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With time, the importance of Nagao's lemma has grown in modular re-
presentation theory of finite groups. In this note, we add another application.

Let G be a finite group, and let F be a field of characteristic p>0.
For a subgroup H of G and a (right) i^G-module V, we denote VH the

fixed-point-set of H in V> so that VH is an FNG(H)-module. The trace map
Tr%: VH->VG is defined by Trff(v)=Σg vg, where g runs over a complete set
of representatives of H\G.

Main Theorem. Let V be an indecomposable FG-module in a block B,
and let Pbe a p-subgroup of G. Then each composition factor of the FNG(P)-module

A<JP

where A runs over proper subgroups of P, belongs to a block b such that bG=B.

REMARK. If F(P)φO, then P is contained in a defect group of B.

Proof, of the theorem. Set N=NG(P). Let e be the centrally primitive
idempotent of FG corresponding to B. Let s: Z(FG)->Z(FN) be the Brauer
homomorphism. Then Nagao's lemma ([2], Chapter III, Theorem 7.5) states
that

as iW-modules, where each Wι is Qrprojective jPΛΓ-module for some ^-sub-
group Qi of N with P^Qi. Thus in order to prove the theorem, it will suffice
to show that

Wf ^

where A runs over proper subgroups of P. But this follows directly from the
following lemma, and so the theorem is proved.

Lemma. Let N be a finite group with a normal p-subgroup P. Let W be
a Q-projective FN-module, where Q^P. Then
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where A runs over proper subgroups of P.

Proof. In order to prove this lemma* we may assume that for some FQ-

module £/,

W=Ind%(U).

Then by Mackey decomposition, we have that

where n runs over a complete set of representatives of Q\NjP and Qn=n~1Qn.
Let n be an element of N and set R=P f] Qn, X= UR. Since P is normal in N
and Q is not contained in P, we have that R is a proper subgroup of P. Thus,
in order to prove the lemma, it will suffice to show that

(lτιάp

R(X))pςiTrp

R{lndp

R{X)R).

But this follows directly from an easy calculation (eq. [2] Chapter II Lemma
3.4). The lemma is proved.

REMARK. The main theorem can be proved also by the Brauer homomor-
phism of modules, which is defined by Broue and Puig [1]. Let B be a block
of G and e a corresponding central primitive idempotent of FG. We define
the Brauer homomorphism Brv

P with respect to P by the canonical homomor-
phism VP->V(P). Now le sP: Z(FG)->Z(FCG(P)) be the classical Brauer ho-
mcmorphism with respect to P. Then we can prove that Brpr(ve)=Brp*(v)sP(e)
for the element v of Vp. The main theorem is immediate from this fact.
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