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1. Introduction with problem setting

Homogeneous programming problems (=HP) were first studied by Eisen-
berg [1]. His duality theorem for HP has been generalized by Schechter [8],
Fujimoto [3], Gwinner [4,5] and the author [7]. The result in [5] seems to be
most general among these results.

In the present paper, we introduce linear programming problems related
to HP by means of "ray" and the axiom of choice. By our method, we obtain a
new sufficient condition for duality in HP.

More precisely, let X and Y be convex cones with vertices at the origins in
real linear spaces Ex and Eγ respectively. For simplicity, we assume that X,
Y are pointed and hence X, Y contain the origins of EXy Eγ respectively. Let

/, g and h be real valued functions on X, Y and XxY respectively. Assume
that / is sublinear, that is, / is positively homogeneous and convex on Y> g is
superlinear, that is, — g is sublinear, h(x, •) is sublinear on Y and h( ,y) is
superlinear on X for each X G Z and V G F .

We call the quintuple {X, Y, h, /, g} the primal homogeneous programming
(=PHP). The value of PHP is defined by

(PHP) M=mί{f(x);x^V} ,

where V is the set of feasible solutions of PHP, i.e.,

V= ix<=X;h(x,y)>g(y) for all

We call the quintuple {F, X, —h, —g, —f} the dual homogeneous program-
ming (=DHP). The value of DHP is defined by

(DHP) M* = sup ig(y); y<Ξ W} ,

where W is the set of all feasible solutions of DHP and given by

W= iyξΞY;h(x,y)<f(x) for all X<ΞΞX} .

In this paper, we use the convention that the infimum and supremum on the
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empty set are equal to °° and — oo respectively. Obviously, M * < M . A
result which assures the equality M~M* is called a duality theorem for HP.

To state G winner's result in [5], we introduce some notation. For any
nonempty set S, denote by i?5 the set of all real functions on S. We assume
that Rs is assigned the canonical product topology unless otherwise stated.
Let C be the key set in the duality theorem due to Gwinner defined by

0= {JxGX(u<=Rγ; u>f{x)-h(x, •) on Y} .

Gwinner gave the following duality theorem in [5; §8]:

Theorem 1.1. Assume that V and W are nonempty, or equivalently, M and
M* are finite. If the set C is closed, then M=M* holds and PHP has an opti-
mal solution.

Gwinner stated this theorem as an application of [5; Theorem 2.1] which
is a result of Farkas type. He noted that the closedness of C follows from any
one of conditions given in [1], [3], [4], [7] and [8].

In the next section, we shall introduce the set X of rays of a convex cone
X and define two linear programming problems related to PHP and DHP.

The author wishes to thank Professor M. Yamasaki for many valuable
suggestions.

2. Linear programming problems related to HP

We say that two elements xx and x2 are equivalent and denote it by x1~xx2

if there exists a positive number t such that x1=tx2. It is clear that this is an
equivalence relation. Denote by X the set of all equivalence classes, i.e.,
X=Xj^->x (the quotient space) and call it the set of rays of X. For X G Z , denote
by % the equivalence class containing x. Note that {0} is an element of X, i.e.,

0 = {0}. In this paper, we assume the axiom of choice. Namely, there exists a
mapping rx from Xto X such that rx(x)^%dX. We fix such a mapping.

Similarly we define an equivalence relation ~γ on F, and the set Ϋ of rays
of Y and a mapping rγ from Ϋ to Y.

Denote by L(X, R) the set of all real functions on X such that w(0)=0 and
by L0(X, R) the set of all u^L(X, R) such that U(X)^FO only for finitely many
X^X. It is clear that L0(Xy R) and L(X, R) are linear spaces which are in duality
with respect to the bilinear form:

<u,υ>x = 'Στeχu(X)Ό(X) for u(ΞL0(XyR) and veL(X,R).

Similarly, L(Ϋ, R) and L0(Ϋ> R) are linear spaces which are in duality with res-
pect to the bilinear form:

<u,v>Y = Z~yeYu($)v(y) for U£ΞL(Ϋ,R) and v(=L0(Y,R).
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Let us put

Ex = L0(X, R), Ex = L(X, R);EY = L(F, R), E? = L0{Ϋ9 R).

Let Px and Pγ be convex cones with vertices at the origin in Ex and Eγ

defined by

Px = {U<EΞEX; U(X)>0 for all XZΞX} ,

Pγ = iυEΞEγ; υ($)>0 for all y<=Ϋ} .

Related to the given functions/, g and h in PHP, we define elements
g^Eγ and a linear mapping A from Ex to 2?r by

for

Denote by w(Ex, Ex) the weak topology which is compatible with the duality.
Then Px and Pγ are w(Ex, Ex)- and w(Eγ, £"?)-closed respectively. Further-
more A is w(Ex, Ex)-zυ(Eγ\ Ef) continuous. Thus the quintuple {A, Px, PY9

/, g} is a linear programming problem in Kretschmer's sense in [6]. We call
this the linearized homogeneous programming (=LHP). The value of LHP is
given by

(LHP) ML = inf Ku,

where S is the set of all feasible solutions of LHP, i.e.,

S=

To obtain a dual problem for LHP along the theory due to [6], we calculate
the dual cones Px and Pγ of Px and Pγ respectively and the adjoint linear map-
ping A* of A. We have

Px = {u*<=:Ex\ u*(Z)>0 for all

Pγ = iv*<=E$;v*(y)>0 for all

for x^X and

The quintuple {,4*, PJ, - P J , — | , /} is the dual problem of LHP. We call
this the dual linearized homogeneous programming problem (=DLHP). The
value of DLHP is given by

(DLHP) Mf = sup {<£, v*>γ v* e 5*} ,

where S * = { ϋ * ; / }
To apply Kretschmer's duality theorem in this case, we define a key set G
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in EγxR by Kretschmer [6; Theorem 3],

j Yy r(=R+} ,

where R+ is the set of nonnegative real numbers.

Kretschmer [6; Theorem 3] yields

Theorem 2.1. Assume that S and S* are nonempty. If the set G is
w(βγ xR,E^X R)-closed, then ML=^Mf and LHP has an optimal solution.

3. Relation between LHP and PHP

In order to study the relation between LHP (resp. DLHP) and PHP (resp.
DHP), we prepare

DEFINITION 3.1. For a^X> there exists a positive number s such that
a=srx(ά). We define ua^Px by setting ua(ά)=s if # ΦO, and ua(X)=0 if
or a=Q.

Lemma 3.1. Let v^Eγ and x<=X satisfy h(x, rγ(y))>v(y) for all
Then Aux-v(ΞPγ and <ux, />=/(#).

Proof. Let s>0 satisfy x=srx(%). By definition, we have

Aux(9)-v(9) = sh(rx(X)y

for all y^Ϋ so that Aux—v^Pγ. Similarly we see that

<ux,f>χ = sf(rx(X))=f(x).

Taking g as v in Lemma 3.1 we obtain

Corollary. Let V and S be the sets of feasible solutions of PHP and LHP.
Then {ux\ x<=V}czS and ML<M.

Lemma 3.2. Let V<BEY and u^Px satisfy Au—v^Pγ and set α = 2 ~ e χ
u{%) Tχ(X). Then α G l , <uj>x>f(a) and h{a} rγ(y))>v{$) for all

Proof. Since {XeX; u(%)Φ0} is a finite set, u($)>0 and r ^ ) G l for all
, we see that α e l . Furthermore since/is sublinear, we have

f(a) = /(Σϊeϊ u{X)

The superlinearity of h{ ,y) yields

h(a, r r(5)) = h(Σzeχ «(*) rx(X), rr(JO)

; e Σ «(*) h(rx(X), rγ{y)) =
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forallj^F.

Corollary. Let V and S be the same as in Corollary of Lemma 3.1. Then
and M<ML.

By Corollaries of Lemmas 3.1 and 3.2, we obtain

Theorem 3.1. PHP and LHP have the same value, i.e., M=ML. If
one of PHP and LHP has an optimal solution, then the other also has an optimal
solution.

Proof. By the above observation, we see that if x^V is an optimal solu-
tion of PHP, then ux is an optimal solution of LHP and that if MGS is an opti-
mal solution of LHP, then α=Σ*e=x u{X) rx(%) is an optimal solution of PHP.

Similarly we can prove

Theorem 3.2. DHP and DHLP have the same value, i.e., M*=Mf.
If one of DHP and DLHP has an optimal solution, then the other also has an opti-
mal solution.

We recall the definition of the key set G in Section 2 and express it in the
following form:

Lemma 3.3. For each x&X, put

Nx = {(v,q)(ΞEγxR; q>f(x) and

h{xyrγ(y))>v($) for all j>eF} .

ThenG=Ux<EXNx.

Proof. If (v,q)^G, then there exist u<=Px, z<=Pγ and r^R+ such that
v=Au—z and q=r-\-ζu,fyx. We set fl=2*<=* ^(^) rχ(%)- We see by Lemma
3.2 that (v, q)^Na. On the other hand, let (v, q)^Nx for some x G l Then
q>f(x) and h(x, rγ(y))>v(y) for all j^G?. We see by Lemma 3.1 that q>f{x)
=<uxj>x and Aux(y)>v(f) for all j>eF, so that Aux-v£ΞPγ and q-<uxff>x

>0. Taking z=Aux—v and r=q—ζux, fyx, we obtain that (v, q)=(Aux—z, r +
/

Theorems 2.1 and 3.2 yield the following duality theorem for HP:

Theorem 3.3. Assume that V and W are nonempty. If the set G is w(Eγ X
jR, E$xR)-closed, then M=M* holds and PHP has an optimal solution.

4. Comparison of the closedness of C and G

Related to the key set C in Gwinner's theorem, let us put
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C7= iu(ΞRγ;u(y)<h(x,y)-f(x) for all y<=Y}

Then C~—{u^.Rγ\ —U^C}. Hence it is clear that C is closed if and only if
C" is closed. Furthermore let Hγ be the set of all positively homogeneous
functions on Y and set

Hγ+R = {u+r; u(=Hγ, T<ΞR} .

Then HY-\~R is a closed subspace of Rγ.
We shall prove

Theorem 4.1. 0Γi(Hγ+R) is closed in Rγ if and only if G is w(EγxR,
EfxR)-closed.

Proof. Assume that C (Ί (Hγ+R) is closed in Rγ. Let {(vh qt)} be a net
in G which converges to (v,q)^EγχR with respect to w(EγxR, EfxR)-
topology. By Lemma 3.3, there exists x^X such that qi'>f(xi) and h(x{, *γ(jJ))
>v0) for all y^Ϋ. Define v'iy v'^Rγ as follows: If y is a nonzero element
in y, then using s>0 such that y=srγ($) we set

v'i(y) = sv0) and υ'(y) = sv(y).

If y=0, then we set v'(y)=v'(y)=0. We have

fa, rγ{f)) - A(̂ ., srγ(Jf)) = h(xi9y).

Put ui=v/

i—qi and u~v'—q. Then u^C~ Π (Hγ-\-R) and {«,-} converges to M.
Since C Π (Hγ+R) is closed, C" Π (Hγ+R) is also closed, so that I/CΞC" Π (i?F+
Λ). Thus there exists Λ ; 6 I such that u^C^, that is,

W(^)<A(Λ: ,^)-/(^) for all J / G F .

Since ^'(0)=Λ(^ 0)=0, we obtain q>f(x). We prove that v\y)<h(xyy) for all
j EΞ Y. Since τ/, A(x, •) are positively homogeneous and

u(ty) = ^(^)-^<A(x, ίy)-/(«)

for all j/G y and ί>0, we have tv'(y)—q<th(x,y)—f(x) for all yG y and ί>0.
Dividing both sides by t and letting £->oo, we obtain ϊ/(j>)<λ(<^ j>) for all J ^ y.
It follows that v(y)<h(x, rγ(y)) for all $eF. Namely, (v, q)<=NxdGby Lemma
3.3 and the closedness of G is proved.

Conversely assume that G is w(EγxR, Z?̂  x Λ)-closed and let {ut} be a
net in C" Π (Hγ~i-R) which converges to u^Rγ. Since Hy+R is closed,
+R. Thus to prove that C~ Π (Hγ+R) is closed, it suffices to show that
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Let {*,.} be a net in X such that % e C " . We set ?,-=—t*f (0), q=—u(0), ϋf (J0=
M (rr(39)+?, a n d *0Hw(*V(3O)+# f o r a 1 1 * a n d y^Ϋ- The relation
yields

and

?, ̂  A(*,, ty)-f{χ,)+q,

for all j e y and £>0. Since W +ί,- is a positively homogeneous function on
y, dividing the both sides of the latter inequality by t and letting t-+ oo, we obtain

t </*(*,-, y)

for all v E K In particular ϋf.(^)^A(Λ?f.,ry(^)) for all j^G?. It follows that
(vi9 qi)^Nx.ClG. Since (ϋ, , qt)-+(vy q) and G is closed, (v, q)^G and hence by
Lemma 3.3 there exists x^X such that (υ, q)^Nx. Then q>f(x) and t>(jp)<
A(x, rγ(y)) for all j^Gf. The latter inequality implies that u(y)+q<h(x,y) for
all > E 7 . It follows that ^(y)<%,3;)- i<%,3;)-/(x) for all J / E 7 . This
means that u^CjczC'. This completes the proof.

Corollary. // C is closed in Rγ

3 then G is w{Eγ x Ry Ef x R)-closed.

It should be noted that the closedness of G does not imply that of C in
general. This is shown by

EXAMPLE. Let Ex and Eγ be the Euclidean space R and X=Y=[0, oo).
Define / and h by

for all ,

h(xyy) = xy

for all x9 3 ̂  [0, 00). First we show that the set

C= ΌxGX{u^Rγ;u(y)>-xy for all ye[0, 00)}

is not closed. In fact, consider a sequence {un} in 2?r defined by un(y)=0 if

0<3><l/τz and un(y)= — 1 if lln<y<oo. Then un^C and {z/w} converges to

the function w defined by z/(0)=0 and ^(3;)= —1 if 0 < v < ° o . Clearly w$C,

and hence C is not closed. To prove the closedness of G, we note that J£=

Ϋ={Qy 1} and Ex and Eγ can be identified with R. Let us take r z ( l ) = l and

r r ( ϊ ) = l . Then / = 0 on X, iίiί(0)=0, Au(ϊ)=u(ϊ)h(rz(ί)9rγ(ϊ))=u(ϊ) for

every u^Ex. If £<ΞPr, then JSΓ(O)=O and «(l)>0. Thus we have

G= {(u(ϊ)-z(ϊ),r);uςΞPXyz(ΞPγ,reΞR+} = RxR
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and hence G is closed.
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