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1. Introduction

In Hoeffding's fundamental paper [4], he proved the weak convergence
of U-statistics under suitable conditions. Loynes [10] and later, Miller and
Sen [12] as well as Mandelbaum and Taqqu [11] respectively considered
different types of stochastic processes related with U-statistics and studied their
weak convergence. In this paper, we are concerned with a sequence of stochas-
tic processes which are similar to those developed by Mandelbaum and Taqqu
[11]. We intend to show a deeper analysis of the weak convergence of the
processes. This is achieved by using the martingale approach, a method used
extensively by Khmaladze [8], [9], (See Rao [13] for a survey on Martingale
approach to Statistical Inference). Under this martingale approach we intend to
find natural expressions for the limits of the martingale part and compensator
of the processes associated with a sequence of U-statistics. These limits can be
expressed by using multiple Wiener integrals.

Let F be a distribution function on R and Xιy •••, Xn> independent observa-
tions on F. Consider a parametric function Θ=Θ(F), for which there exists an
unbiased estimator. That is, Θ(F) may be expressed as θ(F)=EF(h(Xι, •••, Xm))
for some function A: Λm->Λ, called a "kernel", where h can be assumed to be
symmetric.

Let's define :

v .-., Xm)jXλ = * l f •-., Xk = xk) and

ζk:=Var(hk{Xlf-9Xk)) for Λ = l , . , m ,

under the assumption

(1) E{V{Xv-,Xw))<oo.

The V-statistic for estimation of θ based on the sample Xu " >Xn of size

is
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(n\cn

m

\m)

where Cn

m={(iv - Λ J e ί l , ••̂ iι
The study of the weak convergence of U-statistics have been extensively

studied in Hoeffding [4], Gregory [3], Eagleson [6], Serfling [15], Rubin and
Vitale [14], Dynkin and Mandelbaum [2], Mandelbaum and Taqqu [11] among
others. Results and definitions about U-statistics can be found in Serfling [15].

2. Weak convergence of the U-processes

DEFINITION. The stochastic process associated with a Ό-statistic of size n
(simply, U-process), is defined by:

\ ^- XJ, for

m

where [ ] is the greatest integer function, (ί,, " ,i,)eCS,"(1 and ί/B(ί)=0 for

This process is adapted to the right continuous σ-field 3?n(t)=σ[Xl9 •••,
tl]. From now on, we will assume that Θ(F) = O (if not, we can always take

h—θ instead of h).

Lemma 1. Un(t) is a semimartingale, its martingale part is given by:

m

Following HoefFding [4], Un(t) can also be expressed as:

(2) Un(t) =
n\ *=i

m)
m—k

\m)

where

(3) Un,k(t) = Σ ( *.(*„ - , xt) Π

Here,

l if x<yy

0 if x>y.

Similarly, we have
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\tn)

which can be obtained by using methods similar to the ones showed at the end
of the proof of Lemma 4.

Lemma 2.
(i) Un k(t) is a martingale.

(ii) V

(iii) P(max | nr UUtk{t) \ >6)-*0 as n-* oo for r< ——.

Proof, (i) is easily proved by noticing that

E{d{I[Xj&x]-F{x))βn{s)) = 0 if [ns]<j^[nt).

(ii) E(Ul,k{l)) = £([Σ ( **(*„ - , x>) Π
C n J y = i

b e c a u s e , if ( ί l f •••, ^ Φ ^ , •••,/*) t h e n

UU W u ^ i , ) ) (ίx^yji(yj))}) = 0 .

It will be enough to prove that

E(\ A4(*,, - , xk) hk(xk+ι, - , x2k) Π dilu^ji

is bounded by 2* £V As

j j

= /(,y-y+Λ} dF(Xj)-dF(xj) dF(xj+k),

then, the above expectation becomes:

*(*i, - , Xk)hk(xk+ι, •••, *2*) Π {/{*y-*y+4} dF{xJ)-dF{xj)dF{xj+k)}

By the Cauchy-Schwartz inequality:

IJ A*(^, •••, xk) hk(xv •••, Λ?f , xk+1, ••-, ^

from which we get the announced boundedness.

(iii) As Untk(t) is a martingale, by Doob ' s inequality we have:

P(mzx\nrUntk(t)\>£)<^(n)2kζk^0 as n ^



364 A. KOHATSU-HIGA

For any kernel h there exists c (l<c<[m) such that ξΊ=O, •••, £ ^ = 0 , ζe>0.
From now on, we will take c fixed.

Let's define:

κm

L e m m a 3.

(5) βup|^ϋ.(ί)-F.>t(ί)|£θ as «-* °o .

i.e. the process Un can be approximated by the c-th term process appearing in the
descomposition (2).

Proof. As ζ\=0, . . . , £ - ^ = 0 , then A1=- =AC_1=O. Using (2), the left
term of (5) can be written as:

m—k
\m

f n\k=*+ι

\m)

which tends to zero by Lemma 2 (iϋ).

L e m m a 4. The martingale part of the process Yn,c{t) & given by:

\m

and the compensator is:

c^ m—c
m)

fr 23 ι

m)

Proof. The compensator of YntC(t) is given by:

Σ

Σ
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(n\ cD π-i \ w — c / \m—cl
\m)

where we have used

Then, as C t / ' ^ C ^ - ' + C ^ - ' x {[»*]}, we have that the martingale part
of Y.J(t) is:

Lemma 5. As n-> oo}

f
m

- Σ

i.e., the compensator of nc/2 Un and Yn>c(t) have the same limit.

Proof. Noting that h1=~-=hc-1=Oy and using (2) with (4), the compen-
sator of Un(i) can be written as:

It is easy to see that the compensator of YΛ>C is nc/2 times the first term of
the above summation. Therefore it is enough to prove that the following
holds: as n->oo

(7) J CuplJ^S 2 (M-*).
\m)

X J A*(*i, - , ̂ ) ή^ilu^fi-Fixj)) I >6) — 0 .
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(8) P(sup|^— "fί Σ

\m)

X J **(*!, - , **) Π d(I{Xij*sj)-F(Xj))\>6)-+0.

(7) is easily proved as in Lemma 3. (8) is proved as in Lemma 2 using the
martingale structure of the process in (8) with respect to Sn(t)=σ[Xv •••, Xuti-H

A consequence of Lemmas 3 and 5 is

Lemma 6. nc/2 Xn(t), the martingale part of nc/2 Un(t), can be approximated
by Zn,€(t), the martingale part of Yn,c(t).

Now, we make an assumption on the kernel function h.

(H) There exists some φξΞL2(R,F) with E(φ(X))=0 and E(φ2(X))=l such
that:

ί - 1

Dynkin and Mandelbaum [2] as well as Mandelbaum and Taqqu [11],
work apparently under the same restirctions for A. From now on, we assume
(H). Let

\m)

Then, we have

1
Jlo,tl

Similarly,

As-2
( n \ i c - c ίj-i

\m)

lo,tcl Jlo,t

(10) YnιC(t)=fn(t)\ •••( dSH(tl)-dSn{tc).

In the following we will denote by X(D [0, 1]), the weak convergence in D[0, 1]
under the Skorokhod topology.
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Lemma 7. As n-> oo,

where W is the Wiener process.

To prove this lemma we will make extensive use of the Skorokhod repre-
sentation theorem ([16]) and the following lemma. We denote "in probability
inZ)[0,l]"byP(Z>[0,l]).

L e m m a 8. Let An, Ao be locally bounded predicatable processes in Z>[0, 1]
and Mny Mo be martingales in Z)[0, 1] such that:

(a) Mn -> Mo> An -> AQ in P(D [0, 1]).
(b)
(c)

Then Γ An dMn~* Γ AQ dM0 in P(D[0,1]).
Jo Jo

Proof. As ̂ 0 G C [ 0 , 1] and, by tightness of P An1 for w=0, 1, ••• we have:
(a) lim sup P(sup | An(t) \ >k)=0.

k->oo n t

(β) limfimP(sup \An(t)-An(s)\ >6)=0for V£>0.

Let φk{x) = (x+k+l) It-l!-1,-l!ι{x)+Iι.k,Λ(x)+(-x+k+l) Ib.k+Φ),

An,k = Ψk{An{t))An{t),

Nn_k(t)=\tAn,k(s)dMx(s),

Jo

N.(t)=\tA.(s)aM.(s).
JO

x\s P(do(Nntkf Nn)>0)<P( sup \An(t)\>k)y where dQ is the metric that
defines the Skorokhod topology in Z)[0, 1].

Then, because of (a), in order to prove Nn-+N0 in P(D[0, 1J) it is enough
to prove Nntk-+NQ in P(Z)[0, 1]). Therefore, we will assume from now on, that

| ^ n ( ί ) | < C forVn for some C > 0 .

Let τ w = {£,-=—/z=0, •••, m} a. partition of [0, 1], and define
m

A?(t) = ^B(0) / ω ( f )+ Σ A.{tt) h,.,Mit).

We obtain the proof in two steps, as follows:
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P(do(\' An dMn, Γ ΛdM0)>ε)^P{dΛ An dMn, Γ Aζ dMn)>\)
Jo Jo Jo Jo 3

+P(do(\' AϊdMn, Γ AS dM0)>^-)+P(d0([ AS dM0, Γ A,dM0)>\)
Jo Jo 3 Jo Jo 3

= :7 ι +/ 2 +/ 3 .

We first prove that 7i-»0.

h<P{ sup I Γ {An-Am

n)dMn I >i-)
o^*^i Jo 3

^E[sup\\'(An-A:)dMM-
S o^t^i Jo

By the Davis inequality,

<ψ E(snp<s I An(t)-An(s) \ <MM) Mny<\\)).

By the Cauchy-Schwartz inequality,

i ? [£( sup I ^B(ί)-^IB(ί)
l ' l < 8C

where δ=iff1. But, sup £Mi(l)<oo and JS( sup \An(t)-An(s)\2) -> 0 as

w-^oo and δ I 0, therefore, J ^ O . The proof of /3-^0 is analogous.
We next prove that /2-»0.

I2<P( sup Σ C |
O^/^l ί 0

The terms on the right-hand side tend to zero by assumptions (a) and (b).

Proof of Lemma 7.
By the Skorokhod theorem, it is possible to change the sample space and

construct two processes S$(i) and W*(f) on the new sample space, which have
the same law as Sn(f) and W(t)> such that Sn converges a.e. to W* in Z)[0,1].
As ^((^^( l ) ) 2 )^ ! , applying Lemma 8 consecutively to obtain

(
J[o,/C) JCo,ί2)

I

Noticing the uniform convergence of fn(t) to f(t)= — tm~c and the
(tn—c)ι

representation (9), we apply Lemma 8 again; to obtain (i). At the same time
we have already proved (ii).
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The next theorem is a consequence of Lemmas 3, 6 and 7.

Theorem 1. Under (H), we have:

(11) *n Un(t) ^ U ] ) . *! r _ j ' Γ*...j-
(m—c)\ Jo Jo Jo

(12) ^ ^
Jo

(13) ri'\Un{t)-Xn{t))

~ C ( j P [ 0 ' 1 ] ) » ^ Vs<"-<-^ X2dW{tλ)-dW{tc)ds.
ίm c J\ | Jo JO Jo

Proof of (13) is a direct consequence of (11), (12), Ito's formula and the
fact that the limit processes are continuous.

3. Remarks

3.1. The result of Theorem 1 is different from the one obtained by
Mandelbaum and Taqqu [11], Corollary 1; because we use the usual one
dimensional time Wiener process, whereas they use multidimensional Wiener
process. Also, the "projecting" functions hn are easier to handle in our
calculations.

3.2. Although the result of Lemma 8 is known to hold under weaker
conditions than (c) (see, for example Jakubowski, et al. [7]), this version is
suitable for our application and its proof is relatively easier. In fact, condition
(c) can be replaced by the boundness of the jumps of the processes Mni but the
proof looses its simplicity.

3.3. The proof of Theorem 1 can also be obtained by means of Hermite
polynomials, although it requires a rather complicated calculation. For example
in the case of Znc(t), we have from (9) that:

(14) Zn,c(t)=fΛ(t)Fc(Sn(t),.

where

m

He denotes the Hermite polynomial of degree c with leading coefficient 1 and

the symbol _ denotes limit from the left with respect of t.
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Actually, the first term on the right of (14) is equal to YntC(t) (see (10))

and the second term is equal to its compensator up to a term oP(ί). From

here, as the Hermite polynomials are continuous, we get the limit processes in

terms of He.

By Ito's formula it can be proved that these expressions coincide with (11),

(12) and (13). In the case of ZΛtC(t) we have:

ml

m-

= fit) Fc(W(t)y y/T)~ Γ/'W F{W{t), y/Ύ) ds .
Jo

3.4. Theorem 1 can be easily extended to the case

CO C

where φ, is an orthonormal set of L2(R> F).
This representation covers completely the case c=2 by taking φf as an

orthonormal base of L2(R, F).

3.5. In relation with U-processes, V-processes can be defined as (here we
can't assume θ=0)

Under the condition

f * ( J P ) = ^ m z x ^ m E ( h 2 ( X t l , y X

instead of (1), analogous lemmas and theorems can be proved. A similar
decomposition as in (2) can be obtained, i.e.,

where F[nt-\[x) = Σ {x^χ] .
y-i [nt]

In this case, nc/2(Vn(t)—θ), its martingale and compensator parts have the

same limits as nc/2 Uu(t), nc/2 Xn(t) and nc/2(Un(t)-Xn(ή) in Theorem 1.
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