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Introduction

In this paper we investigate how generalized decomposition numbers
behave under Fong’s reductions.

Let G be a finite group and p be a fixed prime number. If z is a p-ele-
ment of G and B is a p-block of G, then for an ordinary irreducible character
X in B and for each p-regular element p of the centralizer Cy(z) of 7, we have

X(rp) = 4? d(X, =, ¢)p(p) -

Here ¢ ranges over the irreducible Brauer characters in the p-blocks of Cg(x)
associated with B. We have the following theorem related to the Fong’s first
reduction.

Theorem 1. Let H be a subgroup of G, and let B and B be p-blocks of G
and H, respectively. We assume that X—XC is a 1-1 correspondence between the
ordinary irreducible characters in B and those in B, where XC is the character of
G induced from X. Then the following holds.

(i) B and B have a common defect group D.

(i) Let b be a root of B in Cy(D)D. Then b°, PP is defined in the sense of
Brauer [2). We put b=PP. Then b is a root of B in Co(D)D and T(b)=
T(8)Cs(D) where T(b) is the inertial group of b in Ny(D) and T(b) is the inertial
group of b in Ny(D). In particular T(b)|Cs(D)D==T(8)/Cyx(D)D.

(iii) Let {(n;, b)), i=1, 2, -+, n} be a set of representatives for the conjugacy
classes of subsections associated with B. Then b{e™) is defined and F—>Fat™? is
a 1-1 correspondence between the irreducible Brauer characters in b, and those in
bSe».  Furthermore {(z;, bSe™?), i=1,2, -, n} is a set of representatives for
the conjugacy classes of subsections associated with B.

(iv) Let X be an ordinary irreducible character in B and $ be an irreducible
Brauer character in b;. Then
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d(i(;’ Ty $CG(Wi)) = d(jz’ iy éE) :

Let { be an irreducible character of a normal p’-subgroup N of G and
suppose that ¢ is extendible to a character £ of G. Let B be a p-block of the
factor group G of G by N and X, be an ordinary irreducible character in B. X,
can be viewed as a character of G. We denote by £B the p-blosk of G which
contains £X,. The ordinary irreducible characters in £B are £X’s, where X runs
over the ordinary irreducible characters in B and the irreducible Brauer characters
in £B are £¢’s, where ¢ runs over the irreducible Brauer characters in B. If B,
and B, are different p-blocks of G, then £B,+&B,. For an element & of G, we
put *=xN (€G) and for a subgroup @ of G, we put Q=QN/N. If Q is a p-
subgroup, then C3(Q)= C¢(Q) and Ng(Q)=N,(Q). We have the following

theorem related to the Fong’s second reduction.

Theorem 2. Let § be an irreducible character of a normal p'-subgroup N of
G and § be an extension of & to G such that (o (det £), p)=1. If Bis a p-block of
G and B=EB for some p-block B of the factor group G, then the following holds.

(i) If D is a defect group of B, then D is a defect group of B.

(i) Let b be a root of B in C5(D)D and let b e be a p-block of Co(D)D such
that b¥¢ePP—Eb. Then bis a root of B in Co(D)D and T(b)=T(b). In particular
T(6)/Ca(D)D=T(8)/Co(D)D. ]

(iti) Let = be a p-element of G and b,,b,, -+, b, be the p-blocks of Cgs(7)
associated with B. If b; is a p-block of Cy(r) such that bY°e™=Eb;, then by, by, -+,
b, are the p-blocks of C(x) associated with B. Furthermore b;=0.b; (i=1,2, -+, 5)
when b; is viewed as a p-block of Cy(x)|C y(7), where 0, is an ordinary irreducible
character of C(r) such that Oqc ) ts irreducible.

(iv) For each ordinary irreducible character X in B, for the above p-element
= and for each irreducible Brauer character  in b, there exists a sign &,= -1 such
that

d(ER, 7, 0.) = £.4(%, =, B).

We remark that (ii) and (iii) in the above theorems are stated by Puig
[8, Theorems 1 and 2] without proofs.

Let K be the algebraic closure of the p-adic number field @, and R be
the ring of local integers in K. Let P denote the maximal ideal of R and F denote
the residue class field R/P. For a p-block B of G, we denote the block idem-
potent of FG corresponding to B by Ej and for an ordinary irreducible character
X of G, we denote the centrally primitive idempotent of KG corresponding to
X by ey. The number of ordinary irreducible characters in B and the number
of irreducible Brauer characters in B are denoted by k(B) and /(B), respectively.
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1. Proof of Theorem 1

Lemma 1. Let H be a subgroup of G and x,, x,, --+, x,, be a set of representa-
tives for the right cosets of H in G. For a p-block B of H, we assume that

Ezx 'Esx =0 forall xeG—H .

Then i} x7'Egx; is a block idempotent of FG. If we put Eh_‘, x7'Ezx;=Ey, where
i=1 i=1

B is a p-block of G, then $—>¢° is a 1-1 correspondence between the irreducible
Brauer characters in B and those in B.

ReMARK. By Iizuka, Ohmori and Watanabe [6, Theorem 2], the following
(1) and (ii) are equivalent.

(i) ¢—¢° is a 1-1 correspondence between the irreducible Brauer
characters in B and those in B.

(i) X—X¢ is a 1-1 correspondence between the ordinary irreducible
characters in B and those in B.

Proof. We put E= éEE”i, where Ez*i=x7'Esx;. Then E is a central

idempotent of FG. By the assumption we can show £—%€¢ defines a 1-1 corres-
pondence between the isomorphism classes of (right) FH-modules £ with
LE5 =2 and the isomorphism classes of FG-modules MM with ME=I, where
£ is the induced FG-module. Furthermore if 8 is an irreducible or a principal
indecomposable FH-module, then £¢ is an irreducible or a principal indecom-
posable FG-module. Hence by the indecomposability of Cartan matrices, E is
a block idempotent. This completes the proof.

Proof of Theorem 1. (i) is well known. It is also well known that if E3’
is the block idempotent of RH which corresponds to B, then E5'=3lez, X

~ %X
ranges over the ordinary irreducible characters in B. Let xy, x,, +-+, x;, be a set
of representatives for the cosets of H in G, where x,=—=1. We can show that

h

ee= S ex™i, so we have Ez= é E3":. By the assumption, EsFGE;=E3FG
i=1 i=1

and hence EzE;=E5 and

1) Es E3=0.

By the proof of Watanabe [10, Theorem 2] and the fact dimg (E;FG)="
|G: H|*dimy (EzFH), we have

2) E,FG = ) ®xi'EsFHzx, .

i,j=1

From (2), we obtain E5E3*=0 for all x&e G—H.
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Let @ be a p-subgroup of H, b be a p-block of Cx(Q)Q with $#=B and
Bro be the Brauer morphism from (FG)? onto FCy(Q), where (FG)? =
{aeFG|ya=ay for all y=@} (see Alperin and Broué [1]). Then we have

Bro(E5)Bro(Ez) =0  (x€C(Q)R—-Cx(Q)Q),

Bro(E3)Esr = Ey .
So EfEs*=0 for all x&Cy(Q)Q—Cx(Q)Q. By Reynolds [9, Theorem 2] and
Lemma 1, §¢@9 js defined and $—>@Ce®? is a 1-1 correspondence between
the irreducible Brauer characters in & and those in §°a(®9,

Let 2y, 2, -+, 2, be a set of respresentatives for the cosets of T(I3) in Ng(D),
where 2,=1. Then

3) Bry(Es) = X B, ErEs'i =0

for j=2. We assume that Cy(D)D= LiJ Cx(D)Dx; and Ngy(D)= QN #(D)x;. So
N4(D)=U QIT(Z)z,.x,.. For (i, j)=(1, 1) we have

“ EsE5*i"i = EyBry(Es)Bry(Ez)"iEs"i" =

from (3) By the above argument 5¢6(®? is defined. We put 5=58%®?, Then
=§6=B°=B. Hence b is a root of B in Ce(D)D and E;= 2 Eg%. If

ye T(b) then

EE; = E E;*Es*s” .
i,j=1
From (4), there exist 7 and j, 1=<4 j=<1, such that x;yx7'eT(§), hence
yET()Cy(D). Conversely if we T(B), then

¢ ¢ _
= VB = S B = B
i=1 i=1

Therefore T(6)=T(6)Cx(D). This completes the proof of (ii).

Next we prove (iii) and (iv). 5fe"? is defined and $—>F°e" is a 1-1 corr-
espondence between the irreducible Brauer characters in §; and those in e,
Let 7z be a p-element of G. We assume that exactly m elements 7z, 75, ***, 7,
are conjugate to z in G. We put ¥ == (¢,€G, i=1,2, -+, m). Since X=

z R, X6 = g";(%(”ﬂa)a. Here XCobd(m;p)= 3 d(X, n;, $)P(p) for all p-

¢
regular elements p of Cy(z;) with ¢ ranging over the irreducible Brauer
characters in §; (see Brauer [2, §1]). So we can show
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m

X(mp) = 3

d(X, i, H)Fee (o)

-

X
X

I

d(

2
¢
% » i PYPFP)’(p)

i=1

for all p-regular elements p of Cy(z). Hence a subsection associated with B is
conjugate to some subsection (r;, b°¢(™)) (i=1,2, ---, n). In partisular 2(B)<

S11(3,). On the other hand, A(B)=k(B)= 313,). Therefore, if i=j, then
i=1 i=1

(rr:, 89D and (zr;, bS6CD) are not conjugate and d(XC, ;, ) =d(X, z;, P).
This completes the proof of Theorem 1.

2. Proof of Theorem 2

We denote the set of p-regular elements of G by G .

If X is a character of G and T is a matrix representation of G affording
X, then x—det T(x) is a linear character of G. The linear character is de-
noted by det X and o(det X) means the order. The following lemma is a
special case of Glauberman’s theorem [5, Theorem 3].

Lemma 2. Let n be a p-element of G and N be a p’-subgroup of G such that
N*=N. Suppose that { is an irreducible character of N and £ is an extension of
¢ to N<x)> with (o(det §), p)=1. Then there exist a unique sign E=-1 and a
unique trreducible character B of C y(z) with the property that

E(zp) = €B(p),  pECy(n).

Lemma 3. Let § be an irreducible character of a normal p'-subgroup N of G
and £ be an extension of ¥ to G such that (o(det £), p)=1. For a p-element = of
G, there exist a sign &,=-+1 and an irreducible character 6, of Cg(n) with the
property that 0,c () is irreducible and

E(mp) = &0.(p)  PE(Co())y -
In particular 0, 1is irreducible as a Brauer character.

Proof. We fix a p-element #. By Lemma 2, there exist a unique sign
&=+41 and a unique irreducible character B of Cy(z) with the property that
E(zp)=ER(p) for all peCy(x). First of all we show that B is etxendible to
Cs(z). Since §(zp)=L(xp°) for all c€Cy(x) and all p&Cy(x), B is Cgy(x)-in-
variant. Let L be a subgroup of C¢(r) such that L/Cy(z) is a p-group. Then
by Isaacs [7, (8.16)], B is extendible to L. Let M be a subgroup of Cg(x) such
that M/Cy(rm) is a p'-group. Then (NM)*=NM. By Lemma 2, there exist a
sign §y=-+1 and an irreducible character B, of Cy,(z) with the property that

E(mp) = EuBulp) , PECyu(z).
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Since Cy() C Cyy(r)=M, we have &,,=¢E and Byc»=F by the uhiqueness
of € and 8. Hence by [7, (11.31)], B is extendible to Cy(x).

Let 6, be an extension of 8. For a p’-subgroup M of Cy(z) with
M > Cy(r), there exists a unique linear character A, of M/Cy(z) which satisfies

oisrar = B -
Furthermore for p’-subgroups M, M’ of Cy(z) with M, M'DCy(x), if MDOM’
then Nyy=(N\y) 1y and if M'=M" for some x&Cy(z) then Ayr=n," . Here we
define a class function A of Cy(7)/Cy(7) as follows. For an element ¢ of C(r)/
Cu(7)

Me) = Muler) »
where ¢, is the p’-part of ¢ and M satisfies that M/Cy(z)=<c,>. Then A is a
generalized character of Cy(n)/Cy(z) by Brauer’s theorem on generalized
characters. Since the inner product (A, ») and (1) are equal to 1, A is a linear
character. If we put =0\, then {(zp)=E&f(p) for all p&(C¢(x)),. This
completes the proof.

Proof of Theorem 2. (i) is well known. Let @ be a p-subgroup of G and
b be a p-block of C(Q)@ associated with B. We show (£8)°=B. Let C be an
arbitrary conjugacy class of G and X and ¥ be ordinary irreducible characters
in B and b, respectively. Since b°=5,

ASHRO=H_ S 1) (mod P).

xe0 ﬂNUG(Q)Q

If x, is an element of C, then
(ER)( S S)/ER() = B S DEDX(),
M _ > - BEW)P(1) = Ex)P( > . 2)[E1)P(1).

*ECNNC FECNNC QO
Hence (£5)°=8B=B. Since a defect group of b is D, D is a defect group of
£b. Let b be a root of &b in C,(D)D. b is a root of B in Cy(D)D and is deter-
mined uniquely, because Ny(D) N NCy(D)D=Cy(D)D. 1f x&T(b), then
ED = (87)"Cr = (renomy = (8" = £
Hence b= 0%, so & T(b). If y&N,(D) and y< T(b), then
25 — (ZE)J’ — (by)NCG(D)D .

By the uniqueness of a root b of {b, b=54’ and hence y=T(b). So we have
T(®)=T().

Next we prove (iii) and (iv). By Lemma 3, there exist a sign €,=+4-1 and
an ordinary irreducible character 6, of Cg(z) such that @, is irreducible as a
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Bauer character and {(7p)=€,0,(p) for all p(Cy(x)),. b; can be viewed as a
p-block of Cg(z)/Cy(x). We put b;=0,b;. Since

Xap) = 3} DA, 7 HI)  p(Colm)y -
we have

©) (EX)(zp) = § % &d(X, 7, $)(0.9)(p)  PE(Celm))y -

Here ¢ ranges over the irreducible Brauer characters in b;. By the second main
theorem on p-blocks, b, by, «++, b, are the p-blocks of Cy(z) associated with B.
In particular we see that b; is a unique p-block of Cy(x) such that b¥ e®=Fb,.
From (5), d(EX, =, 0.9)=&d(X, =, ). This completes the proof of Theorem 2.

We have the following as a corollary of Theorem 1 and 2.

Corollary. Suppose that G is a p-solvable group. Let B be a p-block of G
with an abelian defect group D and b be a root of B in Cy(D). We assume that
T(b)/Co(D) is cyclic and any element of T(b)|Ce(D)— {1} does not fix any element
of D—A{1}. Let m\, 7y, -+, m; be a set of representatives for the T(b)-conjugacy
classes of D— {1} and A be a set of representatives for the T(b)-conjugacy classes of
non-trivial linear characters of D, where t=(p’—1)je, e=|T(b): Co(D)| and
p’=|D|. Then the following holds.

(i) B contains exactly e irreducible Brauer characters ¢, ¢y, >+, . and
exactly e--(p°—1)/e ordinary irreducible characters X,, X,, -+, X,, X (VEA).

(if) Fori, 1=i<e, and A, \EA,

X,- = qb,' on Gpl N
X = ¢+, on Gy .
(i) (1, B), (=;, b)) (j=1, 2, -, t) form a set of representatives for the
conjugacy classes of subsections associated with B. b°¢") contains a unique irreducible

Brauer character ¢ .
(iv) There exist t signs €;=-1 such that

d(Xi, 7j, ) =¢&;,
A%, w5 $7) = (/1 Co(D)]) 33 N(rr) -
fori, 1si<e, N\, N\EA andj, 1< j<t.
Proof. If w&D— {1}, then C¢(z) N T(0)=Cs(D). Hence 5™ contains
a unique irreducible Brauer character by [2, (7A)] and Brauer [3, (6C)]. Hence

(iii) follows from [3, (6C)]. By Fong’s reductions (see Feit [4, Chapter X,
Lemma 1.1]) and Theorems 1 and 2, we may assume that D is a normal sub-



400 A. WATANABE

group of G and T(b)=G. Then B is a unique p-block of G which covers .
Let A, be the set of all linear characters of D. By [9, Theorem 3], b contains a
unique irreducible Brauer character ¢ and exactly p’ ordinary irreducible
characters Xy, pEA,, where if z€D and p&(Cy(D)),s then Xu(zp)=u(z)d(p).
Since ¢ is G-invariant and G/C¢(D) is cyclic, B contains exactly e irreducible
Brauer characters ¢, ¢, -+, ¢,. Since X, is also G-invariant, B contains exactly
e ordinary irreducible characters X,, X,, -+, X, such that X,~|CG(D)=521. We may
assume X;=¢; on G,.. For an element z&€D— {1}, X;(zp)=(p) (P E(C¢e(D)),)-
Here we note Cg(D)=Cg4(z). By the assumption, if u=1, then the stabilizer of
X, in G is equal to Cg(D). Hence X is irreducible and

Xe= ¢+ +¢. onGy,
Xi(zp) = (1/1Cs(D) 1) 2 (@)(p)  PE(Ce(D))y -

This completes the proof.
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