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1. Introduction

Let (Hyp) and (K,q) be separable Hilbert spaces with inner products p and
q respectively. o-2(H,K) denotes the Hilbert space of totality of Hilbert-
Schmidt operators from H into K.

For a cylindrical Brownian motion B on H, we consider the following
stochastic differential equation on K:

I dX(t) = G(X{t))dB(t)+b(X(t))dt{ ' ; U
where G: K-*<r2(H,K) is Borel measurable and so is b: K-+K. Moreover G
and b satisfy the following Lipschitz condition

(A2) There exists a positive constant a such that

iq(b(x)-b(y))^aq(x-y)

\\\G(x)-G(y)\\£aq{x-y),

where ||-|| mean the Hilbert-Schmidt norm in <r2(H, K) and q\x)=q(x, x).
Therefore according to M. Yor [7] and Y. Miyahara [6], we have

Proposition. There exists a unique solution X of (1.1), which is a diffusion
with generator L\

(1.2) Lf(x) = q(f'(x), b(x))+(lj2)trace(G*(x)f"(x)G(x)).

Moreover X has continuous paths, i.e. with probability 1,

(1.3) q(X(t)-X(s))->0 ast-s-»0.

In the finite dimensional case, A. Friedman [1] investigated various asymp-
totic properties of X(t)> and especially he gave recurrence and transience criteria
in terms of G and b. The purpose of this paper is to extend Friedman's results
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on recurrence to the infinite dimensional case.
The following auxiliary theorem will be proved in §2.

Theorem 1. Suppose the condition (A2).

(A2) For any R>0, there exist zR^K, and two positive constants TR and
such that

(1.4) p2{G*{x)zR)TR+q(b{x\ zR)^yR whenever q(x)^R ,

where £?* is the conjugate operator of G and p2(h)=p(hJ h) for
Then for any

(1.5) Px{lim sup q(X(t)) = oo} = 1

holds.

According to A. Friedman [1], we define

A(x, y) = p\G*{x)y)lq\y), B(x) = ||G
C(xyy) = 2q(b(x),y),

S(x, y) = BW+c(x>y)-i a n d S(x) = S(x, x).
A(x, y)

Let us introduce the non-degeneracy condition (A3);

(A3) p(G*(x)y)>0 for any non-zero y GK and

So the condition (A3) implies that

(1.6) A(x9y)>0

In §3 we will prove the following Theorems 2 and 3, using the similar
method as A. Friedman [1],

Theorem 2. Besides (A2) and (A3), we assume (A4).

(A4) There exist a positive constant Ro and a continuous function £x on [0, oo),
such that

(1.7) S(x)^ 1 +€1(q(x)) whenever q(x) ^Ro,

and

(1.8) ("(l/Oexpf-r S^ls ds]dt<+oo .
Jtfo L JRo J

Then the solution X is transient, i.e.

(1.9) P,(lim q(X{t)) = oo) = 1 for any x(=K .
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Theorem 3. Besides (A2) and (A3), zoe assume (A5).

(A5) For any z^K, there exist a positive constant Rz and a continuous function
S2 on [0, oo) such that

(1.10) S(x, x—z)^\-\-S2{q(x—z)) whenever q(x—z)>R2,

and for some i?*>0,

(1.11) £ (1 /0 exp[-J%-2(*)A ds^dt = - .

Then X is recurrent, i.e. for any ball Ba(z)= {y: q(y—z)^a}, a>0

(1.12) Px(X(t^Ba{z) for some tx<t2<— f <*>) = 1 far any

See Funaki [2] for a result related to Theorem 3. Moreover, we have
from the separability of K

Corollary. Under the conditions (A2), (A3) and (A5),

PAdosure of {X(t); *e[0, oo)} = K} = 1 for any x(EK.

Finally, as a simple example, we treat an Ornstein-Uhlenbeck type process

dX{t) = GdB(t)-cX(t)dt,

where G^cr2(H,K)f and c is a real constant, and will discuss how the asymp-
totic behavior of X(t) depends on the constant c.

2. Proof of Theorem 1

First of all, we will recall the definition of the solution of (1.1), according
to M. Yor [7]. Let (£}, 3, P) be a complete probability space. A cylindrical
Brownian motion B on H means a Wiener process (0,p2) on H> namely B:
[0, oo)xHxQ,-^R1 satisfies the following conditions

(1) 5(0, . , - ) = 0 ,
(2) JB(-, A, 9)/p(h) is a one-dimensional Brownian motion for
(3) for any *e[0, oo) and X,

B(t, \h+fik, •) = \B(t, K -)+i*B(t, k, •) a.s..

Put 3?t:=the cr-field generated by {B(s, h, •); s^t, h^H}. A if-valued process
X is called a solution of (1.1) if

(1) X is ̂ -progressively measurable,

(2) JSrjV(jr($))&l<oo for any 7>0 ,

and
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(3) for any t

X(t)=x+ [tG(X(s))dB(s)+ ( &(*(*))* a.s.
Jo Jo

holds, where the second term is the stochastic integral and the third term is
the Bochner integral.

Proof of Theorem 1. Fix JR>0 arbitrarily. By (A2) we can take zR, yR and
TR of (1.4). So zR is not zero. Put ^=zRjq{zR) and define <£> by

(2.1) 4>(x) = A[f<R+l>-e**'W\,

where A and a are some positive constants, which will be determined later.
Then <£ is FrSchet differentiate at any order and its first and second deriva-
tives are given by

(2.2) £'(*) [h] = -

and

(2.3) 4>"(x) [hu h2] = -

namely (f>'(x)eK* can. be regarded as

(2.4) 4>\x)

and <j>"(x)eX(K->K*) (linear map from K into K*) can be regarded as

(2.5) 4>»(x) = -Atfe"*"^®^ .

Therefore G*(x)4>"{x)G{x)^X{H^H), and

(2.6) trace(G*(x)(j>f/{x)G(x))

= -2p(ei,G*(x)<f>"(x)G{x)ei)

where {e,; t = l , 2, •••} is an ONB in H. Hence we see that from (2.4) and (2.6)

(2.7)

Put

(2.8) a = 2IVj(**) and A =

Then recalling the definition of fj and (1.4), we have

(2.9) L<f>(x) ̂  — 1 whenever q(x) ̂ R .
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Since <j> is smooth, Ito's formula derives

(2.10) 4>(X(t)) = <j>(x)+ [tLcl>(X(s))ds+ ['<G*(X(s))cl>'(X(s))y dB(s)>
Jo Jo

where <G*(X(s))<l>f(X(s)), dB(s)>=±P(G*(X(s))<l>'(X(s)), e,)dB{s, et).
1 = 1

Let T=TR be the first exit time from the ball BR: = (y^K; q(y)^R}> i.e.

inf {t>0; X(t)$BR} y

oo if the above set is empty.

Then (2.10) yields

(2.11) Ex(cj>(X(tAr))) = ^ )

On the other hand, if q(y)^R, then we have

(2.12)

fi

the right hand side of which we denote by M. Therefore we can get from
(2.11) and (2.12),

(2.13)

Since t A T is increasing to T as t->oo9 the monotone convergence theorem implies

(2.14) Ex{r) = lim Ex(tAr)^M.

Hence we have

(2.15)

that is

(2.16) P,(sup q(X(t))^R) = 1 for

Since R is arbitrary, we complete the proof.

3. Proof of Theorems 2 and 3

To prove Theorem 2, define functions Q> /, F and/by

e(r): = l+el(r) r^R,, I(s): = (' O(t)lt dt,

/ (*) := F(q(x)) j(*

Then the condition (A4) means ".F(r)<oo" and we can easily calculate FreShet
derivatives/' and/ /7:
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(3.1) f'(x)[h] = FXq

and

(3.2) /"(*) [hu h2] = F"(q(x))q(x, hte{x,
+F'(q{x))q(huh2)lq(x)

Hence we get

(3.3) trace(G*(x)f"(x)G(x))

= £p(eJ;G*(x)f"(x)G(x)ej)

= ^q{G{x)ej,f'(x)G{x)ej)^

( oo if the above set is empty,

-[F'(q(x)W(x)]piq
i(G(x)ej,x)

and

(3.4) Lf(x) = {\l2)F"(q{x))A{x, x)+(lj2)F'(q(x)){B(x)-A(x, x)+C(x, x)}lq(x)

= (1I2)A(X, x)lF"(q(x))+d(q(x))F'(q(x))lq(x)}

+(l/2)A(x,x)F'(q(x)){S(x)-d(q(x))}lq(x)

= (1I2)A(X, x)F'(q(x)){S(x)-d{q(x))}lq(x)^O .

For any fixed i?o<a<i?</9, we put

(3.5)

where rR is the exit time from the ball BR.
Recalling Theorem 1, we have

(3.6) Py(r«P< °°) = 1 for an

Hence, using Ito's formula and (3.4), we get for a<q(y)</3

(3.7) E,{f(X(Ttlt))} -f{y) = Ey

Appealing to the definition of/, we have for a<q(y)</3

(3.8) F

Therefore we have

; X(rR+tny co)eBrt for some tl<t2<-" \

n(a): = ico^Q,; X(t, co)^Ba for some t} ,
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for a<q(y)</3.

Since Py{q{X{ret^))=a) is increasing to Py(£l{ctj) as /3 f °°, we see that

(3.9) P,(Cl(a))^F(q(y))IF(a) for a<q(y).

Using the strong Markov property of X, we get

(3.10) Px(n*(a)) ^ Es[PxiTj(n(a))] ^ Ex[F(q{X{rR)W{a)]

for q(x)<R. Tending R to oo, we conclude

(3.11) Px(n*(a)) = 0 io

since lim F(R)=0. Therefore we have

(3.12) P^lim inf q(X(t))^a) = 1 for any a.

This completes the proof of Theorem 2.

For the proof of Theorem 3, we will show for simplicity

(3.13) P^XOOeB* for some ^ < ^ 2 < - - f °o) = 1 .

Because we can apply the similar argument for BJz), replacing X(t) by X(t)—z.
Define (9, /, F and / b y

0(r): = 1+S2(r) r^RQy I(s): = ( O(t)ltdt

F(r):=-[ e-'«>ds, f(x): = F(q{x)).

Then the condition (A5) implies that

(3.14) lim F(r) = - o o .

Since/ is twice Frechet differentiable, in the same way as (3.4) we have

(3.15) Lf(x)^(ll2)A(x, x)F'(q(x)){S(x)-e(q(x))}lq(x)^O .

From this, as we derived (3.8) from (3.6) and (3.7), we get

(3.16) F(a)PMX(r«e)) = «)+JW»,(fl(*(Trf)) = /3)^F(q(y)) .

Tending /3 to oo,we get from (3.14)

(3.17) limP,(?(Z(r^)) = /3) = 0 .

Therefore (3.6) derives

(3.18) Py(n(cc)) = lim Py(q(X(rap)) = a) = 1 for any a>0 .
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For any fixed a<R1<R2<"' f °°, we define stopping times tm and <rm by

tx : = inf {t; X(*)eBJ , <rx: = inf {*; t>tx and X(t)^dBRi} ,

tm: = inf {*; *>*,_! and X(t)^Bm}, <rm: = inf {*; *>*„ and

Then we can easily see that

(3.19) Ps(h<oo) = Px(Cl(a)) = 1 for any x

and that from Theorem 1, for m=l , 2, •••,

(3.20) -Px(o-W< oo) = 1 for any

Again using the strong Markov property, we get by (3.19)

(3.21) Px(t2<oo) = Ex[Px((ri)(t1<oo)] = l for any

Assume that P^(^<oo)=l for any x^K. Then (3.20) and the strong
Markov property derive

(3.22) Px(tm+1<oo) = Ex[Px(,m)(tm<oo)] = 1 for any x(=K.

Therefore we see that for w = l , 2, •••,

Px{tm< oo) = 1 for any x^K.

Since f1<<r1<f2<o"2<"t') w e c a n show that

(3.23) lim tm = oo a.s.

by virtue of continuity (1.3) of X. Now we complete the proof.

EXAMPLE. Consider an Ornstein-Uhlenbeck type stochastic differential
equation

(3.24) dX(t) = GdB(t)-cX(t)dt.

We assume the condition (A3), i.e.

(3.25) p2(G*z)>0 if #4=0.

For any fixed normalized z^K, we put IV=(1+ \c\R)lf?(G*z). Then

namely (A2) holds.
Now, first assume that c is negative. Then we can easily see that

S(x) =
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^(\\G\\2-2cc?(x))l\\G\\*-l

Putting Ro=\\G\\l\/Jc]y we have

S(x) ̂  2 whenever q(x) ̂  Ro,

namely the constant function c \=l satisfies (1.7) and (1.8). So (A4) holds in
this case.

Next, consider the case when c is positive. Fix z^K arbitrarily. Then
we have

A{x,x-z) = p2(G*(x-z))l<f(x-z), C(x,x-z) = -2c<f(x-z)-2cq(z,x-z)

and

S(x,x-z) = [\\G*\\2-2c<f(x-z)-2cq(z,x-z)]tfx-z)lp2(G%x-z))-^ .

Hence

S(x, x-z)-\ ^ [ | |G | | 2 -2^ (^ -^ ) -2^ , x-z)](f{x-z)lp2{G*(x-z))
^ [\\G\\2-2c^(x-z)+2cq(z)q(x-z)]^(x-z)lp%G^(x--z)).

Consider the quadratic form Q(Z)=\\G\\2—2c%2+2cq(z)t;. Since c is positive,
there exists Rz>0 such that

Therefore S(x, x—z)^l whenever q(x—z)>Rz. Setting £2=0 and R*=RZ9 we
have (A5).
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