THE LEFSCHETZ NUMBER FOR EQUIVARIANT MAPS

Katsuhiro KOMIYA

(Received March 27, 1986)

1. Introduction and results

Let G be a compact Lie group. A G-ENR (Euclidean Neighborhood Retract) is a G-space which is a G-retract of some G-invariant open subspace in a Euclidean G-space. In this paper we will consider the Lefschetz number

$$
\lambda(f)=\sum_{i}(-1)^{i} \operatorname{trace} f_{*, i}: H_{i}(X ; Z) / \text { Tor } \rightarrow H_{i}(X ; Z) / \text { Tor }
$$

of a self G-map $f: X \rightarrow X$ of a compact G-ENR $X . f$ restricts to the self map $f^{G}: X^{G} \rightarrow X^{G}$ of the G-fixed point set X^{G} of X. Then we will show

Theorem 1. Let $f: X \rightarrow X$ be a self G-map of a compact G-ENR X.
(i) If X has only one isotropy type (H), then $\lambda(f) \equiv 0 \bmod \chi(G / H)$ where $\chi($) denotes the Euler characteristic.
(ii) If the G-action on X is semifree, then $\lambda(f) \equiv \lambda\left(f^{G}\right) \bmod \chi(G)$.
(iii) If G is finite and of prime power order p^{k}, then $\lambda(f) \equiv \lambda\left(f^{G}\right) \bmod p$.
(iv) If G is connected and abelian (i.e., torus), then $\lambda(f)=\lambda\left(f^{G}\right)$.

In section 4 we will prove this theorem by using the fixed point index defined by Dold [2]. (i) of the theorem is a special case of Dold [3; (8.18)]. If G is finite and the G-action is free, related results are in Nakaoka [9] and Gottlieb [5]. As a corollary of the theorem we obtain

Corollary 2. (i) If the G-action on X is semifree and $\lambda(f) \neq 0 \bmod \chi(G)$, then f has a fixed point in X^{G}.
(ii) If G is of prime power order p^{k} and $\lambda(f) \equiv 0 \bmod p$, then f has a fixed point in X^{G}.

Proof. In either case it follows $\lambda\left(f^{G}\right) \neq 0$ and by the Lefschetz fixed point theorem there exists a fixed point of $f^{G}: X^{G} \rightarrow X^{G}$.
q.e.d.

If G is a compact monogenic Lie group (i.e., finite cyclic group, torus and product of these) and $f \in G$ is its generator, then we may regard f as a self G map of a G-ENR X. In this case we can show, as in the proof of Theorem 1, that $\lambda(f)=\chi\left(X^{G}\right)$, although this has already appeared in the literature, tom

Dieck [1; (5.3.11)] and Huang [6; Corollary 1] for G a finite cyclic group, Kobayashi [7; p. 63] for X a Riemannian manifold. As applications of this we will show the following two results.

Proposition 3. If X is a compact G-ENR and G is monogenic, then

$$
\left|\chi\left(X^{G}\right)\right| \leq \sum_{i} \operatorname{rank} H_{i}(X ; Z)
$$

In connection with this we note that if G is finite and of prime power order p^{k}, Floyd [4] shows

$$
\left|\chi\left(X^{G}\right)\right| \leq \sum_{i} \operatorname{dim} H_{i}\left(X^{G} ; Z_{p}\right) \leq \sum_{i} \operatorname{dim} H_{i}\left(X ; Z_{p}\right)
$$

Proposition 4. Let G be of order 2 and f be its generator. Let M be a $2 n$ dimensional closed smooth G-manifold and orientable over Z. If f is orientation preserving, then

$$
\chi\left(M^{G}\right) \equiv \operatorname{trace} f_{*, n} \quad \bmod 2
$$

If f is orientation reversing, then

$$
\chi\left(M^{G}\right)=\operatorname{trace} f_{*, n}=0
$$

Here $f_{*, n}$ is the automorphism of $H_{n}\left(M_{;} Z\right)$ induced from f.
These two propositions will be proved in section 5.

2. A lemma

If M is a G-space and $x \in M$, then $G(x)$ denotes the orbit of x and G_{x} the isotropy subgroup at x. The conjugacy class $\left(G_{x}\right)$ of an isotropy subgroup G_{x} is called an isotropy type. For a subgroup H of G let $M_{(H)}=\left\{x \in M \mid\left(G_{x}\right)=(H)\right\}$. If N is a G-invariant subspace of M and $h: N \rightarrow M$ a G-map, then the fixed point set Fix (h) of h is a union of orbits. If N and M are smooth G-manifolds, then for any fixed orbit $G(x) \subset \operatorname{Fix}(h)$ we may take G-invariant tubular neighborhoods T and T^{\prime} of $G(x)$ such that $T \subset T^{\prime}$ and $h(T) \subset T^{\prime}$. We decompose T into $T=T_{t} \oplus T_{n}$, where $T_{t}=T \cap N_{(H)}, H=G_{x}$, is the component tangent to $N_{(H)}$, and T_{n} the component normal to $N_{(H)}$. Similarly we decompose T^{\prime} into $T^{\prime}=$ $T_{t}^{\prime} \oplus T_{n}^{\prime}$. Then we see $h\left(T_{t}\right) \subset T_{t}^{\prime}$. We may regard T and T^{\prime} as G-vector bundles over $G(x) \approx G / H$.

Lemma 5. Let M be a smooth G-manifold and N a G-invariant codimension 0 submanifold of M with finite isotropy types. If $f: N \rightarrow M$ is a G-map with $\operatorname{Fix}(f)$ compact, then there exists a G-map $h: N \rightarrow M$ such that
(i) h is G-homotopic to f relative to the outside of some G-invariant compact neighborhood of Fix (f),
(ii) $\operatorname{Fix}(h)$ consists of a finite number of orbits,
(iii) if $f\left(N_{(H)}\right) \cap M_{(H)}=\phi$ then $h\left(N_{(H)}\right) \cap M_{(H)}=\phi$ and hence $\operatorname{Fix}(h) \cap N_{(H)}=\phi$,
(iv) for any fixed orbit $G(x) \subset \operatorname{Fix}(h)$ if $T=T_{t} \oplus T_{n}$ and $T^{\prime}=T_{t}^{\prime} \oplus T_{n}^{\prime}$ are G-invariant tubular neighborhoods of $G(x)$ as above, then $h \mid T: T \rightarrow T^{\prime}$ is fibre preserving and decomposes into $h \mid T=\left(h \mid T_{t}\right) \oplus 0$ where $0: T_{n} \rightarrow T_{n}^{\prime}$ maps any vector to 0 .

Proof. (I) The case in which the G-action on N is free. $N \times M$ is a G manifold with diagonal G-action, and its action is also free. Thus the orbit spaces N / G and $N \times{ }_{G} M$ are smooth manifolds. Define a G-map $\tilde{f}: N \rightarrow N \times M$ by $\tilde{f}(x)=(x, f(x))$ for $x \in N$. Passing to the orbit spaces, \tilde{f} induces a map $\tilde{f} / G: N / G \rightarrow N \times{ }_{G} M$. By the transversality theorem we obtain a smooth map $h_{1}: N / G \rightarrow N \times{ }_{G} M$ such that
(i) h_{1} is transverse to Δ / G, where Δ is the diagonal set in $N \times M$, and
(ii) h_{1} is close enough and homotopic to \tilde{f} / G relative to $N-V / G$, where V is some G-invariant compact neighborhood of Fix (h).
By the dimension reason $h_{1}^{-1}(\Delta / G)$ is a finite set, in particular it is empty if $\operatorname{dim} G>0$. If $f(N) \cap M_{(1)}=\phi$ where $M_{(1)}$ is the points of M with the identity isotropy subgroup, then $\operatorname{Fix}(f)=\phi, \tilde{f} / G(N / G) \cap \Delta / G=\phi$ and hence we may take $h_{1}=\tilde{f} / G$. By the equivariant covering homotopy property we may lift the homotopy of (ii) and obtain a G-map $h_{2}: N \rightarrow N \times M G$-homotopic to \tilde{f} relative to the outside of some G-invariant compact neighborhood of $\operatorname{Fix}(f) . \quad h_{2}^{-1}(\Delta)$ consists of a finite number of orbits. Let $p_{1}: N \times M \rightarrow N$ and $p_{2}: N \times M \rightarrow M$ be the projections. $p_{1} h_{2}: N \rightarrow N$ is a diffeomorphism since it is close enough to $p_{1} \tilde{f}=$ identity. Let $h_{3}=h_{2}\left(p_{1} h_{2}\right)^{-1}: N \rightarrow N \times M$ and $h=p_{2} h_{3}: N \rightarrow M$. then $h_{3}(x)=(x, h(x))$ and $\operatorname{Fix}(h)=h_{3}^{-1}(\Delta) \approx h_{2}^{-1}(\Delta) . \quad h$ is a desired G-map.
(II) The general case. Let $\left\{\left(H_{1}\right),\left(H_{2}\right), \cdots,\left(H_{a}\right)\right\}$ be the set of isotropy types on N ordered in such a way that if H_{i} is conjugate to a subgroup of H_{j} then $j \leq i$. Consider the following assertion $\mathrm{A}(i)$ for $0 \leq i \leq a$:
$\mathrm{A}(i)$. There exist a G-map $h_{i}: N \rightarrow M$ and a G-invariant neighborhood U_{i} of $X_{i}=N_{\left(H_{1}\right)} \cup \cdots \cup N_{\left(H_{i}\right)}$ such that
(i) h_{i} is G-homotopic to f relative to the outside of some G-invariant compact neighborhood of $\operatorname{Fix}\left(f \mid X_{i}\right)$,
(ii) $\operatorname{Fix}\left(h_{i}\right) \cap\left(U_{i}-X_{i}\right)=\phi$,
(iii) $h_{i} \mid U_{i}: U_{i} \rightarrow M$ satisfies the conditions (ii), (iii) and (iv) of the lemma.

If $i=0$, then $X_{i}=\phi$ and hence we may take $U_{i}=\phi, h_{i}=f$. Thus $\mathrm{A}(0)$ is valid. $\mathrm{A}(a)$ is equivalent to the lemma since $X_{a}=N$. Thus, to prove the lemma it suffices to prove that $\mathrm{A}(i)$ implies $\mathrm{A}(i+1)$.

Now suppose $\mathrm{A}(i)$. As in the author [8; Lemma 3.1] there exists a G-invariant codimension 0 submanifold P (with boundary) of N such that $X_{i} \subset$ Int $P \subset P \subset$ Int U_{i}. Let $Q=N-\operatorname{Int} P$ and $K=H_{i+1} . \quad$ Consider an $N(K)$-map
$h_{i} \mid Q^{K}: Q^{K} \rightarrow M^{K}$, where $N(K)$ is the normalizer of K in $G . \quad h_{i} \mid Q^{K}$ may also be considered as an $N(K) / K$-map. Since K is the maximal isotropy subgroup on Q, then the action of $N(K) / K$ on Q^{K} is free. Thus we may apply the preceding argument (I) to the $N(K) / K$-map $h_{i} \mid Q^{K}$, and obtain a resulting $N(K) / K$-map $Q^{K} \rightarrow M^{K}$. By G-equivariancy it extends to a G-map $f_{1}: Q_{(K)}=G\left(Q^{K}\right) \rightarrow M$, which satisfies the conditions (i) $\sim(\mathrm{iv})$ of the lemma. To be precise for the condition (i) it says that f_{1} is G-homotopic to $h_{i} \mid Q_{(K)}$ relative to the outside of some G-invariant compact neighborhood (in $Q_{(K)}$) of $\operatorname{Fix}\left(h_{i} \mid Q_{(K)}\right)$. Moreover its G homotopy may be so taken as to be relative to a neighborhood of $\partial Q_{(K)}$, since h_{i} has no fixed point in a neighborhood of $\partial Q_{(K)}$. Let T be a G-invariant tubular neighborhood of $Q_{(K)}$ in Q and $\pi: T \rightarrow Q_{(K)}$ be the projection. Then we may extend f_{1} to a G-map $f_{2}: T \rightarrow M$ such that
(i) for some two neighborhoods $U \subset U^{\prime}\left(U^{\prime}\right.$ compact) of $\operatorname{Fix}\left(f_{1}\right)$ in $Q_{(K)}$, $f_{2}=f_{1} \circ \pi$ on $T \mid U$ and $f_{2}=h_{i}$ on $T \mid Q_{(K)}-U^{\prime}$,
(ii) $\operatorname{Fix}\left(f_{2}\right) \cap\left(T-Q_{(K)}\right)=\phi$.

From $h_{i} \mid Q$ and f_{2}, as in the author [8; Lemma 3.2], we obtain a G-map $f_{3}: Q \rightarrow M$ such that
(i) $f_{3}=h_{i}$ on a neighborhood A of $\partial Q, f_{3}=f_{2}$ on a neighborhood of $Q_{(K)}$, $f_{3}=h_{i}=f$ on the outside of a G-invariant compact neighborhood B of $\operatorname{Fix}\left(f_{1}\right)\left(=\operatorname{Fix}\left(f_{2}\right)\right)$,
(ii) f_{3} is G-homotopic to $h_{i} \mid Q$ relative to $A \cup(Q-B)$.

Define $h_{i+1}: N \rightarrow M$ as $h_{i+1}=h_{i}$ on P and $h_{i+1}=f_{3}$ on Q. Then h_{i+1} is a G-map required in $\mathrm{A}(i+1)$.
q.e.d.

3. Fixed point index

We first recall the definition of the fixed point index from Dold [2]. Let $F \subset N \subset R^{n} \subset R^{n} \cup\{\infty\}=S^{n}$, where F is compact and N is open. The fundamental class $a_{F} \in H_{n}(N, N-F ; Z)$ is the image of 1 under the composite homomorphism

$$
Z=H_{n}\left(S^{n} ; Z\right) \rightarrow H_{n}\left(S^{n}, S^{n}-F ; Z\right) \cong H_{n}(N, N-F ; Z)
$$

Let $h: N \rightarrow R^{n}$ be a map with Fix (h) compact. Define the map $1-h:(N$, $N-F) \rightarrow\left(R^{n}, R^{n}-0\right)$ by $(1-h)(x)=x-h(x)$ for $x \in N$. Then the fixed point index $\operatorname{ind}(h)$ of h is defined as $\operatorname{ind}(h)=(1-h)_{*^{\alpha_{F}}} \in H_{n}\left(R^{n}, R^{n}-0 ; Z\right)=Z$. Dold uses the symbol I_{h} for the index, but we use the symbol ind (h) to facilitate the printing.

Let R^{n} be a Euclidean G-space, N be a G-invariant open subspace of R^{n}, and $h: N \rightarrow R^{n}$ be a G-map satisfying the conditions (ii) and (iv) of Lemma 5. Let $\operatorname{Fix}(h)=G\left(x_{1}\right) \cup G\left(x_{2}\right) \cup \cdots \cup G\left(x_{a}\right)$ with $G_{x_{i}}=H_{i}(1 \leq i \leq a)$. If T_{i} is a small G-invariant open tubular neighborhood of $G\left(x_{i}\right)$ in N, then by the additivity of the index [$2 ;(1.5)]$ it follows that

$$
\operatorname{ind}(h)=\sum_{i=1}^{a} \operatorname{ind}\left(h \mid T_{i}\right)
$$

For a while let $x=x_{i}, H=H_{i}, T=T_{i}$. We may consider that a fibre in T over $g(x) \in G(x)$ is a subspace in R^{n} which is a parallel translation to $g(x)$ of (a small open disc in) a linear subspace through the origin. Let $\pi: T \rightarrow G(x) \subset R^{n}$ be the projection, and T^{\prime} be the other G-invariant open tubular neighborhood of $G(x)$ as in (iv) of Lemma 5. Define $1-h+\pi: T \rightarrow T^{\prime}$ as $(1-h+\pi)(v)=v-h(v)+\pi(v)$. This map is fibre preserving, and the following diagram is commutative for any $g \in G$.

$$
\begin{gathered}
H_{n}(T, T-G(x)) \xrightarrow{j_{*}} H_{n}(T, T-g(x))=Z \\
(1-h+\pi)^{*} \downarrow \\
H_{n}\left(T^{\prime}, T^{\prime}-G(x)\right) \xrightarrow[j_{*}]{\longrightarrow} H_{n}\left(T^{\prime}, T^{\prime}-g(x)\right)=Z,
\end{gathered}
$$

where $j:(T, T-G(x)) \rightarrow(T, T-g(x))$ is the inclusion. Let $a=a_{G(x)} \in H_{n}(T, T-$ $G(x))$ be the fundamental class. Let $\alpha_{g}=j_{*}(1-h+\pi)_{*^{a}} \in Z$. By the commutativity of the diagram, $\alpha_{g}=(1-h+\pi)_{*} j_{*^{a}}$ and $j_{*^{a}}=1$ in $H_{n}(T, T-g(x))=Z$. Since $1-h+\pi$ is G-equivariant, α_{g} are all equal for every $g \in G$. So, if α is its the same value, then we see that $(1-h+\pi)_{*^{a}}=\alpha \cdot a$ in $H_{n}\left(T^{\prime}, T^{\prime}-G(x)\right)$.

$$
(1-h)_{*}: H_{n}(T, T-G(x)) \rightarrow H_{n}\left(R^{n}, R^{n}-0\right)
$$

factors as

$$
H_{n}(T, T-G(x)) \xrightarrow{(1-h+\pi)_{*}} H_{n}\left(T^{\prime}, T^{\prime}-G(x)\right) \xrightarrow{(1-\pi)_{*}} H_{n}\left(R^{n}, R^{n}-0\right) .
$$

Thus we see that in $H_{n}\left(R^{n}, R^{n}-0\right)$

$$
(1-h)_{*^{a}}=(1-\pi)_{*}(1-h+\pi)_{*^{a}}=\alpha \cdot(1-\pi)_{*^{a}},
$$

and hence ind $(h \mid T)=\alpha \cdot \operatorname{ind}(\pi)$. Since ind $(\pi)=\chi(G / H)$ by [2; (4.1)], it follows that $\operatorname{ind}\left(h \mid T_{i}\right)$ is a multiple of $\chi\left(G / H_{i}\right)$ for $i=1,2, \cdots, a$.

Let $\operatorname{Fix}(h) \cap N^{G}=\left\{x_{1}, x_{2}, \cdots, x_{b}\right\} \quad(1 \leq b \leq a)$. For $1 \leq i \leq b$ the tubular neighborhood T_{i} is a disc with x_{i} as its center. As before T_{i} decomposes into the direct sum $T_{i}=T_{i, t} \oplus T_{i, n}$ where $T_{i, t}=T_{i}^{G}$ is the component tangent to N^{G} and $T_{i, n}$ is the component normal to N^{G}. Then, from the condition (iv) of Lemma 5 we see that h on T_{i} decomposes into $h(u, v)=(h(u), 0)$. Thus, by [2; (1.4), (1.6)], ind $\left(h \mid T_{i}\right)=\operatorname{ind}\left(h \mid T_{i}^{G}\right)$ and hence

$$
\sum_{i=1}^{b} \operatorname{ind}\left(h \mid T_{i}\right)=\operatorname{ind}\left(h^{G}\right) .
$$

From the above argument it follows the following.
(i) If $\operatorname{Fix}(h) \subset N^{G} \cup N_{(H)}$, then $\operatorname{ind}(h) \equiv \operatorname{ind}\left(h^{G}\right) \bmod \chi(G / H)$.
(ii) If G is finite and of prime power order p^{k}, then $\operatorname{ind}(h) \equiv \operatorname{ind}\left(h^{G}\right)$ $\bmod p$. For $\chi(G / H) \equiv 0 \bmod p$ for any proper subgroup H of G.
(iii) If G is connected and abelian, then $\operatorname{ind}(h)=\operatorname{ind}\left(h^{G}\right)$. For $\chi(G / H)=0$ for any proper subgroup H of G.

4. Proof of Theorem 1

Let $f: X \rightarrow X$ be as in the theorem. Let N be a G-invariant open subspace in a Euclidean G-space R^{n}, and $i: X \rightarrow N, r: N \rightarrow X$ be G-maps such that $r i=$ identity. We easily see that X^{H} is also an ENR for any $H<G$. We apply Lemma 5 to the G-map ifr: $N \rightarrow R^{n}$ and obtain a G-map $h: N \dot{\rightarrow} R^{n}$ satisfying the conditions (i) $\sim($ iv $) . \quad$ By $[2 ;(1.7),(4.1)]$ it follows that $\lambda\left(f^{H}\right)=\operatorname{ind}\left((i f r)^{H}\right)=\operatorname{ind}\left(h^{H}\right)$. From this and (ii), (iii) in the preceding section, (iii) and (iv) of the theorem immediately follow. If X has only one isotropy type (H), then $(i f r)\left(N_{(K)}\right) \subset R_{(H)}^{n}$ for any $K<G$. Thus, from (iii) of Lemma 5 it follows Fix $(h) \subset N_{(H)}$ and from (i) in the preceding section it follows $\lambda(f)=\operatorname{ind}(h) \equiv 0 \bmod \chi(G / H)$. This proves (i) of the theorem. If the G-action on X is semifree, from (iii) of the lemma it follows $\operatorname{Fix}(h) \subset N^{G} \cup N_{(1)}$. Thus (ii) of the theorem follows from (i) in the preceding section.

5. Proof of Proposition 3 and 4

Let X be a compact G-ENR and N, i, r be as in section 4. If G is a compact monogenic Lie group, we regard a generator f of G as a G-map $f: X \rightarrow X$. Then $\operatorname{Fix}(f)=X^{G}$. Let $h: N \rightarrow R^{n}$ be a G-map obtained by Lemma 5 from the G-map ifr: $N \rightarrow R^{n}$. In this case we may construct h satisfying the additional condition $\operatorname{Fix}(h) \subset N^{G}$. This is ensured by the fact $\operatorname{Fix}(i f r)=i\left(X^{G}\right) \subset N^{G}$. Then we see that $\lambda(f)=\operatorname{ind}(h)=\operatorname{ind}\left(h^{G}\right)=\lambda\left(f^{G}\right)$. Since f^{G} is the identity map of X^{G}, it follows $\lambda(f)=\chi\left(X^{G}\right)$. As noticed in Introduction this has already appeared in the literature. Using this result, Proposition 3 and 4 are proved as follows.
(1) Proof of Proposition 3. Let $f_{*, i}: H_{i}(X ; C) \rightarrow H_{i}(X ; C)$ be the automorphism induced from f, where C is the complex numbers. Let $z_{1}, z_{2}, \cdots, z_{r}$ $\in C$ be the eigenvalues of $f_{*, i}$ where $r=\operatorname{dim} H_{i}(X ; C)=\operatorname{rank} H_{i}(X ; Z)$. Since the $\chi(G)$ times composition of $f_{*, i}$ is the identity, then $z_{j}^{x(G)}=1$ and thus $\left|z_{j}\right|=1$ for $1 \leq j \leq r$. We see that

$$
\left|\operatorname{trace} f_{*, i}\right|=\left|\sum_{j=1}^{r} z_{j}\right| \leq \sum_{j=1}^{r}\left|z_{j}\right|=\operatorname{rank} H_{i}(X ; Z),
$$

and

$$
\left|\chi\left(X^{G}\right)\right|=|\lambda(f)| \leq \sum_{i} \operatorname{rank} H_{i}(X ; Z)
$$

(2) Proof of Proposition 4. Let G, f and M be as in the proposition. Note that a smooth G-manifold with a finite number of isotropy types is a G ENR. Let $z \in H_{2 n}(M ; Z)$ be the fundamental class defined from an orientation of M for which f is either orientation preserving or reversing. Consider the following commutative diagram.

$$
\xrightarrow{H_{i}(M ; Z) \xrightarrow{\cap z} H^{2 n-i}(M ; Z)} \begin{gathered}
f_{*, i} \downarrow_{\downarrow} \\
H_{i}(M ; Z) \xrightarrow{\cap f_{*, 2 n}(z)} f^{*, 2 n-1} \\
H^{2 n-1}(M ; Z),
\end{gathered}
$$

where \cap denotes the cap product and the horizontal homomorphisms are the isomorphisms of the Poincare duality. Note that the inverse of the isomorphism $f^{*, 2 n-i}$ is itself since f is an involution. It follows that if f is orientation preserving then trace $f_{*, i}=\operatorname{trace} f^{*, 2 n-i}$, and if f is orientation reversing then $\operatorname{trace} f_{*, i}=-\operatorname{trace} f^{*, 2 n-i}$. From the universal coefficient theorem it follows that $\operatorname{trace} f^{*, i}=\operatorname{trace} f_{*, i}$. It thus follows that if f is orientation preserving then $\lambda(f) \equiv \operatorname{trace} f_{*, n} \bmod 2$, and if f is orientation reversing then $\lambda(f)=\operatorname{trace} f_{*, n}=0$. Thus $\lambda(f)=\chi\left(M^{G}\right)$ implies the proposition. q.e.d.

In case M is odd dimensional in Proposition 4, we then easily see that $\lambda(f)=\chi\left(M^{G}\right)=0$ if f is orientation preserving, and $\lambda(f)=\chi\left(M^{G}\right) \equiv 0 \bmod 2$ if f is orientation reversing.

References

[1] T. tom Dieck: Transformation groups and representation theory, Lecture notes in Math. 766, Springer-Verlag, Berlin, Heidelberg and New York, 1979.
[2] A. Dold: Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8.
[3] A. Dold: The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), 215-244.
[4] E.E. Floyd: On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147.
[5] D.H. Gottlieb: The Lefschetz number and Borsuk-Ulam theorems, Pacific J. Math. 103 (1982), 29-37.
[6] W.-H. Huang: Equivariant method for periodic maps, Trans. Amer. Math. Soc. 189 (1974), 175-183.
[7] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, Berlin, Heidelberg and New York, 1972.
[8] K. Komiya: Equivariant immersions and embeddings of smooth G-manifolds, Osaka J. Math. 20 (1983), 553-572.
[9] M. Nakaoka: Coincidence Lefschetz numbers for a pair of fibre preserving maps, J. Math. Soc. Japan 32 (1980), 751-779.

