ Zθ is σ-stable. Hence, by [6; 5.17], (Zθ)σ is
non-trivial. Since (Zθ)σ(a W(l\T)) stabilizes φ, we see that φ is not in general

position. This proves the only-if-part. The converse, which is true even if
the center of G is not connected, is easy.

Theorem 3.2.4. Assume that the center of G is connected. Let T be a σ-
stable maximal torus, and φ a character of T.σ. If φ is in general position, then
rτ[θφ] is an irreducible character of G, and

mτ(rτ[θφ]) = 1 .

Proof. By Lemma 3.2.3, B(T) rτ[θφ]=pω for some (s)^S,<r and some sign
£(T). But by [6; Prop. 7.4] and the fact that T is σ-stable, we have 6(T)=l.
Hence the theorem follows from Theorem 3.2.2.

REMARK 3.2.5. The above result confirms the conjecture in [4; 6.7] in
this particular case.

Theorem 3.2.6. Assume that q is large (see Remark 3.2.7 (2) below). Let
T be a σ2"Stable maximal torus of G, and θ a character of T=Tσ?. Let σ(G, T)

be the set of σ-stable maximal tori of G which are G-conjugate to T . Then we
have the following.

(i) n,τ(rτ[θ}} = cτ(rτ[θ]) = \Gτ\-iΣ \{w<ΞWV\A)V<°θA = '°dA}\ \AT\,

where for A^σ(Gy T7), A=Aat and ΘA is the character of A defined by

using a fixed element gA of G such that gA TgA

1=A.

Σ rτ[θ}(u) = \W«\T)\\σ(G,T)\.
«eβtτ

unipotent

REMARK 3.2.7. (i) In [22], Lusztig proved formulas for

I *i I "'Σ if [*](*),
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and for

Σ r9[θ](x),
*e*δ

unipoten

where δ is a Frobenius map of a connected reductive group H over a field of
odd charaaterisric, T is a δ-stable maximal torus of /f, 5e(27

δ), and K is the
fixed points of an involutory automorphism a of G commuting with δ. For
example, we can take

H=GxG,

δ:(x,y)-+ry, χ ) 9

and

a: (x,y) -* (y, x) , (x9y)^H,

where G is a connected reductive group and σ is a Frobenius map of G. In this
case, we have

Applying Lusztig's result to this particular case, we get (i) (ii) of Theorem 3.2.6
without using the assumption gr>0. (The odd characteristic assumption is not
needed in this case.)

(ii) If we apply Theorem 3.2.6 (ii) to the case when G=GLn(Fq) and σ is

the #-th power Frobenius map, we obtain a set of formulas for Green polynomi-
als. Using [23; III, 7], it can be translated to the one for symmetric functions
as follows. For a partition λ=(λι, λ2, •••)> let pλ(x) be the symmetric function
in (#)=(#!, #2, #3, •••) defined by

ρλ(x)=U (&+&+*&+•••),

and Pλ(#; 0 tne Hall-Littlewood symmetric function. (We are following the
notations in [23].) Then, for any positive integer n,

= Σaϊ'IΠ (l-ί*)-/™*"} {Π (l-ί'

where λ and μ run over the set of partitions of n, Wy(μ) denotes the number of
times; occurs as a part of μ, ρ(μ) is the partition of n defined by

m ( ( \\={ 2m2j(μ) if j is even,
™j(P(μ)) \m.(μ)+2m2j(μ) if j is odd,

and έλ(ί) and Zμ, are defined by
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and

#μ = Π μt Π Wj(μ)l (μ = (μι>

We now sketch our proof of Theorem 3.2.6. The proof is quite similar to
that of [6; 6.8, 6.9] and is done by induction on dim G. We need:

Lemma 3.2.8. Assume that Theorem 3.2.6 (ii) holds, for G replaced by
ZG(s)°, where s is any semisίmple element of Gτ not contained in the center Z of G.

Then

where

«= Σ θ(s)( Σ rτ[θ}(u}-\WV(T)\\σ(G,T)\)
sξ=ττnz «e(?τ

unipotent

and

yS= Σ \{aeW^(A)Γ"θΛ = 9^\\A,\.
A^σ<iG.T)

In particular, part (ii) of Theorem 3.2.6 implies part (i).

This lemma, which is a counterpart of [6; 6.10], can be proved using [6; 4.2].

We omit the details. To prove part (ii) of Theorem 3.2.6, we may assume by
induction, that this is true for G replaced by Z(s)°, where s is an arbitrary semi-
simple element in GT—Z, and for a σ2-stable maximal torus of Z(s)Q. Let T*

be the maximal torus of the dual group G* corresponding to T7, and Γ*— T*z
Then, for large </, there exists a <r2-stable conjugacy class (s) of G* such that

(3.2.9) (s) Π Γ* is non-empty and *(s)-l*(ή .

Let 0<=f be such that (Γ,0)e(j). Then, by Theorem 3.2.1, mτ(rτ[θ])=Q.
Moreover, by (3.2.9) and Lemma 3.2.3, we have rwθA3rw9A for any A^σ(G, T)
and any w& W(2)(A). Hence, by Lemma 3.2.8, we get a—Q. This proves part
(ii) of Theorem 3.2.6. (We did not try to weaken the assumption of Theorem
3.2.6 because of the reason mentioned in Remark 3.2.7 (i).)

4. Induced characters

Let G, σ, G, T, ••• be as in Section 2. Let P be a σ2-stable parabolic sub-
group of G, and L a σ 2-stable Levi subgroup of P. We put P=^Pσz and L—
LO?. Let φp be a cuspidal irreducible character of L lifted to P. In this sec-

tion, we are concerned with the calculation of cτ(X) for irreducible components
% of φp. For simplicity, we assume that <τ2 is an jF^-split Frobenius map of
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G. The main result in this section is Theorem 4.5.9.

4.1. Let B be a σ-stable Borel subgroup of (?, Tl a σ-stable maximal torus
contained in B, T^TJj, and W=NG(T1)IT0=NG(T1)/Tl. Then r acts on
W in such a way that the reaction is trivial. Let P be a <r2-stable parabolic
subgroup containing B, L the Levi subgroup of P containing TΊ, and U the
unipotent radical of P. We put B=Bσ2, P=Pj, L=Lσ?y and U=Uj. Let φ
be a cuspidal irreducible character of L, and jf?: L-+GL(V) a representation of L
affording φ. The lifts of φ and R to P are denoted by φp and ΛP, respectively.
The representation Rp of G induced from RP is realized on the space F(G, P, R)
=F(P, R) of functions /: G-> Γ satisfying

The group G acts on F(P, R) by right translation. We put

W(L) = {w^W\w(LnB) = Lf}B}^ NG(L)IL

and

4.2. We briefly recall results of R.B. Howlett and G.I. Lehrer [10]. Let
Σ be the set of roots of G with respect to Tly Σ+ (resp. π) the set of positive
(resp. simple) roots corresponding to By and π(L) the subset of π corresponding
toBf}L. For a e 2 — τr(JL) such that

(4.2.1) τr(i) U {a} dzvπ for some w<Ξ W ,

we put

where w0(τr(i)U {«}) and wQ(π(L)) are the longest elements of the finite re-
flection groups with simple root systems π(L)\J{a} and τr(L) respectively.
Assume that

(4.2.2) wl = I and w^ W(φ) .

Let M be the subgroup of G generated by Tl and the root subgroups correspond-
ing to the roots in

and M—Mgt. Then PΓ\M is a parabolic subgroup of M, and L is a Levi
subgroup of PΓ\M. The induced character ΦPΠM splits into exactly two irre-
ducible components ηΛ and η'Λ whose degrees are related by
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with a non-negative integer m(ά). Now we define S(φ) to be the set of
—π(L) satisfying (4.2.1), (4.2.2) and

For αeΣ(φ), let a be its image in RπjRπ(L). Then Σ(φ)= {ff I αeΣ(φ)} is a

root system, and Σ+(φ)={tf |αeS(φ) ΠΣ+} is a set of positive roots in Σ(φ).
Let τr(φ) be the corresponding set of simple roots, and W'(φ)=<«0a|αe2(φ)>

the Weyl group of Σ(φ). We denote by /(•) the length function on W(φ)
with respect to the set S(φ)={wz\ct^τr(φ)} of simple reflections. For each
w^W'(φ), there corresponds a canonically defined element tw of EndG(.F(P, jR))
with the following properties: (a) ^= identity, (b) tw, τo^W'(φ\ are linearly in-

dependent, (c) * W V = W if l(wo')=l(w)+l(wr), (d) (t.-l) (t.+qmM)=0 if
s=ws with σe«(φ). We put

- 0 Ctw.
weTΓ'Cφ)

4.3. Let PF(φ, T) be the set of elements w of W satisfying

rw (L Π B) = L Π B (hence, TI*L=L)

and
TBΦ = Φ .

For t>e PF(φ, r), we consider the vector space isomorphism

/-"/
from F(P,R) onto F(*υP,τ°R). This induces an algebra isomorphism from

Endfc(JPi(τfP, nR)) onto End'G(F(P, R)). If we identify Endfc(F(τfP, 1TΛ)) and
End^(F(P, Λ)) using their canonical basis elements twy w<= W'(φ)=W'(Tvφ)y then
the induced map gives the automrophsim

ί*-^, ^ = "10, wtΞW'(φ}

of the algebra End'G(F(P, R)).

4.4. Let D(L, T) be the set of elements w of W satisfying

and

Then

= U TP//WP (disjoint),
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where, for w e W, nw is a representative of w in the normalizer NG(T^} of T1 in
G. The set W(φ, T) defined in 4.3 is contained in D(L, T). For vG W(φ, τ)_τ,
one can define the twisted Frobenius-Schur indicator

Cr,(Φ) = Cτn,(φ) (=±1).

We note that the representative nϋ^NG(T^) of v^W(φy τ)_τ can be so chosen
that (τn0)

2= 1. In fact, (τn,)2e 7\ is fixed by the map t^rvt, t e ϊ\. Hence, by
Lang's theorem, there exists an element s of 7\ such that (τw,)2=Tβ$ ί. Then
the new representative n'v=nv s"1 of v satisfies (rnί)2=l.

Lemma 4.4.1. Let φ be a cuspidal irreducible character of L. Then

Cr(φG

P) = Σ Cn(φ) .
»eWCφ,τ)_τ

Proof. First, note that, for w&D(L, T),

if and only if zo^D(L, τ)_τ. For v^D(L, τ)_τ, we consider the character

τ'Φ/> φp: P -> ΦX^-1 τ-lί«) ΦP(P)

of Tί>P Π P. Then, by a standard argument in the theory of cuspidal characters
(see, e.g. [5; Prop. 9.1.5]), we see that

, T'ΦP'ΦP> = Σ ΓΦP ΦP) (P)= 0

unless v& W(φ, τ)_τ. Hence, if we define the characters (rvφP φp)± of P(rvy TV)
=<τv, ToPf}Py as in Theorem 2.1.4, then

Σ ΓΦp Φpί^v) = <lp(r,,τ,), ΓΦP ΦP)^ ̂  0
y&P(τv,τv)

unless v& W(φ, τ)_τ. Hence, by Theorem 2.1.4, we have

(4.4.2) cτ(φG

P}= Σ ΓPΓIPI-H Σ ΦP((rn,pn.
»<=w<:φ,r)_r />

Since, for we PF(φ, τ)_τ, we have

°P n P can be written as />=/M with /eZ, and u^τ"U Π C/. Then

Hence the statement follows from (4.4.2).

4.5. Let L, L and φ be as in Lemma 4.4.1. We make the following
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ASSUMPTION 4.5.1.
(i) W(φ)=W'(φ).
(ii) Let γ and δ be two Frobenius maps of L such that L(=Lσϊ)=Lγ*=L82.

The involutive automrophism of L induced from γ and δ are also denoted by γ
and δ, respectively. If γφ=φ and *φ=Φ, then

In particular, the sings cn(φ)9 v^W(φy τ)_τ in Lemma 4.4.1 are independent of
v.

Lemma 4.5.2. If W(φ9 T) is non-empty, then W(φ, τ)-τ is also non-empty.
In that case, we have

W(φ, τ)_τ = vW(φ).τ, , ve W(φ, τ).τ .

Proof. By the definition of W(φ, T), we have

W(φ, T) = uW(φ) ,

if W(φ, T) is non-empty. So if we prove the first statement, the second one
follows. We use the notations in 4.2. Let u^W(φ, T). Since σu(π(L))=
π(L) and σuφ=φ, we have

Let Σ+(φ)=Σ(Φ) Π Σ4". We show the existence of vG W(φ, T), such that

(4.5.3) σ^(Σ+(φ))cΣ+.

If σw(Σ+(Φ))ΦΣ+, then the set

(cΣ+(φ))

is non-empty. Hence there exists an element a of Σ+(φ, σu) such that
τf(φ). Consider the element uws&W(φ, T). Then

Repeating this process a number of times, we eventually find an element v=
uws Wz' e W(φ9 T) satisying (4.5.3). Since (σ^)2e PF(φ) for any we W(φ, T),
we see that

(σv)2<=Ξ W(φ) = W'(φ) (Assumption 4.5.1 (i))

and

Hence we must have (σv)2=\, which is equivalent to we W(φ, τ)_τ.
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By Assumption 4.5.1 (i), we see that

ΈndG(F(P, R)) = End'G(F(P, R))

is isomorphic to the group algebra CW(φ) of the finite reflection group W(φ).
Hence there exists a 1 — 1 correspondence

μ — * %μ

between the irreducible characters μ of W(φ) and the irreducible components

Xμ of φp such that

(4.5.4) Φ?= Σ μ(l)X*>
μ EΞT/Cφ)

and that

(4.5.5) χ(= τ"%μ) - X(τv> , μ^ W(Φ) u(Ξ W(φ, τ).τ .

By Assumption 4.5.1 (ii), Lemma 4.4.1, Lemma 4.5.2, and (4.5.4), we have

(4.5.6) |W(Φ)-™MΦ) = Σ

for any u^ W(φy τ)_τ. On the other hand, by (2.1.2), we have

(4.5.7) \W(φ).Ttt\= Σ /*(l)c™0*)
μeΞTF%>

/\
Lemma 4.5.8. Lβί u<= W(φ, τ)_τ.

r μ = μ ,
Cn(μ)-0 otherwise.

Proof. It is enough to prove this in the case when P—B, ΦP=1B and
u=l. Then W(φ)= W(φ, r)—W. We can assume that W is an irreducible
Weyl group. Since it is known that any μ,e W is afforded by a real representa-
tion, the (classical) Frobenius-Schur indicator c(μ) is equal to 1. Hence we
may asusme that the τ-action on W is non-trivial. When W is of type An or

E6, then such r-action is given by

τw = wc wwo1 , W^L W ,

where WQ is the longest element of W with respect to the simple reflections cor-

responding to B. Hence, for any μ^W, we have rμ=μ and

When W is of type Dny then the semi-direct porduct <τ>PF is isomrophic to the

Weyl group of type Bn. Moreover, if μe W is fixed by r, and /5e
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is taken so that μ>\ W=μy then

2c(μ) = Cr(μ)+C(μ) .

Since c(β)=c(μ) = l, we have cr(μ) = l in this case. If τμ^Fμ, then rμ^jz(=

Hence cτ(μ)=0 by Theorem 2.1.3. Finally, when W is of type 52, G2 or

(i.e. Gτ is a group of Suzuki or Ree), we can directly verify that

using the generating relations and character table (see [14]) of W. Hence, in

this case, the lemma follows from (2.1.2).

Theorem 4.5.9. Let L be a Levί subgroup of a parabolic subgroup of G,
and φ a cuspidal irreducible character of G.

(i) If W(φ, T) (see 4.3) is empty, then, for any irreducible component X of φp,

we have

cjX) = 0 .

(ii) If W(φy T) is non-empty, then under Assumption 4.5.1 (i) (ii), we have

(φ) if τ°μ = μ"
0 otherwise,

/\
where μ^W(φ), v is an element of W(φ, τ)_τ (which is non-empty), and Xμ is

the irreducible component of φp corresponding to μ.

Proof, (i) Let (s) be the σ2-stable semisimple class of L*(dG*) such that
(s), and ((s)) the class of 6r* containing (s). Then the emptyness of W(φy T)

implies that σ((s)) Φ ((s))'1. Since % e O«M, this implies that cr(X)=0 by Theorem
3.2.1.

(ii) By (4.5.5) and Theorem 2.1.3, we have

0, if

Hence, part (ii) follows from (4.5.6), (4.5.7) and Lemma 4.5.8.

Lusztig [17] [21] showed that Assumption 4.5.1 (i) is true if φ is unipotent

or if the center of G is connected. His result also implies that, when G modulo
its center is simple and φ is unipotent, we always have

unless :

G is of type D2n, σ is a twisted Frobenius map, P=B (hence ΦP=1B), and
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μ is a "degenerate" (see 6.3) irreducible character of W= W(φ).

5. Unipotent characters of exceptional groups

Let 6r, cΓ, G, T, ••• be as in Section 3. In this section, we restrict our at-
tention to the unipotent irreducible characters of G, i.e. the elements of ό^.
By [6; 7.10], we may assume that G modulo its center is simple. Then σ2 is a

split Frobenius map unless Gσ is of type 3Z)4. Since the 3D4-case is easy (see 5.4),
we shall assume, unless otherwise stated, that σ2 is split.

5.1. Let Tλ be a σ-stable maximal torus of G contained in a σ-stable

Borel subgroup B. Then, by the assumption made above, T1 is σ2-sρlit. For

w^W=NG(T1)/Tly let Tw be a σ2-stable maximal torus of G whose G-conjugacy

class corresponds to the conjugacy class of w in W in the standard manner. We
put Tw=(Tw)j. For //,<= ΐ^, we define

For μ, μ'eTr, we write μ~μ' if there exists a series μ=μQ, μly •••, μn=μ' of
elements of W such that <n*» -ι> τ>*v>Φθ for \<,i<,n. Equivalence classes of W
under ~^ are called [21] families, or two-sided cells, in W. For each family F in
Tr, we put

UF = {%GΞ £ω|<%, rμ>Φθ for some μ(ΞF} ,

which is called a family of unipotent characters.

F. Digne and J. Michel [8], and T. Asai [2], [3] discovered that there exists
a beautiful connection between the operator ί* and Lusztig's nonabelian Fourier

transfomration [21]. We summarize a part of Asai's results in the following:

Theorem 5.1.1. Assume that G modulo its cneter is simple. If G is of
exceptional type, we also assume that the characteristic is good. Let F be a family
in T&, and U=UF the corresponding family in G(1). When G is of type E6 (resp.

E8), we further assume that F does not contain a character μ such that μ(l)=512
(resp. 4096). Let %=%(*,*) be an element of U corresponding to (x}ά)^Mu—
M(T) under Lusztig's parametrization [21]. (T=TU is a finite group associated

[21] with the family U, and M(T) is the set of pairs (x, a) with x^

taken modulo T-conjugacy, where ZΓ(x) is the centralizer of x in T.) Then

where the pairing {•, •} on M(T) is defined by

{(x, a), (y, β)}= Σ I Zτ(x) I -1 1 ZΓ(j) | -1 a(zyz-1) β^-1 χ-> *) .
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This result is proved in Asai [2; 6.2.1]. Notice that, in the terminology of [2;

p. 2763], our t is equal to (t1>σ^>id.)"1 with a split Frobenius map σ2. Combining

Theorem 5.1.1 and Theorem 2.2.3 (i) we get:

(5.1.2)

for any %(,,„) e UF, if F is not one of the families excluded in Theorem 5.1.1.

5.2. Following the general program described in Remark 2.2.4, we now

turn to the determination of the twisted Frobenius- Schur indicators cr(X,),

Xe(z(D. We first consider the case when % is a component of the induced
character If with B=Bσ2. As a special case of Theorem 4.5.9, we have

Lemma 5.2.1. Let %μ be an irreducible component of If corresponding to

Then

1 if τμ = μ y

n ,, .u otherwise.

We also have the following

Lemma 5.2.2. For μ,e ffi, let rμ be as in 5. 1. Then

/ \ / \ ί 1 *f Tμ = μ >cτ(rμ) = mr(rμ) = -j .
( 0 otherwise.

Proof. The Gτ-conjugacy classes of σ -stable maximal tori of G are in

1 — 1 corresponence with the σ -twisted conjugacy classes of W. Let T^ be a

σ-stable maximal torus corresponing to the σ-twisted class of v e W. Then, as
a σ2-stable maximal torus, T£1} is G-conjugate to Tw with w=rvv. Using this
fact and Theorem 3.2.6 (and Remark 3.2.7 (i)), we see that

w vv = w .

Hence we have, for μ&ffi,

cτ(rμ] = mr(rμ) = cr(μ) .

The lemma now follows from Lemma 4.5.9.

Combining Lemma 5.2.2 with the formula of Lusztig [21] for the multi-
plities </μ, %>, %eG(1), we get the following.

Lemma 5.2.3. Let F be a family in W, and U the corresponding family
in G(1). For %e U and μ^F, we denote by (x, α)x and (y, β)μ, the elements of

Mυ corresponding to % and X^ (which is known to be contained in U), respectively.
Then, for any μ^F,we have
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[1 i f τ μ = μ jχ> <*)x> (y> β)*} = \Λ**=" 10 otherwise.

where Δ( ): f7->{±l} w β certain function which is identically 1 unless F is one
of the families excluded in Theorem 5.1.1.

5.3. Let F be a family in Tr, [7 the family in ό(1) associated with F, and

Γ the finite group associated with U. It is known [21] that, when G is an ex-

ceptional simple group,

(5.3.1) Γ & Sf (the z'-th symmetric group)

for some 1<C*'<5. In this subsection, we determine £τ(%) and 0ιτ(X), %eC7,

under the assumption (5.3.1). In the case when G is of exceptional type, we

also need to assume the characteristic is good. In the calculation below, we

use the explicit values {(#,<*), (y, β)} ((#, α), (y, /β)eM(5,.), 2^'<5). For
2<z<4 (resp. ί=5), these can be found (resp. partly found) in [5; 13.6].

(1) Γ^/SΊ= {1}. In this case, F consists of a single element μ, U= {%/*},

and Xμ, is a uniform function. Hence, by Theorem 3.1.3 (ii) and Lemma 5.2.1,

1 if τμ = μ ,

0 otherwise.

In particular, for unipotent characters % of a group of type An, we always have

(2) Γ^52. In this case, M(Γ) consists of four elements {(1, 1), (1, 6),

(&> 1)> (gz> £)}> where 6 and^2 are non-trivial elements of 52 and S2, respectively.
If F is not one of the families excluded in Theorem 5.1.1, then %dtl), %α,8) and

are contained in If. Hence, by Lemma 5.2.1 and Lemma 5.2.3, we get

if Cr is of type jB2, and the τ-action on W is non-trivial (i.e. if GT=G<T is a Suzuki

group), and

otherwise. Hence, by (5.1.2), we get

»*r(X<U>) = »«τ(X(ft.t)) = ° » »«τ(X(l.f)) = ™τ(%(*2,l)) = 1 ,

if Gτ is a Suzuki group, and

(l,l>) = 2 i »«r(X(l.f)) = »«r(^«,l)) = mτ(%(^2,ε)) = 0 ,

otherwise. Even if the family F is one of those excluded in Theorem 5.1.1, a

similar argument as above leads to :
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(5.3.2) βrίXαα)) = «r(Xa..)) = 1 , Άz>l))+cτ(%(ί2.ε)) = 0 .

Moreover, according to Asai [2; 6.2.1 (iv)], we have either

or

with a primitive 4-th root ξ of 1, where the root means the Lusztig's non-
abelian Fourier transformation. Hence, by Theorem 2.2.3 (i), we have either

or

Λ Λ

Hence, in any case, we must have £r(^(*2,ι))=0 because wzτ(^(*2,ι)) and
are real mumbers. This and (5.3.2) imply

Analogously, we also have

(3) T^S3. In this case Λf(Γ) consists of 8 elements, namely, (1, 1), (̂ 2, 1),
(1, r), (ft, 1), (1, 5), (ft, «), (ft, θ), and (ft, 02) in the notation of [21 Ch. 4]. We
denote the corresponding elements in U by %1? %2, •••, %8, respectively. We also
put ci=cτ(Xi) and mi=mτ('Xfi) for l^i^S. By Lemma 5.2.1, we have

Hence, by Lemma 5.2.3, we get

(5.3.3) c5+3c6+2c7+2cB = -2 , -c5-c6 = 0 .

Moreover, by (5.1.2), we have

6m, = 8+c5-3c6+2θc7+2θ2 cs ,

3m7 = -2θ+2θc5-2θ2c7+4c8 .

Since m1 and m7 are real and θ is a primitive 3rd root of 1, we must have

(5.3.4) c7-cB = 0 , -l+c5+c7 = 0 .

Solving (5.3.3) and (5.3.4), we have

fa* <*, c» c8) = (!,-!, 0,0).
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Hence, by (5.1.2),

(ml9 m2, m3, m4, m5,m^, m7, w8) = (2, 0, 1, 1,0, 0, 0, 0).

(4) Γ^S4. M(Γ) consists of 21 elements, namely, (1, 1), (1, λ1), (g'2, 1),

(ft, -1), (ft, 0), (ft, 02), (ft, 0, (ft, -0, (gz> ^), (!, λ3), and (g2ί 6), in the notation
of [21; Ch. 4]. We denote the corresponding elements of U by %j, %2> '"> 2̂1,
respectively. We also put ci=cr(Xi) and mi=mτ('Xfi) for !<;/<; 21. By Lemma
5.2.1, we have

By an argument similar to the one used in case (3), we get

(%, %, -> %) = (-1, -1, -1, 0, 0, 0, 0, 1, 1, -1) .

Hence, by (5.1.2),

(^,^2,^3) = (3, 1, 1); mi = ϋy

K, m1Q) = (1, 2); mi = 09

= (1, 0, 0) .

(5) Γ^55. M(Γ) consists of 39 elements, namely, (1, 1), (ft, 1), (g'2, 1),

(i, ^), (i, λ1), (A, i), (Λ, e), (i, ^)> (^ί, O, (I. ^2), ( ,̂ a')ι (i> λ3), ( 2̂, i), (ft, i),
(A, i), (&> 0, (A, £), (ft, -i), ( 6̂, -i), (A, -0> (&ι -i), (^2, *0, (A, β), (A, β),

), (ft, 0, (ft, -0, (gί, ε), (1, λ4), and (A, -8) in the notation of [21; Ch.
4]. We denote the corresponding elements of U by X^ %2, •••, %39, respectively.
We also put ci=cr(%i) and mi=mτ(Xi) for 1<^<39. By Lemma 5.2.1, we have

*.-= 1,

By an argument similar to the one used in case (3), we get

Ci = -l,18^ί^22; ^ - 0, 23<z^36; (c37, c38, c39) - (1, 1, -1) .

Hence, by (5.1.2),

(ιιι l,w2,...,mB) = (3, 2,1,2,2,1,0,1);

w, — 0, 9^z^36; (m73, m^ m39) = (1, 0, 0) .

REMARK 5.3.5. (i) Assume that G modulo its center is simple, and the

characteristic is good if G is of exceptional type. Let σ be a split Frobenius

map of G. For any unipotent character % of G=Gv2, we can consider

(a) the twisted Frobenius-Schur indicator
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and
(b) the root λχ of 1 defined in terms of the eigenvalues of σ2 on /-adic

cohomology spaces of Deligne-Lusztig vareites (see [21; Ch. 11]). Comparing

the results on £τ(%) obtained in this section with the explicit calculation of λχ

given in [21; Ch. 11], we see that

0

if λx =

otherwise,

when G is of type An or of exceptional type. For groups of type Bnj Cn or Z)n,

this will be proved in the next section.

(ii) Let G be the adjoint group of type B2 (in any characteristic) or the
adjoint group of type G2 in good characteristic. Then non-unipitent irre-

ducible characters of G—G^ are uniform. Hence the calculation given in this

subsection (case (l)-case (3)) together with Theorem 3.1.3 determines
and τwτ(%) for any φ<=0. (R. Lawther and J. Saxl [15] determined wτ(%),

when G is the adjoint group of type B2 in characteristic 2 using a method differ-
ent from ours.)

5.4. In this subsection, we consider the 3Z)4-case. Let G be an adjoint

group of type Z)4, and σ a surjective endomorphism of G such that | Gσ* \ < oo

and that the cr-action on the root system of G is of order 3. Then G (=6^)

and Gr(=G(Γ) are isomorphic to the groups 3D4(<f) and 3-D4(#), respectively,
for a power q of a prime.

Lemma 5.4.1. Let U= {|>J, [p2], 3Z>4[1], 3A[-1]> be the unique four ele-
ment family (see [18]) of unipotent characters of G. Then

t*

i.e. the t*-actίon on U is the same as in case (2) in 5.3. Moreover any
is ^-invariant.

Proof. Let A be the space of class functions on G. Then A can be writ-
ten as:

ί M 1
[pd

3A[i]
\Ά[-1]J

1
~~ 2

' 1 1 1 -1\

1 1 - 1 1

1 - 1 1 1

-1 1 1 l y

ί [PI] }
M

3A[i]
,'DJL-l],

A = (orthogonal direct sum),

where A0 is the space of uniform functions, and 'η=[pι] — [ρ^—3

See [18], [7], Since ί* acts trivially on AQ by Theorem 3.1.2, and ί* acts in-
volutively on A by [12; I, (2.2)], we must have
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The lemma follows from this.

The following result can now be obtained by an argument similar to the one
used in case (2) in 5.3.

Proposition 5.4.2. We have

and

a*r([ft]) = 2 , Wr(lAl) = ̂ r(304[l]) = ^DJ-1]) = 0 .

If X is a non-unipotent irreducible character of G, then

if TX = % ,
cτ(X) = mτ(%) =

I U otherwise.

6. Classical groups

In this section, we consider the case when G is of type An, Bn, Cn or Dn.

Since we already treated the 2.B2-and 3D4-cases in Section 5, we may assume
that σ: (?->£? is the Frobenius map for a rational structure of G over a finite
field Fqr, and that the Frobenius map σ2 is split over Fv q=q'2.

6.1. Recall [16] [17], [19]-[21] that a (reduced) symbol is an unordered

pair Λ=(5, 71) of finite subsets of {0, 1, 2, •••} such that 0$S Π T. The rank

and defect of a symbol A=(S=(Xj, λ2, •••, λα), Γ— ( ,̂ μ,2, •••, /^6)) are defined by

rank(Λ) = Σ λ,f + Σ μ>j—[(<^+^—1)2/4]
* j

and

def(A)= \a-b\,

respectively, when \%\ denotes the largest integer m such that m-ζz.

6.2. Let G be of type Dn(n>2). Let S(D, n) be the set of symbols of rank

n and defect divisible by 4. A symbol Λ=(S, T)^S(D, n) is called non-degen-

erate (resp. degenerate) if SΦΓ (resp. S=T). By Lusztig [16] [20], one can

associate with each non-degenerate (resp. degenerate) symbol Λ a unipotent

character %Λ (resp. two unipotent characters %Δ>1, XΔ>2) of G. For ΛeS(D, #),

we put

S = SA = def (A)/2 .

Then w>^. Let P be a parabolic subgroup of G with a Levi subgroup L of
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type Z>42. Let φ be the unique cuspidal unipotent character of L. Then

(6.2.1) <X>ΦP>=I=0

if A is non-degenerate, and

if A is degenerate. (In the latter case, P=B and φp=lB}. For non-degenerate

elements A and A' of S(D, n), %Δ and %A/lie in the same family if and only if
S]\_T and S'_U_T" contain the same integers with the same multiplicities. For

degenerate Λe5'(D, n), the sets {%A,ι} and {XΔ,2} are 1-element families. Let

Z —

be a non-degenerate symbol of rank n and defect 0. We arrange #'s and #"s in

such a way that #ι<#2<•••<£«, #ί<#2<•••<#«• We assume that Xz is special

(resp. Z2) be the set of integers which appear exactly once (resp. twice) in Z.
Then \Z1\=2d for some positive integer d. Let U(Z) be the family containing

XZy and let

S(D,Z) =

Then any Λe5(D, Z) can be written uniquely as

Λ =

with some M(Λ) cZx such that |Λf(A)| =d (mod 2). The finite group Γ as-

sociated with U(Z) is isomorphic to (Z/2Z)d~l. Let (Λ?A, αΔ) be an element of

Λf(Γ) corresponding to %ΔGΞ C7(Z'). Then (Λ?Z, αz)=(l, 1), and, for A&S(D, Z),

(6.2.2) αΔ(Λ?Δ) = (-l)ί'^Δ»-^,

which can also be interpreted in terms of Frobenius eigenvalues associated with
XA (see [20; 3.18], [21; 11.2]). If Λ is degenerate, then the groups associated

with {%Δft } (i=l, 2) are {!}. As a special case of the formula (5.1.2), we have

Lemma 6.2.3. Let KξΞS(D, n) be non-degenerate, and Z the special symbol
such that A e S(D, Z) . Then

Theorem 6.2.4. Z*f G fe o/ type Dn(n>2).

(i) Zr^ί A. be a degenerate symbol of rank n and defect divisible by 4, and



SYMMETRIC SPACES OVER FINITE FIELDS 785

i* ^Δ,2 the corresponding unipotent characters of G=£r(Γ2. Then

j 1 if σ is untwisted,

10 otherwise,

fori=!92.
(ii) Let Λ be a non-degenerate symbol of rank n and defect divisible by 4,

and %Δ the corresponding unipotent character of G. Then

(iii) Under the same notation as in (ii), we have

2d~l if Xj, is special,

0 otherwise,

where 2d is the number of integers appearing exactly once in Λ.

Proof, (i) This is a special case of case (1) in 5.3.
(ii) Let P be a parabolic subgroup of G with a Levi subgroup L of type

Dry r<n. Since the case n—2 is easy, we can assume that the statement (i)
(with G replaced by //) and Assumption 4.5.1 (ii) (for any cuspidal unipotent
character φ of any L of type Dr, r<n) are both true. If %Δ is not cuspidal, i.e.
if n>s2

A, then we can apply Lemma 4.5.7 (with u=l) to the φ and P in (6.2.1).
Hence we have

This and (6.2.2) imply that the statement (ii) is true for non-cuspidal %Δ. It
only remains to show that (ii) is true for cuspidal %Δ, because then Assump-
tion 4.5.1 (ii) is true for L of type Dn. If %A is cuspidal, and take the symbol
Z such that %z, is special and that ΛeS(Z), Z). Then, by Lemma 6.2.3 and
the statement (ii) for non-cuspidal characters, we see that

must be an integer. If rf>3, this is the case only when cT(X^)=a^(oe^). If
d=l or 2, then the group Γ associated with U(Z) is isomorphic to {1} or S2.

This case has already been treated in 5.3. This proves part (ii).

(iii) Let Z be as in Lemma 6.2.3. Then by part (ii) and Lemma 6.2.3, we

have

On the other hand, by (2.2.4) and (2.2.5), we have
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where the both sums are taken over S(Dy Z). The statement (iii) now follows.

6.3. Let G be of type Bn or Cn(n> 1). Let S(BC, n) denote the set of sym-
bols of rank n and odd defect. By Lusztig [16] [19], there is a 1-1 correspondence

between the elements Λ of S(BC, n) and the unipotent characters %Λ of G.
For Λ<=S(BC,n), we put

ί = *Δ = (def(Λ)-l)/2.

Then n>s*-{-s. Let P be a parabolic subgroup of G with a Levi subgroup L of
type BS2+S or Cs*+s (according as G is of type Bn or Cn). Let φ be the unique
cuspidal unipotent character of L. Then

For elements Λ=(S, Γ) and Λ'=(S', 7") of 5(5C, w), %Δ and χΔ/ lie in the
same family if and only if S IL T and S' JI 71' contain the same integers with
the same multiplicities. Let

// \ \

= I 0> 2> 2m \

\(#1> #3> •• >Z2*n-l)/

be a symbol of rank w and defect 1. We arrange s's in such a way that

,s:2<(2:2<- <(2r2ί«, ̂ ι<^3< * <^2i»-ι We assume that %z is special [21], i.e.
ZQ<Zι<sZ2< <z2m-ι^Z2m Let Zj (resp. Z2) be the set of integers which ap-
pear exactly once (resp. twice) in Z. Then \Z^\ =2d+l for some non-negative
integer d. Let U(Z) be the family containing %z, and let

S(BO, Z) = {ΛeS(BC, Λ) I%Ae

Then, any ΛeS(Z?C, Z) can be written uniquely as

Λ -

with some M(A)cZj such that |Λf(Λ)| Ξj(mod 2). The finite group T as-
sociated with t/(Z) is isomorphic to (ZβZy. Let (Λ;A) αΛ) be an element of
Λ/(Γ) corresponding to %Δel/(Z) under Lusztig's parametrization [21]. Then
(xz, az)=(\,\), and for K<=S(BC, Z),

which can aslo be interpreted in terms of Frobenius eigenvalues associated with
%Δ (see [19; 6.6], [21; 11.2]). Thus, as a special case of the formula (5.1.2),
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we have

Lemma 6.3.1. Under the above notation, we have for K^S(BC, Z),

= 2~d Σ αΔ*Δ £ T X Δ .

The proof of the following theorem is similar to that of Theorem 6.2.4.

Theorem 6.3.2. Let G be of type Bn or Cn (n>\). Let Λ be a symbol

of rank n and odd defect, and %Δ the corresponding unipotent character of G=G^.
Then

(i) £T(%Δ) = C

2d if %Δ is special,

0 otherwise,

where 2d+1 is the number of integers appearing exactly once in Λ.

6.4. Let k be an algebraically closed field of characteristic p. In what

follows, we assume that G is one of the following groups defined over Fq' (see

[16]):

(6.4.1)

Let σ be the corresponding Frobenius map. We would like to calculate £τ(%)

and mτ(X) for any irreducible character % of G=Ga?. This will be done by
reducing the problem to the case of unipotent characters considered in 6.1-6.3.
For that purpose, we need:

Theorem 6.4.2 (Lusztig [16] [21], Asai [3]; see also Asai [1]). Let G be
one of the groups listed in (6.4.1). For a semisimple element s of the dual group

G*=G*2 of G, we put G[s]=Z^(s)* (the dual of the centralizer of s in G*), and

\ = G\s\0?. Then there exists a 1-1 correspondence

ΌLβ+1(k) («>1); Spίn(k) 0

SOfu(k) (n>2,p = 2 ) ; SO2n+l(k)

,CSpin(k) (n>]

from G(s) onto G[s]^ with the following porperties:

(a) If % is cuspidal, then %unip is cuspidal.
(b) Let L be a Levί subgroup of a parabolic subgroup of G, and s a semisim-

ple element of L*. Let R be a cuspidal irreducible representation whose character

φ is contained in L(s ), and Λvnip that of L[s] whose character if φunip. Let P[s]

be a parabolic subgroup of G[s] with Levί subgroup L[s]. Then there exists a natu-

ral isomorphism
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EndG(F(G, P, R)) <χ Endcΐsl(F(G[s]y P[s] 7?unip))

(see 4.1) iy α>/ώ/i ββcA irreducible component % o/φl if mapped to %unip.

(c) Lei T be a σ2-stable maximal torus of G, and θ a character of T=Tσϊ.

Let (s) be the semisimple conjugacy class of G* corresponding to the geometric con-

jugacy class of (T, θ). Then, for any % e 0,

<%, rG

τ[θ]> = £(*)<%unip, f9*[l]> ,

where £(ί)=±l, and T' is the torus of G\s\ corresponding to T.
(d) For any %e 0,

where \ | / ίy ί/iβ jp#r£ o/ £Ae integer \ | ^πw^ to p.

(e) Z/e£ %eG(s)/or α semisimple element s of G*.
be the coefficients in :

= Σ

(ί̂  Theorem 5.1.1).

**(%)= Σ Λ,^.

''̂ ω
Now we can prove the main result of this section.

Theorem 6.4.3. Let G be as in (6.4.1). Let % be an irreducible charac-

ter of G=G<?y and (s) the semisimple conjugacy class of G* such that %eG(s). If
r(s)*(s)-1, then έrτ(χ)=»ιr(%)=0. // r(s)=(s)~l, then cT(X)=cT(%unlp) and mβC)
=/wτ(%unip).

Combining this with Theorem 6.2.4 and Theorem 6.3.2 (and also case (1) in

5.3), we can determine £τ(%) and wτ(%) for any %e(£. It is extremely likely

that the statement of Thoerem 6.4.3 is true for any connected reductive group
with connected center.

Proof of Theorem 6.4.3. The first statement is already proved in Theorem

3.2.1. If τ(ί)=(ί)"1, we can take a representative s in the conjugacy class (s)

so that τs= s~l by [6; 5.23]. Then σ preserves 6r[ί]=Zc*(ί)*. Hence we can

consider cr(η) and mτ(η) for η&G[s\. By Theorem 6.4.2 (e) and Theorem 2.2.3
(i), it is enough to prove

(6A4) CrίaO^CrίXoBlp).

We show, by induction on ny that (6.4.4) and Assumption 4.5.1 (ii) are true.
For n= 1 or 2, they are easy to verify, For a larger n, we first assume that % is
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not cuspidal. Then there exists a proper parabolic subgroup P of G, and a
cuspidal irreducible character φ of a Levi subgroup L of P such that

If we write G as G(n) to indicate its matrix size, the group L is isomorphic to

GLmι(Fq) x .» x GLmf(Fq] x G(ra')

for some/ and some miyn'<n. Let (ί) be the semisimple class of L*cG*
such that φeί,(ί), and ((£)) the conjugacy class of G* containing it. Then
((*))=(*). Hence there exists aw^W such that TwL=L and Tw(ί)=(f)-1. Since
φ is the unique cuspidal character contained in L(t) (Lusztig [16]), we have

τ»φ = φ .

This implies that the set W(φ, r) defined in 4.3 is non-empty. Hence, by the
induction assumption, Theorem 4.5.9, and the property (b) in Theorem 6.4.2,
we have

= Crv(φ) = Cτ,(φunip) = £r((%μ)Unip)

/\
for vEzW(φy τ)_τ and μ^W(φ). It only remains to prove (6.4.4) when % is
cuspidal, because then Assumption 4.5.1 (ii) follows from Theorem 6.2.4 and
Theorem 6.3.2. We can do this by an argument similar to the one used in the
proof of Theorem 6.2.4. Here we shall employ another method. By [16;
p. 159],

(6.4.5)

and

(6.4.6)

where T' is the maximal torus of G corresponding to T, Θ3 is a character of T'σ*
such that the pair (UΓ', 0,) corresponds to (j), and ε(6r[ί], I7) (resp. £(<?, Γ')) are
signs which are equal to 1 if I7 (resp. T'} is σ-stable. By (6.4.6) and Theorem
6.4.2 (d),

(6.4.7) Σ Wl)9
fls^

On the other hand, by Theorem 3.2.6 (i), we see that

if 7" corresponds to T. Hence, by (6.4.5) and (6.4.7), we have
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(6.4.8) Σ p(l) cτ(P) = Σ Wl) cτ( η) .
PeβMco "eβω

Since we already know that, for η Φ%, eτθ7)=Cτθ7Unip)> we conclude

from (6.4.8). This completes the proof of Theorem 6.4.3.
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