ETALE ENDOMORPHISMS OF ALGEBRAIC VARIETIES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Masayoshi MIYANISHI

(Received August 21, 1984)

1. Introduction

Let k be an algebraically closed field of characteristic zero, which we fix as the ground field throughout this article. Let $f: X \rightarrow X$ be an etale endomorphism of an algebraic variety X. Then f is, in particular, a quasi-finite morphism. We shall be concerned with the following:

Problem. Is an étale endomorphism $f: X \rightarrow X$ finite?

If f is set-theoretically injective then f is bijective by Ax's theorem [1, 3]; hence f is an automorphism. If X is complete, f is clearly finite. In the case where X is the affine n-space \boldsymbol{A}_{k}^{n}, the Jacobian conjecture (cf. [2]) is equivalent to showing that $f: X \rightarrow X$ is finite. In the following we assume that X is a nonsingular, non-complete algebraic variety. Our results show that f is an automorphism (hence finite) for a fairly wide class of varieties X, while there are abundant examples of varieties X with non-finite étale endomorphisms.

2. Preliminary result

We recall the logarithmic ramification formula (cf. Iitaka [6]). Let $f: X \rightarrow Y$ be a dominant morphism of nonsingular algebraic varieties. Then there exist nonsingular complete varieties V and W and a dominant morphism $\phi: V \rightarrow W$ satisfying the following conditions:
(1) X and Y are open subsets of V and W, respectively; hence V and W are nonsingular completions of X and Y, respectively;
(2) the boundaries $D:=V-X$ and $\Delta:=W-Y$ are the divisors with simple normal crossings; namely, all irreducible components of D (or Δ) are nonsingular subvarieties of codimension 1 intersecting each other normally at every point of intersection of D (or Δ); we denote by the symbol D (or Δ) the reduced divisor whose support is D (or Δ);
(3) the restriction of ϕ onto X coincides with f; hence $\phi^{-1}(\Delta) \subseteq D$.

Denote by K_{V} (or K_{W}) the canonical divisor of V (or W). The logarithmic ramification formula then asserts that there exists an effective divisor R_{ϕ} such that

$$
D+K_{V} \sim \phi^{*}\left(\Delta+K_{W}\right)+R_{\phi},
$$

where the linear equivalence of divisors is denoted customarily by \sim. If the morphism $f: X \rightarrow Y$ is, moreover, etale, then Supp R_{ϕ} is contained in D.

The logarithmic ramification formula has the following two consequences.
Lemma 1. Let X be a nonsingular curve and let $f: X \rightarrow X$ be a dominant morphism. Let C be the nonsingular completion of X, let g be the genus of C and let n be the number of places of C with center outside X. Let $d:=\operatorname{deg} f$. Then the following assertions hold:
(1) If $2 g+n \geqq 3$ then f is an automorphism.
(2) If $g=0$ and $n=2$ then $X \cong \boldsymbol{A}_{*}^{1}:=$ the affine line \boldsymbol{A}_{k}^{1} with one point (0) deleted off; if we identify X with the multiplicative group scheme G_{m} then $f=T_{a} \cdot \mu_{d}$, where T_{a} is the translation of G_{m} by a and μ_{d} is the "multiplication by d" morphism; hence f is finite.
(3) If $g=0$ and $n=1$ then $X \cong A_{k}^{1}$ and f is finite; if f is étale then f is an automorphism.

Proof. The morphism $f: X \rightarrow X$ extends to an endomorphism $\phi: C \rightarrow C$. Let $D:=C-X$. Then, by the logarithmic ramification formula, we have

$$
D+K_{C} \sim \phi^{*}\left(D+K_{C}\right)+R_{\phi} \quad \text { with } \quad R_{\phi} \geqq 0 .
$$

Thence we obtain $(1-d)(n+2 g-2)=\operatorname{deg} R_{\phi} \geqq 0$. The assertion (1) then follows immediately. If $g=0$ and $n=2$ then $X \cong \boldsymbol{A}_{*}^{1}$, and the assertion (2) is readily verified. The first part of the assertion (3) is clear and easy to verify. If f is étale and $d \geqq 2$ then $R_{\phi}=(d-1) P_{\infty}$, where $P_{\infty}=C-X$. Namely, $\phi: C \rightarrow C$ ramifies only (and totally) over P_{∞}. This contradicts the Hurwitz-Riemann formula.
Q.E.D.

Theorem 2 (Iitaka [6]). Let X be a nonsingular algebraic variety with the logarithmic Kodaira dimension $\bar{\kappa}(X)$ equal to $\operatorname{dim} X$. Let $f: X \rightarrow X$ be a quasifinite endomorphism. Then f is an automorphism.

Proof. We employ the same notations as in the statement of the logarithmic ramification formula, where we set $Y=X$. Since the logarithmic plurigenus $\bar{P}_{m}(X)$ is independent of the choice of nonsingular completions $X \subset V$ and $X \subset W$, we have

$$
\bar{P}_{m}(X)=\operatorname{dim} H^{0}\left(V, m\left(D+K_{V}\right)\right)=\operatorname{dim} H^{0}\left(W, m\left(\Delta+K_{W}\right)\right)
$$

for $m>0$. Then the logarithmic ramification formula implies $m R_{\phi}$ is contained in the fixed part of the linear system $\left|\left(m D+K_{V}\right)\right|$, i.e.,

$$
\left|m\left(D+K_{V}\right)\right|=\left|m \phi^{*}\left(\Delta+K_{W}\right)\right|+m R_{\phi} .
$$

Let $\Phi_{1}: V \rightarrow \boldsymbol{P}^{N}$ (or $\Phi_{2}: W \rightarrow \boldsymbol{P}^{N}$, resp.) be the rational mapping defined by
$\left|m\left(D+K_{V}\right)\right|$ (or $\left|m\left(\Delta+K_{W}\right)\right|$, resp.), where $N=\bar{P}_{m}(X)-1$. If m is sufficiently large, we have then the following commutative diagram:

where $\Phi_{1}=\Phi_{2} \cdot \phi$, and $\Phi_{1}: V \rightarrow \Phi_{1}(V)$ and $\Phi_{2}: W \rightarrow \Phi_{2}(W)$ are, indeed, birational. Hence, so are ϕ and f . Since f is quasi-finite, f is an open immersion by the Zariski main theorem. Then f is an automorphism by virtue of Ax's Theorem.

Remark. We have the following result by virtue of Iitaka [6; Th. 2]:
Let X be a nonsingular algebraic variety with $\bar{\kappa}(X) \geqq 0$. Then any dominant morphism $f: X \rightarrow X$ is an étale morphism.

3. Case where X is an affine surface

Hereafter, we shall assume, unless otherwise specified, that X is a nonsingular affine surface. In view of Lemma 2, we only consider the case where $\bar{\kappa}(X) \leqq 1$. We shall start with the following:

Lemma 3. Suppose that $\bar{\kappa}(X)=-\infty$ and that one of the following conditions is satisfied:
(i) X is irrational but not elliptic ruled,
(ii) $\Gamma\left(X, O_{X}\right)^{*} \neq k^{*}$ and $\operatorname{rank}\left(\Gamma\left(X, O_{X}\right)^{*} / k^{*}\right) \geqq 2$ if X is rational. Then an étale endomorphism $f: X \rightarrow X$ is an automorphism.

Proof. Note that X is affine-ruled because $\bar{\kappa}(X)=-\infty$.
Case (i). Let V be a nonsingular completion of X and let $\alpha: V \rightarrow A$ be the Albanese morphism, where $A=\operatorname{Alb}(V / k)$. Let $C=\alpha(X)$ and let $\phi: X \rightarrow C$ be the restriction of α onto X. Then C is a nonsingular curve and ϕ defines an \boldsymbol{A}^{1-} fibration on X (cf. [8]). The étale endomorphism $f: X \rightarrow X$ then induces an étale endomorphism $h: C \rightarrow C$ such that $h \cdot \phi=\phi \cdot f$. By the hypothesis and Lemma 1, h is an automorphism. Let K be the function field of C over k and let X_{K} be the generic fiber of ϕ which is isomorphic to \boldsymbol{A}_{K}^{1}. By restricting f onto the generic fiber of ϕ, we obtain an étale K-endomorphism $f_{K}: \boldsymbol{A}_{K}^{1} \rightarrow \boldsymbol{A}_{K}^{1}$. Lemma 1 implies that $f_{K} \otimes \bar{K}: \boldsymbol{A}_{\bar{K}}^{1} \rightarrow \boldsymbol{A}_{\bar{K}}^{\frac{1}{K}}$ is an isomorphism for an algebraic closure \bar{K} of K. Hence, so is f_{K}. Therefore f is birational, and f becomes an automorphism by virtue of Zariski's main theorem and Ax's theorem.

Case (ii). Let $A=\Gamma\left(X, O_{X}\right)$. Since $\bar{\kappa}(X)=-\infty, X$ contains a cylinderlike open set $U_{0} \times \boldsymbol{A}_{k}^{1}=\operatorname{Spec} B[x]$, where $U_{0}=\operatorname{Spec} B$ is an affine curve. Hence $A \subset B[x]$ and $A^{*} \subseteq B^{*}$. Let R_{0} be the k-subalgebra of A generated by all elements of A^{*} and let R be the normalization of R_{0} in A. Then we have $R \subseteq B$.

Hence R is finitely generated. Let $\bar{C}=$ Spec R and let $\phi: X \rightarrow C \subseteq \bar{C}$ be the morphism induced by the canonical injection $R \subseteq A$, where $C=\phi(X)$. Since $R^{*} \supseteq A^{*} \supseteq k^{*}$, we know that $\bar{\kappa}(C) \geqq 0$. Let F be a general fiber of ϕ. By virtue of Kawamata's addition formula [7], we have $\bar{\kappa}(F)=-\infty$. Namely, ϕ defines an \boldsymbol{A}^{1}-fibration on X. Moreover, the étale endomorphism $f: X \rightarrow X$ induces an etale endomorphism $h: C \rightarrow C$, which is an automorphism possibly except the case where $C \cong \boldsymbol{A}_{*}^{1}$. But the last case is eliminated by the hypothesis. Now we can verify the assertion by repeating the same arguments as in the preceding case.
Q.E.D.

We next consider the case where X has an $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration $\phi: X \rightarrow C$; see [8] for the definition and the relevant results. Given such an $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration, we have to classify all possible types of singular fibers. This is given in the following:

Lemma 4. Let $\phi: X \rightarrow C$ be an \boldsymbol{A}_{*}^{1}-fibration on an affine nonsingular surface X over a nonsingular curve C, and let S be a singular fiber of ϕ. Then S is written (as a divisor) in the form $S=\Gamma+\Delta$, where
(1) $\Gamma=0, \Gamma=\alpha \Gamma_{1}$ with $\alpha \geqq 1$ and $\Gamma_{1} \cong \boldsymbol{A}_{*}^{1}$, or $\Gamma=\alpha_{1} \Gamma_{1}+\alpha_{2} \Gamma_{2}$, where $\alpha_{1} \geqq 1$, $\alpha_{2} \geqq 1, \Gamma_{1} \cong \Gamma_{2} \simeq \boldsymbol{A}_{k}^{1}$ and Γ_{1} and Γ_{2} meet each other transversally in a single point:
(2) $\Delta \geqq 0$, and $\operatorname{Supp} \Delta$ is a disjoint union of connected components isomorphic to \boldsymbol{A}_{k}^{1} provided $\Delta>0$.

Proof. There exist a nonsingular projective surface V and a surjective morphism $p: V \rightarrow B$ onto a complete nonsingular curve B such that:
(i) X and C are open subsets of V and B, respectively, and ϕ is the restriction of p onto X;
(ii) p defines a \boldsymbol{P}^{1}-fibration on V.

Since ϕ defines an \boldsymbol{A}_{*}^{1}-fibration on X, the boundary divisor $D:=V-X$ contains two cross-sections of p, and since X is affine, D is connected. Let Σ be a singular fiber of p such that $\Sigma \cap X=S$. Then, noting that each irreducible component of Σ is a nonsingular rational curve and that the dual graph of Σ is a tree, we can readily verify the assertion (cf. [8; Chap. I, §6]). Q.E.D.

Lemma 5. Let $\phi: X \rightarrow C$ be the same as in Lemma 4. Let $f: X \rightarrow X$ be an étale endomorphism such that $\phi \cdot f=\phi$ and that $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Let \tilde{X} be the normalization of the lower (the right) X in the function field of the upper (the left) X over k cnd let $\tilde{\phi}: \tilde{X} \rightarrow X$ be the normalization morphism. Then the following assertions hold:
(1) There exists an open immersion $\iota: X \hookrightarrow \tilde{X}$ such that $f=\tilde{\phi} \bullet \iota$;
(2) $\tilde{\phi}$ makes \tilde{X} an étale Galois covering of X with the cyclic group G of order n as the Galois group, where $n=\operatorname{deg} f$;
(3) With the notations of Lemma 4, fis finite over the part Γ of a singular fiber S of ϕ, i.e., $f^{*} \Gamma$ is invariani under the action of G, and f is totally decomposable
over the part Δ, i.e., the stabilizer subgroup of each connected component of Δ is trivial.

Proof. Let K be the function field of C over k and let X_{K} be the generic fiber of ϕ. Then $X_{K}=\operatorname{Spec} K\left[x, x^{-1}\right]$, and f induces an etale K-endomorphism $f_{K}: X_{K} \rightarrow X_{K}$. Clearly, f_{K} is given by a K-endomorphism θ_{K} of $K\left[x, x^{-1}\right]$; $x \mapsto a x^{ \pm n}$, where $a \in K^{*}$ and $n=\operatorname{deg} f$. Let G be the group of all n-th roots of the unity in k, which is a cyclic group of order n. It is then clear that θ_{K} is invariant under the G-action $(x, \zeta) \mapsto x \zeta$, where $\zeta \in G$; hence f_{K} is invariant under the induced G-action, and the lower X_{K} is thought of as the quotient variety X_{K} / G. Now, let P be a closed point of C and let F be the fiber $\phi^{*}(P)$ of ϕ over P. Suppose F is not a singular fiber. Let $O=O_{C, P}$ and let $X_{0}=X \underset{c}{\times}$
$\operatorname{Spec} O$. Then we can choose x above so that $X_{0}=\operatorname{Spec} O\left[x, x^{-1}\right]$ and the induced endomorphism $f_{0}: X_{0} \rightarrow X_{0}$ is given by an O-endomorphism $x \mapsto a x^{ \pm n}$ of $O\left[x, x^{-1}\right]$, where $a \in O^{*}$. Thus the G-action extends over X_{0} and the quotient variety X_{0} / G is the lower X_{0}. Suppose $F=\phi^{*}(P)$ is a singular fiber $S=\Gamma+\Delta$. Then, noting that there are no nontrivial morphisms from \boldsymbol{A}_{k}^{1} to \boldsymbol{A}_{*}^{1} and that $\operatorname{codim}_{X}(X-f(X)) \geqq 2$, we can readily show that $f_{*} \Gamma=\Gamma$ and $f_{*} \Delta=\Delta$ as cycles. In particular, $f: X \rightarrow X$ is surjective.

Take the normalization $\tilde{\phi}: \tilde{X} \rightarrow X$ as in the above-mentioned fashion. Then G acts on \tilde{X}, and the upper X is embedded into \tilde{X} as an open set. If $F=\phi^{*}(P)$ is a nonsingular fiber of ϕ then $\tilde{X}_{0}=X_{0}$ as shown above. Let F be a singular fiber $S=\Gamma+\Delta$. If $\Gamma \neq 0$ then Γ is invariant under the G-action. Indeed, we cah take a nonsingular completion $p: V \rightarrow B$ as in the proof of Lemma 4 as follows. Let \hat{X} be a G-equivariant resolution of singularities of \tilde{X} such that X is still an open set of \hat{X} and that $\hat{X}-X$ consists of nonsingular irreducible components which meet each other at worst normally. We then take a nonsingular completion $p: V \rightarrow B$ so that it extends the fibration $\hat{X} \rightarrow C$ induced by the $\boldsymbol{A}_{*}^{1}-$ fibration $\phi \cdot \tilde{\phi}: \tilde{X} \rightarrow C$ and that $V-\hat{X}$ is a divisor with simple normal crossings. This is possible by virtue of Sumihiro's equivariant completion theorem [11]. Let $\Sigma=p^{*}(P)$. Then $\Sigma \cap X=S$ and Σ is G-invariant. If Γ were not G invariant, then the translation $g^{*} \Gamma$ of Γ by some element g of G would be a divisor disjoint from Γ and Σ would therefore contain a loop. This is a contradiction. Thus Γ is G-invariant. Now, suppose $\Delta \neq 0$, and let Δ_{1} be an irreducible component of Δ. Since Δ_{1} and $f\left(\Delta_{1}\right)$ are isomorphic to \boldsymbol{A}_{k}^{1} and since the restriction $f_{\Delta_{1}}: \Delta_{1} \rightarrow f\left(\Delta_{1}\right)$ is an etale morphism, it is an isomorphism by Lemma 1. This implies that $g\left(\Delta_{1}\right) \neq \Delta_{1}$ for any non-unit element g of G. Note that $\tilde{\phi}: \tilde{X} \rightarrow X$ is etale at the component $g\left(\Delta_{1}\right)$. Since $\phi: X \rightarrow X$ is surjective, the above observations imply that $\tilde{\phi}: \tilde{X} \rightarrow X$ is etale everywhere and \tilde{X} is, therefore, nonsingular. We thus verified all the assertions.
Q.E.D.

We need the following:
Lemma 6. Let $\tilde{\phi}: \tilde{X} \rightarrow X$ be an étale Galois covering of an algebraic variety X with the cyclic gorup G of order n as the Galois group. Then there exists an invertible O_{X}-module L such that $L^{\otimes n} \cong O_{X}$ and $X \cong \operatorname{Spec}\left(\oplus_{i=0}^{n-1} L^{\otimes i}\right)$. Moreover, we have $\tilde{\phi}^{*} L \cong O_{\tilde{X}}$.

Proof. Since the assertion to be verified is of local nature on X, we may and shall assume that X is affine. So, let $X=\operatorname{Spec} A$ and $\tilde{X}=\operatorname{Spec} \tilde{A}$; we $\operatorname{regard} A$ as a subalgebra of A. As is well-known, the group G is written as a k-group scheme in the form:

$$
\begin{gathered}
G=\operatorname{Spec} k[t] \quad \text { with } \quad t^{n}=1, \quad \mu(t)=t \otimes t \\
\varepsilon(t)=1 \quad \text { and } \quad \eta(t)=t^{-1}
\end{gathered}
$$

where μ, ε and η are respectively the comultiplication, the augmentation and the coinverse. The action of G on \tilde{X} is translated in terms of the following coaction.

$$
\Delta: \tilde{A} \rightarrow \tilde{A}[t], \quad a \mapsto \Delta(a)=\sum_{i=0}^{n-1} \Delta_{i}(a) t^{i} ;
$$

see [4] for the relevant results. The property that Δ is a coaction is equivalent to the following properties:
(i) The mapping Δ_{i} defined by $a \mapsto \Delta_{i}(a)$ is a k-endomorphism of \tilde{A};
(ii) $\Delta_{i} \Delta_{j}=\delta_{i j} \Delta_{j}$, where $\delta_{i j}$ is the Kronecker's delta, and $\sum_{i=0}^{n-1} \Delta_{i}=1$ ($=$ the identity);
(iii) $\Delta_{i}(a) \cdot \Delta_{j}(b) \in \Delta_{i+j}(\tilde{A})$ for $a, b \in \tilde{A}$, where we take an integer l for $i+j$ with $0 \leqq l<n$ and $l \equiv i+j(\bmod n)$ if $i+j \geqq n$.

Let $A_{i}:=\Delta_{i}(A), 0 \leqq i<n$; hence $A_{0}=A$, which is the G-invariant subalgebra of \tilde{A}. In view of the above properties, we have: $A=\sum_{i=0}^{n-1} A_{i}, A_{i} \cdot A_{j} \subseteq A_{i+j}$ and A_{i} is an A-module. Now the property that $\tilde{\phi}$ is etale implies that A_{1} is a projective A-module of rank $1, A_{i} \cong A_{1}^{\otimes i}(1 \leqq i<n)$ and $A_{1}^{\otimes n} \cong A$. Conversely, if A_{1} is a projective A-module of rank 1 such that $A_{1}^{\otimes n} \cong A$, then $\tilde{A}:=\sum_{i=0}^{n-1} A_{1}^{\otimes i}$ is endowed with an A-algebra structure if an isomorphism $\theta: A_{1}^{\otimes n} \xrightarrow{\sim} A$ is assigned. The group G acts on \tilde{A} as follows: $\left(\sum_{i=0}^{n-1} a_{i}\right)^{\zeta}=\sum_{i=0}^{n-1} a_{i} \zeta^{i}$ if $a_{i} \in A_{1}^{\otimes i}$ and ζ is an n-th root of the unity. Clearly, we have $\tilde{\phi}^{*} L \cong O_{X}$ because $A_{1} \tilde{A} \cong \tilde{A}$. Q.E.D.

As a consequence of Lemmas 4,5 and 6 , we can now prove:
Theorem 7. Let $\phi: X \rightarrow C$ be an \boldsymbol{A}_{*}^{1}-fibration on an affine nonsingular surface X over a nonsingular curve C and let $f: X \rightarrow X$ be an étale endomorphism such
that $\phi \cdot f=\phi$ and $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Then f is an automorphism in each of the following cases:
(1) There exists a singular fiber $S=\Gamma+\Delta$ of ϕ such that $\Gamma=\alpha_{1} \Gamma_{1}+\alpha_{2} \Gamma_{2}$, where $\alpha_{1} \geqq 1, \alpha_{2} \geqq 1, \Gamma_{1} \cong \Gamma_{2} \cong \boldsymbol{A}_{k}^{1}$ and Γ_{1} and Γ_{2} meet each other transversally in one point; see Lemma 4 for the notations.
(2) $\Gamma\left(X, O_{X}\right)^{*}=\Gamma\left(C, O_{C}\right)$.*
(3) $\Gamma\left(C, O_{C}\right)=k$, i.e., C is complete, and there exists a singular fiber $S=$ $\Gamma+\Delta$ of ϕ such that $\Gamma=\alpha \Gamma_{1}$ with $\alpha \geqq 1$ and $\Gamma_{1} \cong \boldsymbol{A}_{*}^{1}$.

Proof. We employ the previous notations.
(1) As observed in the proof of Lemma 5, we have $\tilde{\phi}^{*} \Gamma=f^{*} \Gamma$. This implies that the fiber S contains n pairs $\Gamma^{(1)}, \cdots, \Gamma^{(n)}$ which have the same form as $\Gamma=\alpha_{1} \Gamma_{1}+\alpha_{2} \Gamma_{2}$. This implies $n=1$. Hence $f: X \rightarrow X$ is an automorphism.
(2) Let $X=\operatorname{Spec} A$ and $\tilde{X}=\operatorname{Spec} \tilde{A}$. Then there exists a projective A-module A_{1} of rank 1 associated with the etale Galois covering $\tilde{\phi}: \tilde{X} \rightarrow X$. Let L be the invertible O_{X}-module associated with A_{1}. Then there exists a Weil divisor $D=\sum_{i} n_{i} D_{i}\left(D_{i}\right.$: irreducible; $\left.n_{i} \neq 0\right)$ such that $L=O_{X}(D)$. Since the generic fiber X_{K} of ϕ has the trivial Picard group, we may assume that every irreducible component of D lies in a fiber of ϕ. Let D_{1} be an irreducible component of D and let $P:=\phi\left(D_{1}\right)$. If $D_{1} \cong \boldsymbol{A}_{*}^{1}$ we have $f^{*} D_{1}=D_{1}$ as divisors on the upper X (cf. Lemma 5). Suppose that the fiber $S:=\phi^{*}(P)$ is a singular fiber and $D_{1} \cong \boldsymbol{A}_{k}^{1}$. If the part Γ of S is of the form $\Gamma=\alpha_{1} \Gamma_{1}+\alpha_{2} \Gamma_{2}$ as in the case (1) above, f is an automorphism. So, we may assume that the part Γ of S (and any singular fiber as well) is not of this form. Suppose that D_{1} is a component of Δ. Then $f^{*} D_{1}$ is also a component of Δ. Hence f^{*} induces a permutation among the components of Δ. Therefore there exists a positive integer N such that $\left(f^{N}\right)^{*} D_{1}=D_{1}$ for any component D_{1} of Δ for all possible singular fibers S of ϕ. Then $\left(f^{N}\right)^{*} D=D$. On the other hand, note that $n D \sim 0$ and $f^{*} D \sim 0$ (cf. Lemma 6). Hence $D=\left(f^{N}\right)^{*} D \sim 0$. This implies that $A_{1}=A \xi$ with $\xi \in A$. Since $\tilde{A} \subseteq$ the upper A, ξ is considered as an element of the upper A. We have $\xi^{n}=a \in A_{0}=$ the lower A. If $n=1$ then f is birational. Hence f is an automorphism. So, suppose $n>1$. Since $X=\operatorname{Spec} A[\xi] /\left(\xi^{n}-a\right)$ is an integral scheme, we have $a \notin k^{*}$. Suppose now $\Gamma\left(X, O_{X}\right)^{*}=\Gamma\left(C, O_{C}\right)^{*}$. Then $a \in \Gamma\left(C, O_{c}\right)^{*}$. Since $\xi \in$ the upper A and $k(C)$ is algebraically closed in $k(X)$, we have $\xi \in k(C)$. Since $\xi^{n}=a \in \Gamma\left(C, O_{C}\right)$ and C is normal, $\xi \in \Gamma\left(C, O_{C}\right)$. Hence $\xi \in$ the lower A. This is apparently a contradiction.
(3) Suppose next that C is complete and $n:=\operatorname{deg} f>1$. With the notations of Lemma 5, the generic fiber X_{K} of $\phi: X \rightarrow C$ is isomorphic to Spec $K\left[x, x^{-1}\right]$, where we may assume $x \in A$. With the notations and the arguments in the case (2) above, we have $A_{1}=A \xi$ with $\xi \in$ the upper A. Write $\xi=s x^{m}$ with $s \in K$ and an integer m. Replacing ξ by ξ^{-1} if necessary, we may
assume $m>0$. Then s, as a rational function on X, has only poles. Hence s^{-1}, as a rational function on C, has only zeroes, i.e., $s^{-1} \in \Gamma\left(C, O_{C}\right)=k$. Write $s=\alpha^{m}$ with $\alpha \in k^{*}$. Then $\xi=(\alpha x)^{m}$. Namely, we may assume $s=1$ and $x \in A^{*}$. Since m is clearly prime to $n:=\operatorname{deg} f$, we have $A_{1}=A_{0} \xi=A_{0} x$, where $A_{0}=$ the lower A. So, we can identify x with ξ. Let $R=k\left[\xi, \xi^{-1}\right]$, let $T=\operatorname{Spec} R$ and let $q: X \rightarrow T$ be the morphism induced by the inclusion $R \hookrightarrow A$. Sinc $k(X)=K(\xi), \mathrm{X}$ is birational to a product $C \times T$. Indeed, $\psi:=\phi \times q: \mathrm{X} \rightarrow C \times T$ is a birational morphism such that all irreducible components of the part Δ in a singular fiber $S=\Gamma+\Delta$ are contracted to points by ψ, for there are no nontrivial morphisms from \boldsymbol{A}_{k}^{1} to $\boldsymbol{A}_{\boldsymbol{*}}^{1}$. On the other hand, the given etale endomorphism $f: X \rightarrow X$ factors as a composite of an open immersion $\eta: X \hookrightarrow X \underset{P}{\times}(T, g)$ and the base change $g_{X}: X \underset{T}{\times}(T, g) \rightarrow X($ by $q: X \rightarrow T)$ of a morphism $g: T \rightarrow T$ defined by $\xi \mapsto \alpha \xi^{n}, \alpha \in k^{*}$; replacing ξ by $\beta \xi$ with $\beta \in k$ and $\beta^{n-1}=\alpha$, we may assume $\alpha=1$. Let $F=\phi^{*}(P)$ be a fiber of $\phi: X \rightarrow C$. If F is nonsingular, i.e., $F \cong \boldsymbol{A}_{*}^{1}$, then $f^{*} F=\tilde{\phi}^{*} F$ by Lemma 5. This implies that $\left.q\right|_{F}: F \rightarrow T$ is an isomorphism. Hence an arbitrary fiber of q meets F transversally in one point, i.e., a section of ϕ over the point P. Suppose that F is a singular fiber $S=\Gamma+\Delta$, where $\Gamma=\Gamma \alpha_{1}$ with $\Gamma_{1} \cong \boldsymbol{A}_{*}^{1}$. Since $f^{*} \Gamma_{1}=\tilde{\phi}^{*} \Gamma_{1}$, we know that $\alpha=1$ and $\left.q\right|_{\Gamma_{1}}: \Gamma_{1} \rightarrow T$ is an isomorphism, i.e., an arbitrary fiber of q is a section over the point P. Suppose that such a singular fiber $S=\Gamma+\Delta$ as above exists. Then $\Delta \neq 0$. Let Δ_{1} be an irreducible component of Δ and let $Q:=q\left(\Delta_{1}\right)$. Then X and Δ_{1} are obtained from $C \times T$ by blowing up the point (P, Q) and its infinitely near points and by deleting several exceptional curves. Hence the point $\Gamma \cap q^{-1}(Q)$ should have been deleted off. This is a contradiction. Thus, if one assumes the existence of a singular fiber S as above, f must be an automorphism.

For a later use, we continue an analysis of the morphism $q: X \rightarrow T$. If ϕ has no singular fibers, the morphism $\psi: X \rightarrow C \times T$ is an isomorphism. Then X is not affine. So, this is not the case, and at least one singular fiber of ϕ exists. Let $S_{i}=\phi^{*}\left(P_{i}\right)(1 \leqq i \leqq r)$ be all singular fibers of ϕ. If $n:=\operatorname{deg} f>1$, any S_{i} is of the form $S_{i}=\Delta_{i}$, i.e., $\Gamma_{i}=0$, by virtue of the case (3) above. Let $C_{0}:=C-\left\{P_{1}, \cdots, P_{r}\right\}$. Then $X-\bigcup_{i=1}^{r} \operatorname{Supp} S_{i} \cong C_{0} \times T$. Any singular fiber L of q is of the form $L=M+N$, where $C_{0} \subseteq M \subset C$ if one identifies M with an open set of C by ϕ, and where N is a disjoint union of irreducible components isomorphic to \boldsymbol{A}_{k}^{1}.
Q.E.D.

Remark. With the same situations as in the proof of the case (3) of Theorem 8, every irreducible component N_{1} of N meets M transversally in one point provided $n:=\operatorname{deg} f>1$.

Proof. Let L_{1}, \cdots, L_{e} be all singular fibers of q and let $Q_{j}:=q\left(L_{j}\right)$. Suppose
$\xi=c_{j} \in k$ at the point Q_{j}. As seen above, $g: T \rightarrow T$ is defined by $g^{*}(\xi)=\xi^{n}$. Since $f: X \rightarrow X$ is surjective, it is easily ascertained that $f_{*}\left(L_{j}\right)=L_{\sigma(j)}$ (as cycles) for $1 \leqq j \leqq e$, where σ is a permutation on the set $\left\{Q_{1}, \cdots, Q_{e}\right\}$. Replacing f by a suitable power $f^{N}(N>0)$ if necessary, we may assume that $g\left(Q_{j}\right)=Q_{j}$ for $1 \leqq j \leqq e$. Then $c_{j}^{n}=c_{j}$, i.e., c_{j} is an $(n-1)$-st root of the unity. Let L be one of L_{j} 's, and write $L=M+\nu_{1} N_{1}+\cdots+\nu_{b} N_{b}$, where $N_{i} \cong \boldsymbol{A}_{k}^{1}(1 \leqq i \leqq b)$. Since $f_{*} L=L$ and $f_{*} M=M, f_{*}$ induces a permutation on the set $\left\{N_{1}, \cdots, N_{b}\right\}$. Replacing f again by a suitable power of f, we may assume $f_{*} N_{i}=N_{i}$ for $1 \leqq i \leqq b$.

Suppose that a singular fiber L of q has an irreducible component N_{1} such that $M \cap N_{1}=\phi$. We shall show that this assumption together with the hypothesis $n:=\operatorname{deg} f>1$ leads to a contradiction. Let $P:=\phi\left(N_{1}\right)$ and let $Q:=q\left(N_{1}\right)$, where $\xi=c \in k$. The component N_{1} is produced by blowing up the point (P, Q) of $C \times T$ and its infinitely near points and by throwing off several exceptional curves. Let x be a local parameter of C at the point P. Then $(\xi-c, x)$ is a system of local parameters of $C \times T$ at the point (P, Q). Since X is affine and $M \cap N_{1}=\phi$, we find, in the course of blowing-ups to obtain N_{1}, an exceptional curve $E \cong \boldsymbol{P}^{1}$ with an inhcmogeneous coordinate $t:=(\xi-c)^{\infty} / x^{\beta}(\alpha, \beta$: positive integers) and a point $t=\gamma \in k^{*}$ to be blown up further.

Figure 1
On the surface $X_{0}(=$ the lower X), we have the same situation. Namely, there exist an exceptional curve E_{0} with an inhomogeneous coordinate $t_{0}:=$ $\left(\xi_{0}-c\right)^{\omega} / x^{\beta}$ and a point $t_{0}=\gamma$ on E_{0}. Let $\theta: k\left(X_{0}\right) \rightarrow k(X)$ be the homomorphism induced by f, i.e., $\theta(x)=x$ and $\theta\left(\xi_{0}\right)=\xi^{n}$. Then we have

$$
\theta\left(t_{0}\right)=\left(\xi^{n}-c\right)^{\infty} / x^{\beta}=t\left(\xi^{n-1}+\xi^{n-2} c+\cdots+\xi c^{n-2}+c^{n-1}\right)^{\infty}
$$

The rational mapping f induces a rational mapping $\sigma: E_{0} \rightarrow E$ which is defined by the assignment

$$
\tau:=\sigma^{*}\left(t_{0}\right)=\theta\left(t_{0}\right)(\bmod x)=t\left(n c^{n-1}\right)^{\infty}=n^{\infty} t, \quad \text { where } c^{n}=c,
$$

and which is regular at the point $t=\gamma$. Hence the point $t=\gamma$ is sent to the point $t_{0}=n^{\alpha} \gamma$ under σ. Since f sends the upper N_{1} to the lower N_{1}, the point $t_{0}=n^{a} \gamma$ must coincide with the point $t_{0}=\gamma$, which implies $n=1$. This
is a contradiction.
Q.E.D.

Let $\phi: X \rightarrow C$ be anew as urjective morphism from a nonsingular affine surface X onto a nonsingular curve C. We say that ϕ defines a twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration on X if the generic fiber X_{K} of ϕ is a nontrivial K-form of \boldsymbol{A}_{*}^{1}, where $K=k(C)$. Then there exists a quadratic extension \tilde{K} of K scuh that $X_{K} \otimes_{K} \tilde{K} \cong \boldsymbol{A}_{*, \tilde{K}}^{1}$. Let $\rho: \tilde{C} \rightarrow C$ be the normalization of C in \tilde{K} and let $\nu: \tilde{X} \rightarrow X \underset{\sigma}{X} \tilde{C}$ be the normalization of $X \underset{C}{ } \tilde{C}$ in the function field $\tilde{K}(X)$. Let $\tilde{\phi}: \tilde{X} \rightarrow \tilde{C}$ be the composite of ν and the projection $X \underset{\sigma}{ } \tilde{C}$ onto \tilde{C}. Let F be a closed fiber of ϕ. If F is reduced and isomorphic to $\boldsymbol{A}_{*}^{1}, F$ is said to be nonsingular. Otherwise, F is called singular. We shall then show the following:

Lemma 8. With the above notations, the following assertions hold true:
(1) \tilde{X} is a nonsingular affine surface and $\tilde{\phi}: \tilde{X} \rightarrow \tilde{C}$ defines an \boldsymbol{A}_{*}^{1}-fibration on \tilde{X}.
(2) Let f be an étale endomorphism such that $\phi=\phi \cdot f$ and $\operatorname{codim}_{X}(X-f(X))$ $\geqq 2$. Then f extends uniquely to an étale endomorphism $\tilde{f}: \widetilde{X} \rightarrow \tilde{X}$ such that $\tilde{\phi}=\tilde{\phi} \cdot \tilde{f}$ and $\operatorname{codim}_{\tilde{X}}(\tilde{X}-\tilde{f}(\tilde{X})) \geqq 2$. Conversely, if $\tilde{f}: \tilde{X} \rightarrow \tilde{X}$ is an étale endomorphism such that $\tilde{\phi}=\tilde{\phi} \cdot \tilde{f}, \operatorname{codim}_{\tilde{X}}(\tilde{X}-\tilde{f}(\tilde{X})) \geqq 2$ and $\iota \cdot \tilde{f}=\tilde{f} \cdot \iota$, where $\iota: \tilde{X} \rightarrow \tilde{X}$ is the canonical involution associated with the double covering $\theta: \tilde{X} \rightarrow X$, then there exists an étale endomorphism $f: X \rightarrow X$ such that $\phi=\phi \cdot f, \operatorname{codim}_{X}(X-f(X)) \geqq 2$ and f extends uniquely to \tilde{f}.

Proof. As in the case of an \boldsymbol{A}_{*}^{1}-fibration, a twisted \boldsymbol{A}_{*}^{1}-fibration is induced by a \boldsymbol{P}^{1}-fibration on a suitable nonsingular completion of X. In view of this fact, we can show that a singular fiber S of a twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration is written in the same form $S=\Gamma+\Delta$ as in Lemma 4. Let $P:=\phi(S)$. If $\rho: \tilde{C} \rightarrow C$ is not ramified over P, then $\rho^{-1}(P)=\left\{\tilde{P}_{1}, \widetilde{P}_{2}\right\}$ and $\tilde{\phi}^{*}\left(\tilde{P}_{i}\right)(i=1,2)$ has the same form as S as cycles. If P is a branch point of ρ then $S=\Delta=\sum_{i=1}^{r} a_{i} \Delta_{i}$, where $\Delta_{i} \cong \boldsymbol{A}_{k}^{1}$ and $a_{i}>0$. Indeed, there exist a nonsingular projective surface V and a surjective morphism $p: V \rightarrow B$ onto a nonsingular complete curve B such that X and C are open subsets of V and B, respectively, that $\phi=\left.p\right|_{X}$ and that p defines a \boldsymbol{P}^{1}-fibration on V. Furthermore, we may assume that the boundary divisor $D:=V-X$ is a divisor with simple normal crossings. Since $\phi: X \rightarrow C$ is a twisted \boldsymbol{A}_{*}^{1}-fibration, there exists an irreducible component D_{1} of D such that $\tilde{C} \cong p^{-1}(C) \cap D_{1}$ and ϕ induces the double covering $\rho: \widetilde{C} \rightarrow C$. Since P is a branch point of ρ, the fiber $p^{-1}(P)$ touches D_{1} at the point $\tilde{P}:=D_{1} \cap p^{-1}(P)$. If $\Gamma \neq 0$, then there would be two connected chains of irreducible components Σ_{1} and Σ_{2} in the fiber $p^{-1}(P)$ which connect the point P with two (missing) end points at infinity of $\Gamma_{\text {red }}$. Thus $p^{-1}(P)$ would contain a loop, which is a contradiction.

We can readily show that \tilde{X} is a nonsingular affine surface and that, for a singular fiber $S=\sum_{i=1}^{r} a_{i} \Delta_{i}$ over a branch point P of ρ,

$$
\theta^{*}\left(\Delta_{i}\right)=\left\{\begin{array}{llll}
2 \widetilde{\Delta}_{i} & \text { if } & a_{i} \equiv 1 & (\bmod 2) \\
\Delta_{i}^{(1)}+\Delta_{i}^{(2)} & \text { if } & a_{i} \equiv 0 & (\bmod 2)
\end{array}\right.
$$

and $\widetilde{\Delta}:=\tilde{\phi}^{*}(\widetilde{P})=\sum_{a_{i} \equiv 0(2)} \frac{a_{i}}{2}\left(\Delta_{i}^{(1)}+\Delta_{i}^{(2)}\right)+\sum_{a_{i} \equiv 1(2)} a_{i} \tilde{\Delta}_{i}$, where $\widetilde{\Delta}_{i} \cong \boldsymbol{A}_{k}^{1}$ and $\Delta_{i}^{(j)} \cong \boldsymbol{A}_{k}^{1}$ $(j=1,2)$. Let f be an étale endomorphism of X such that $\phi=\phi \cdot f$ and $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Then $\Delta=f^{*} \Delta$ for Δ as above, and since codim_{X} $(X-f(X)) \geqq 2, f^{*} \Delta_{i}=\Delta_{\sigma(i)}$ with a permutation σ on $\{1,2, \cdots, r\}$ and $a_{i}=a_{\sigma(i)}$. Since $\phi=\phi \cdot f, f$ extends to an endomorphism \tilde{f} of \tilde{X} such that $\tilde{\phi}=\tilde{\phi} \cdot \tilde{f}$ and $\theta \cdot \tilde{f}=f \cdot \theta$. Then we have

$$
\begin{array}{llll}
\tilde{f}^{*}\left(\widetilde{\Delta}_{i}\right)=\widetilde{\Delta}_{\sigma(i)} & \text { if } & a_{i} \equiv 1 & (\bmod 2) \\
\tilde{f}^{*}\left(\Delta_{i}^{(1)}+\Delta_{i}^{(2)}\right)=\Delta_{\sigma(i)}^{(1)}+\Delta_{\sigma(i)}^{(2)} & \text { if } & a_{i} \equiv 0 & (\bmod 2)
\end{array}
$$

Let $\iota: \tilde{X} \rightarrow \tilde{X}$ be the involution of the double covering $\theta: \tilde{X} \rightarrow X$ which is induced by the involution ι of $\rho: \tilde{C} \rightarrow C$. Then $\iota \cdot \tilde{f}=\tilde{f} \cdot \iota$, and $\iota^{*} \Delta_{i}^{(1)}=\Delta_{i}^{(2)}$ if $a_{i} \equiv 0(\bmod 2)$. Hence, by exchanging $\Delta_{\sigma(i)}^{(1)}$ and $\Delta_{\sigma(i)}^{(2)}$ if necessary, we may assume that $\tilde{f}^{*}\left(\Delta_{i}^{(j)}\right)=$ $\Delta_{\sigma(i)}^{(j)}(j=1,2)$ if $a_{i} \equiv 0(\bmod 2)$. This implies that \tilde{f} is etale and that $\operatorname{codim}_{\tilde{X}}(\tilde{X}-\tilde{f}(\tilde{X})) \geqq 2$.

Conversely, suppose that an étale endomorphism $\tilde{f}: \widetilde{X} \rightarrow \tilde{X}$ is given as stated above. Since X is the quotient variety of \bar{X} with respect to the involution ι, \tilde{f} descends down to an endomorphism $f: X \rightarrow X$ such that $\phi=\phi \cdot f$ and $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. It is easy to verify that f is étale. Q.E.D.

Corollary 9. Let $\phi: X \rightarrow C$ be the same as in Lemma 8 and let $f: X \rightarrow X$ be an étale endomorphism such that $\phi=\phi \cdot f$ and $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Suppose that C is complete and that ϕ has a singular fiber $S=\Gamma+\Delta$ with $\Gamma \neq 0$. Then f is an automorphism.

Proof. Take $\tilde{\phi}: \tilde{X} \rightarrow \tilde{C}$ and $\tilde{f}: \tilde{X} \rightarrow \tilde{X}$ as in Lemma 8. Then \tilde{C} is complete. As shown in the above proof, the point $P:=\phi(S)$ is not a branch point of ρ. Thus $\tilde{\phi}$ has two singular fibers of the same form as S. By Theorem $7, \tilde{f}$ is an automorphism. Hence, so is f. Q.E.D.

Remark. Let X be a nonsingular affine surface. Suppose that either $\bar{\kappa}(X)=1$ or $\bar{\kappa}(X)=0$ and X is irrational. Then, as shown in [8; Chap. II, §5], X has a surjective morphism $\phi: X \rightarrow C$ onto a nonsingular curve which defines either an $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration or a twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration on X. Let $f: X \rightarrow X$ be an étale endomorphism such that $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Then, as in the proof of Lemma 2, we can show that $\phi \cdot f=\phi$. We are interested in determining in which
cases f becomes an automorphism. However, as Theorem 7 and Lemma 8 show, this is not an easy task. One obstacle is the existence of singular fibers $S=\Gamma+\Delta$ of ϕ with $\Gamma=0$.

4. Counterexamples

Example 1. Let C be a complete nonsingular curve of genus $g(C)$, and let $T=\operatorname{Spec} k\left[\xi, \xi^{-1}\right]$, which is isomorphic to \boldsymbol{A}_{*}^{1}. Let Q_{1} and Q_{2} be respectively the points of T defined by $\xi=1$ and $\xi=-1$. Choose two distinct points P_{1} and P_{2} of C. Let $C_{i}:=C \times\left\{Q_{i}\right\}$ and $T_{i}:=\left\{P_{i}\right\} \times T(i=1,2)$ which are the curves on the product $Y:=C \times T$. Let $\sigma: Z \rightarrow Y$ be the blowing-up with centers $\left(P_{1}, Q_{1}\right)$ and $\left(P_{2}, Q_{2}\right)$, and let $E_{i}=\sigma^{-1}\left(\left(P_{i}, Q_{i}\right)\right)(i=1,2)$. Let $X:=Z-\sigma^{\prime} T_{1}-\sigma^{\prime} T_{2}$, where $\sigma^{\prime} T_{i}(i=1,2)$ is the proper transform of T_{i} by σ.

Figure 2
As shown in the above figure, let $\phi: X \rightarrow C$ and $q: X \rightarrow T$ be the morphisms induced naturally by the projections from $C \times T$ onto C and T, respectively. Then ϕ defines an \boldsymbol{A}_{*}^{1}-fibration for which $\phi^{*}\left(P_{1}\right)=\Delta_{1}$ and $\phi^{*}\left(P_{2}\right)=\Delta_{2}$ exhaust the singular fibers, where $\Delta_{i}:=E_{i}-E_{i} \cap \sigma^{\prime} T_{i} \cong \boldsymbol{A}_{k}^{1}$.

On the other hand, let $g: T \rightarrow T$ be the endomorphism defined by $g^{*}(\xi)=\xi^{3}$, and let $\tilde{X}:=\underset{r}{X}(T, g)$, the base change of $q: X \rightarrow T$ by $g: T \rightarrow T$. Let $\tilde{q}: \tilde{X} \rightarrow T$ be the canonical projection. Then \widetilde{q} has 6 singular fibers $L_{1 j}=$ $\tilde{q}^{*}\left(Q_{1 j}\right)$ and $L_{2 j}=\tilde{q}^{*}\left(Q_{2 j}\right)(j=1,2,3)$, where $Q_{1 j}(j=1,2,3)$ is defined by $\xi=\omega^{j-1}$ and $Q_{2 j}(j=1,2,3)$ is defined by $\xi=-\omega^{j-1} ; \omega$ is a primitive cubic root of the unity. The fibers $L_{1 j}$ and $L_{2 j}$ have the same forms as the fibers $L_{1}:=q^{*}\left(Q_{1}\right)$ and $L_{2}:=q^{*}\left(Q_{2}\right)$, respectively. Write $L_{1 j}=M_{1 j}+\Delta_{1 j}$ and $L_{2 j}=M_{2 j}+\Delta_{2 j}$, where $\Delta_{1 j} \cong \Delta_{2 j} \cong \boldsymbol{A}_{k}^{1}$ and $M_{1 j}$ and $M_{2 j}$ are considered as open sets of C.

It is then easy to verify that X is affine, that $X_{1}:=\tilde{X}-\sum_{i=1}^{2}\left(\Delta_{i 2}+\Delta_{i 3}\right)$ is isomorphic to X, and that the composite of an open immersion $X_{1} \hookrightarrow \tilde{X}$ and the canonical projection $\tilde{X} \rightarrow X$ is an étale endomorphism of X with degree 3 which
is surjective but not finite. Moreover, $\bar{\kappa}(X)=1$ if $g(C)>0$ and $\bar{\kappa}(X)=0$ if $g(C)=0$. In fact, if $g(C)=0$ then $X \cong F_{0}-D_{1} \cup D_{2}$, where $F_{0} \cong \boldsymbol{P}_{k}^{1} \times \boldsymbol{P}_{k}^{1}$ and $D_{1} \sim D_{2} \sim M+l, M$ and l being fibers of two distinct \boldsymbol{P}^{1}-fibrations on F_{0}.

Example 2. In the example 1, assume that C is rational. Choose an inhomogeneous coordinate η on C so that $\eta=0$ at P_{1} and $\eta=\infty$ at P_{2}. Let $\iota: Y \rightarrow Y$ be the involution defined by $\iota^{*}(\xi)=\xi^{-1}$ and $\iota^{*}(\eta)=-\eta$. Since $\iota\left(\left(P_{i}, Q_{i}\right)\right)=\left(P_{i}, Q_{i}\right)(i=1,2), \iota$ lifts up to an involution $\iota: X \rightarrow X$ such that $\iota f=f \cdot \iota$. Let \hat{X} be the quotient variety of X with respect to ι. Then \hat{X} is a nonsingular affine surface endowed with the twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration $\hat{\phi}: \hat{X} \rightarrow \boldsymbol{P}_{k}^{1}$, which is induced by the \boldsymbol{A}_{*}^{1}-fibration $\phi: X \rightarrow C$. By Lemma 8, the etale endomorphism $f: X \rightarrow X$ induces an etale endomorphism $\hat{f}: \hat{X} \rightarrow \hat{X}$ of degree 3 such that $\theta \cdot f=\hat{f} \cdot \theta$, where $\theta: X \rightarrow \hat{X}$ is the quotient morphism; \hat{f} is surjective but not finite. The surface \hat{X} is, indeed, constructed in the following way. Let D be an irreducible curve on $F_{0} \cong \boldsymbol{P}_{k}^{1} \times \boldsymbol{P}_{k}^{1}$ such that $D \sim 2 M+l$. Let $p=\Phi_{|l|}: F_{0} \rightarrow \boldsymbol{P}_{k}^{1}$ be the projection along the fibers l. Then D is a nonsingular rational curve, and $\left.p\right|_{D}: D \rightarrow \boldsymbol{P}_{k}^{1}$ is a double covering. Then \hat{X} is isomorphic to $F_{0}-D$, and $\hat{\phi}: \hat{X} \rightarrow \boldsymbol{P}_{k}^{1}$ coincides with the restriction of p onto \hat{X}; see the following figure:

Figure 3
In the above figure, θ is the double covering ramified along $l_{1}+l_{2} ; \theta^{*}\left(l_{i}\right)=2 \tilde{l}_{i}$, $\theta^{*}\left(M_{i}\right)=\widetilde{M}_{i}(i=1,2)$ and $\theta^{*}(D)=D_{1}+D_{2}$, where $D_{1} \sim D_{2} \sim \widetilde{M}_{1}+\tilde{l}_{1}$. The logarithmic Kodaira dimension $\bar{\kappa}(\hat{X})$ is $-\infty, \operatorname{Pic}(\hat{X}) \cong \boldsymbol{Z}$ and $\Gamma\left(\hat{X}, O_{\hat{X}}\right)^{*}=k^{*}$.

Example 3. Let C be a nonsingular cubic curve on \boldsymbol{P}_{k}^{2} and let $X:=\boldsymbol{P}_{k}^{2}-C$. Then $\bar{\kappa}(X)=0$ and $\operatorname{Pic}(X) \cong \boldsymbol{Z} / 3 \boldsymbol{Z}$. Furthermore, X has no \boldsymbol{A}_{*}^{1}-fibrations nor twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibrations. We shall show that X has a surjective, non-finite, etale endomorphism $f: X \rightarrow X$ of degree 3 .

Let $\pi: W \rightarrow \boldsymbol{P}_{k}^{2}$ be a triple cyclic covering of \boldsymbol{P}_{k}^{2} which ramifies totally over C. This is constructed as follows: Let \boldsymbol{L} be the line bundle $O_{P}(1)$. Choose an open covering $\left\{U_{a s}\right\}$ of \boldsymbol{P}_{k}^{2} such that $\left.\boldsymbol{L}\right|_{U_{a}}=\operatorname{Spec}{O_{U_{a}}\left[\zeta_{a}\right] \text { with a fiber- }}$ coordinate ζ_{∞} and that $C \in\left|O_{\boldsymbol{P}}(3)\right|$ is defined by $a_{\infty}=0$, where $a_{\infty} \in \Gamma\left(U_{\infty}, O_{P}\right)$.

Then $\zeta_{\beta}=\zeta_{\alpha} f_{\alpha \beta}$ and $a_{\beta}=a_{\omega} \zeta_{\alpha \beta}^{3}$ with transition functions $\left\{f_{\alpha \beta}\right\}$. Define a subvariety W in \boldsymbol{L} locally over U_{∞} by the equation $\zeta_{\infty}^{3}=a_{\infty}$; local data then patch together. Let W_{0} be the zero section of \boldsymbol{L}, and complete \boldsymbol{L} to a \boldsymbol{P}^{1}-bundle V over \boldsymbol{P}_{k}^{2} by adding the infinity section W_{∞}. Then we have:

$$
\begin{gathered}
K_{V} \sim p^{*}\left(K_{P}\right)-W_{0}-W_{\infty}, \quad p^{*} H \sim W_{0}-W_{\infty} \\
W \sim 3 W_{0} \quad \text { and } \quad K_{W} \sim\left(K_{V}+W\right)_{W},
\end{gathered}
$$

where $p: V \rightarrow \boldsymbol{P}_{k}^{2}$ is the canonical projection and H is a hyperplane on \boldsymbol{P}_{k}^{2}. Since $W_{0} \cap W_{\infty}=\phi$, we have $K_{W} \sim-\left.W_{0}\right|_{W}$; we denote $\left.W_{0}\right|_{W}$ by the same letter W_{0}. Thus $K_{W} \sim-W_{0}$. Apparently, $\pi:=\left.p\right|_{W}: W \rightarrow \boldsymbol{P}_{k}^{2}$ is a cyclic covering of order 3 which ramifies totally over C. Hence $\pi^{*}(C)=3 W_{0}$. Since $X:=\boldsymbol{P}^{2}-C$ is affine, $\pi: W-W_{0} \rightarrow X$ is a finite etale covering and $W-W_{0}$ is affine. Hence W_{0} is ample on W. This implies that W is a del Pezzo surface of degree $\left(K_{W}^{2}\right)=$ $\left(W_{0}^{2}\right)=3$. Therefore W is a cubic hypersurface in \boldsymbol{P}_{k}^{3} and W_{0} is a hyperplane section.

As is well-known, W is obtained from \boldsymbol{P}_{k}^{2} by blowing up 6 points P_{1}, \cdots, P_{6} in general position. Let $\sigma: W \rightarrow \boldsymbol{P}_{k}^{2}$ be the blowing-up of these six points, and let $E_{i}=\sigma^{-1}\left(P_{i}\right)$. Then $\left(E_{i} \cdot W_{r}\right)=1$, i.e., E_{i} is a line of \boldsymbol{P}_{k}^{3}. Let $C^{\prime}:=\sigma\left(W_{0}\right)$. Then the points P_{1}, \cdots, P_{6} lie on C^{\prime}, and C^{\prime} is isomorphic to W_{0}, hence to C. Let $X^{\prime}:=\boldsymbol{P}_{k}^{2}-C^{\prime}$. Then X^{\prime} is isomorphic to $W-\left(W_{0}+E_{1}+\cdots+E_{6}\right)$ under σ. Let $f: X^{\prime} \rightarrow X$ be the composite

$$
f: X^{\prime} \xrightarrow{\sigma^{-1}} W-\left(W_{0}+E_{1}+\cdots+E_{6}\right) \xrightarrow{\pi} X .
$$

Then f is a non-finite etale morphism. Since $C \cong C^{\prime}$, it is well-known that C is isomorphic to C^{\prime} by a linear transformation of \boldsymbol{P}_{k}^{2}. Hence X^{\prime} is isomorphic to X.

So, it remains to show that f is surjective. Note that C has 9 flexes Q_{1}, \cdots, Q_{9}. Let $l_{j}(1 \leqq j \leqq 9)$ be the tangent line to C at Q_{j}, and let R_{j} be the unique point of W_{0} lying over Q_{j}. Then, for each $1 \leqq i \leqq 9, \pi^{*}\left(l_{j}\right)=E_{j 1}+$ $E_{j 2}+E_{j 3}$, where $E_{j i}(1 \leqq i \leqq 3)$ is an exceptional curve of the first kind such that $E_{j 1} \cap E_{j 2} \cap E_{j 3}=\left\{R_{j}\right\}$ and $\left(E_{j 1} \cdot E_{j 2}\right)=\left(E_{j 2} \cdot E_{j 3}\right)=\left(E_{j 3} \cdot E_{j 1}\right)=1$. Thus, W contains 27 exceptional curves. The exceptional curves E_{1}, \cdots, E_{6} are disjoint from each other. Hence at most one of E_{1}, \cdots, E_{6} is contained in $\left\{E_{j 1}, E_{j 2}, E_{j 3}\right\}$ for each $1 \leqq j \leqq 9$. This implies that f is surjective.

5. Finite étale endomorphisms

We shall prove the following:
Theorem 10. Let X be a nonsingular affine surface with an étale endomorphism $f: X \rightarrow X$. Suppose $n:=\operatorname{deg} f>1$ and $\operatorname{codim}_{X}(X-f(X)) \geqq 2$. Let \tilde{X} be
the normalization of the lower X in the function field of the upper X over the field k. Suppose \tilde{X} is nonsingular. When we regard the upper X as an open subset of \tilde{X}, then $\tilde{X}-X$ is a disjoint union of irreducible curves which are isomorphic to \boldsymbol{A}_{k}^{1}.

Proof. By virtue of Theorem 2, X has the logarithmic Kodaira dimension $\leqq 1$. We consider each of the following cases separately: $\bar{\kappa}(X)=-\infty, 0$ and 1 .
(I) Case $\bar{\kappa}(X)=1$. As in the proof of Theorem 2, we consider nonsingular completions, the upper $X \subset V$ and the lower $X \subset W$, such that $D:=V-X$ and $\Delta:=W-X$ are divisors with simple normal crossings and that $f: X \rightarrow X$ extends to a morphism $\psi: V \rightarrow W$. By the logarithmic ramification formula, we have, for every $m>0$

$$
\left|m\left(D+K_{V}\right)\right|=\left|m \psi^{*}\left(\Delta+K_{W}\right)\right|+m R_{\psi}
$$

with an effective divisor R_{ψ}. Let $\Phi_{1}:=\Phi_{\left|m\left(D+K_{T}\right)\right|}$ and $\Phi_{2}:=\Phi_{\mid m\left(\Delta+K_{W} \mid\right)}$. Then $\Phi_{1}=\Phi_{2} \cdot \psi$, and both Φ_{1} and Φ_{2} are morphisms because $\bar{C}:=\Phi_{1}(V)=\Phi_{2}(W)$ is a nonsingular complete curve for a sufficiently large $m>0$. Moreover, Φ_{1} (the upper $X)=\Phi_{2}$ (the lower X), which we denote by C, because $\operatorname{codim}_{X}(X-f(X)$) $\geqq 2$ and $\Phi_{1}=\Phi_{2} \cdot \psi$. By Iitaka [6], we have $\left.\Phi_{1}\right|_{X}=\left.\Phi_{2}\right|_{X}$, i.e., it is independent of the choice of nonsingular completions. So, denoting $\left.\Phi_{1}\right|_{x}: X \rightarrow C$ by ϕ, we have $\phi=\phi \cdot f$. By virtue of [8; Chap. II, §5], $\phi: X \rightarrow C$ defines either an \boldsymbol{A}_{*}^{1}-fibration or a twisted \boldsymbol{A}_{*}^{1}-fibration. Suppose $\phi: X \rightarrow C$ is an \boldsymbol{A}_{*}^{1}-fibration. We have then the same situation as considered in Lemmas 4 and 5. We already observed that $\tilde{X}-X$ is a disjoint union of irreducible curves which are isomorphic to \boldsymbol{A}_{k}^{1}. Suppose $\phi: X \rightarrow C$ is a twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration. Then there exists a double covering $\rho: C_{1} \rightarrow C$ such that $\phi_{1}: X_{1} \rightarrow C_{1}$ is an \boldsymbol{A}_{*}^{1}-fibration, where X_{1} is the normalization of $X{ }_{c} C_{1}$ and ϕ_{1} is the composite of the normalization morphism $X_{1} \rightarrow \underset{C}{X} C_{1}$ and the projection $\underset{C}{X} C_{1} \rightarrow C_{1}$; see Lemma 8, where the notations differ slightly from the present notations. The endomorphism $f: X \rightarrow X$ induces an étale endomorphism $f_{1}: X_{1} \rightarrow X_{1}$ such that $\operatorname{deg} f_{1}=\operatorname{deg} f$ and $\operatorname{codim}_{X_{1}}$ $\left(X_{1}-f_{1}\left(X_{1}\right)\right) \geqq 2$. Let \widetilde{X}_{1} be the normalization of the lower X_{1} in the function field of the upper X_{1} over k. Then it is readily verified that \tilde{X}_{1} is the normalization of $\underset{\sigma}{\tilde{X}} \times C_{1}$ in its function field over k, where \tilde{X} is the normalization of the lower X in the function field of the upper X over k. More precisely, \tilde{X}_{1} has an involution $\iota: \tilde{X}_{1} \rightarrow \tilde{X}_{1}$ induced by the involution of the double covering $\rho: C_{1} \rightarrow C$, and \tilde{X} is the quotient variety of \tilde{X}_{1} with respect to ι. As shown above, the complement $\tilde{X}_{1}-X_{1}$ is a disjoint union of irreducible curves which are isomorphic to \boldsymbol{A}_{k}^{1}. Therefore, the complement $\tilde{X}-X$ is a disjoint union of the affine lines as well; see the proof of Lemma 8.
(iII) Case where $\bar{\kappa}(X)=0$ and X is irrational. As in the proof of Lemma 3, let $\phi: X \rightarrow C$ be a surjective morphism onto a nonsingular curve C which is defined by the Albanese morphism $\alpha: V \rightarrow \operatorname{Alb}(V \mid k)$, where V is a nonsingular
completion of X. The morphism $\phi: X \rightarrow C$ defines either an \boldsymbol{A}_{*}^{1}-fibration or a twisted \boldsymbol{A}_{*}^{1}-fibration (cf. [8; Chap. II, §5]). Then the endomorphism $f: X \rightarrow X$ induces an etale endomorphism $h: C \rightarrow C$ such that $h \cdot \phi=\phi \cdot f$. Let $X_{0}=X \times$ (C, h) be the fiber product of $\phi: X \rightarrow C$ and $h: C \rightarrow C$, and let $\phi_{0}: X_{0} \rightarrow C$ be the projection onto the second factor. Then f induces an étale morphism $g: X \rightarrow X_{0}$ such that $\phi=\phi_{0} \cdot g$ and f is the composite of g and the projection $X_{0} \rightarrow X$. Let X_{1} be the normalization of X_{0} in the function field of the upper X over k. Since h is finite by Lemma 1, X_{1} coincides with \tilde{X}. Now we look at the C morphism $g: X \rightarrow X_{0}$ which preserves the $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibrations (or the twisted $\boldsymbol{A}_{\boldsymbol{*}}^{1}-$ fibrations) on X and X_{0} over C. Let $m:=\operatorname{deg} g$ and let H be the group of all m-th roots of the unity in k. As in Lemma 5 and its proof, H acts on X_{1} and X_{0} is the quotient variety X_{1} / H. Let $\phi_{1}: X_{1} \rightarrow C$ be the composite of the normalization morphism $X_{1} \rightarrow X_{0}$ and ϕ_{0}. Then ϕ_{1} defines an $\boldsymbol{A}_{\boldsymbol{*}}^{1}$-fibration or a twisted \boldsymbol{A}_{*}^{1}-fibration on X_{1} such that $\left.\phi_{1}\right|_{X}=\phi$. Let S be a singular fiber of X_{0} over a point P of C. Write $S=\Gamma+\Delta$ as in Lemma 4. Then we can readily show that $S_{1}:=\phi_{1}^{*}(P)$ is a singular fiber on $X_{1}, S_{1}=\Gamma+\Delta_{1}$ and Γ is stable under the action of H, where Supp Δ_{1} is a disjoint union of irreducible curves isomorphic to \boldsymbol{A}_{k}^{1}. This implies that $\tilde{X}-X=X_{1}-X$ is a disjoint union of irreducible curves which are isomorphic to \boldsymbol{A}_{k}^{1}.
(III) Case where $\bar{\kappa}(X)=0$ and X is rational. We note that $\bar{\kappa}(X)=\bar{\kappa}(\tilde{X})$. Indeed, by the logarithmic 1 mification formula applied to the normalization morphism $\tilde{X} \rightarrow X$, we have $\bar{\kappa}(X) \leqq \bar{\kappa}(\tilde{X})$. Since the upper X is an open set of \tilde{X}, we have $\bar{\kappa}(\tilde{X}) \leqq \bar{\kappa}(X)$. Hence $\bar{\kappa}(X)=\bar{\kappa}(\tilde{X})$. Let V be anew a nonsingular completion of \tilde{X} such that $D:=V-\tilde{X}$ is a divisor with simple normal crossings. Since $\bar{\kappa}(\tilde{X})=0$ as shown above, $\bar{P}_{m}(\tilde{X}) \leqq 1$ for every $m \geqq 0$. Let C_{1}, \cdots, C_{r} exhaust all irreducible components of V such that $C_{i} \cap X=\phi$ and $C_{i} \nsubseteq \operatorname{Supp}(D)$ for $1 \leqq i \leqq r$. We may assume that C_{i} is nonsingular at the points $C_{i}-C_{i} \cap \tilde{X}$ for $1 \leqq i \leqq r$, and that $D+\boldsymbol{C}_{1}+\cdots+\boldsymbol{C}_{r}$ has only normal crossings as singularities at every point of $V-\tilde{X}$. Let $\pi: V^{*} \rightarrow V$ be a succession of blowing-ups with centers at $\bigcup_{i=1}^{r} \operatorname{Sing}\left(C_{i}\right)$ and their infinitely near points such that $\left(\pi^{*}\left(D+C_{1}+\cdots\right.\right.$ $\left.\left.+C_{r}\right)\right)_{\text {red }}$ is a divisor with simple normal crossings. Let $D^{*}=\left(\pi^{*}\left(D+C_{1}+\cdots\right.\right.$ $\left.\left.+C_{r}\right)\right)_{\text {red }}$. Since we have $K_{V^{*}}=\pi^{*}\left(K_{V}\right)+R_{\pi}$ with an effective divisor R_{π}, we have

$$
\pi^{*}\left(D+K_{V}\right)+\left(\pi^{*}\left(C_{1}+\cdots+C_{r}\right)\right)_{\text {red }} \leqq D^{*}+K_{V^{*}} .
$$

Since $\bar{\kappa}(\tilde{X})=\kappa\left(D+K_{V}, V\right)=0$, we have, by the κ-calculus (cf. [5]):

$$
\begin{aligned}
& \kappa\left(\pi^{*}\left(D+K_{V}\right)+\left(\pi^{*}\left(C_{1}+\cdots+C_{r}\right)\right)_{\mathrm{red}}, V^{*}\right)=\kappa\left(D^{*}+K_{V^{*}}, V^{*}\right) \\
& \kappa\left(\pi^{*}\left(D+K_{V}\right)+\left(\pi^{*}\left(C_{1}+\cdots+C_{r}\right)\right)_{\mathrm{red}}, V^{*}\right)=\kappa\left(C_{1}+\cdots+C_{r}+D+K_{V}, V\right) \\
& \text { and } \quad \kappa\left(D^{*}+K_{V^{*}}, V^{*}\right)=\bar{\kappa}(X)=0
\end{aligned}
$$

Therefore we have $\kappa\left(\boldsymbol{C}_{1}+\cdots+\boldsymbol{C}_{r}+D+K_{V}, V\right)=0$. Let C now be one of C_{i}^{\prime} 's, $1 \leqq i \leqq r$. Then $\left|C+K_{V}\right|=\phi$. Indeed, suppose $\left|C+K_{V}\right| \neq \phi$. Since \tilde{X} is affine, we have $m D \geqq$ an ample divisor for a sufficiently large $m>0$. Since $\left|m\left(C+D+K_{V}\right)\right| \supseteq\left|m\left(C+K_{V}\right)\right|+|m D|$, we have $\kappa\left(C+D+K_{V}, V\right)=2$, which is a contradiction. Hence $\left|C+K_{V}\right|=\phi$. This implies that C is a nonsingular rational curve (cf. [8; Chap. I, Lemma 2.1.3]). Consider an exact sequence

$$
0 \rightarrow O_{V}\left(D+K_{V}\right) \rightarrow O_{V}\left(C+D+K_{V}\right) \rightarrow O_{c}((C \cdot D)-2) \rightarrow 0
$$

Thence we have an exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(V, D+K_{V}\right) \rightarrow H^{0}\left(V, C+D+K_{V}\right) \rightarrow H^{0}\left(C, O_{C}((C \cdot D)-2)\right) \\
& \rightarrow H^{1}\left(V, D+K_{V}\right)
\end{aligned}
$$

where $\operatorname{dim} H^{1}\left(V, D+K_{V}\right)=\operatorname{dim} H^{1}(C,-D)=0$ because V is rational and D is 1connected. We claim that $(C \cdot D)=1$. Suppose $\left|C+D+K_{V}\right|=\phi$. Then, by the above exact sequence, $(C \cdot D) \leqq 1$, while $(C \cdot D)>0$ because $\tilde{X}=V-D$ is affine. Now suppose $\left|C+D+K_{V}\right| \neq \phi$. If $C \nsubseteq B s\left|C+D+K_{V}\right|$, there exists a member $M \in\left|C+D+K_{V}\right|$ such that C is not a component of M. Then, for a large integer $m<0$ with $\left|m\left(D+K_{V}\right)\right| \neq \phi,\left|m\left(C+D+K_{V}\right)\right|$ contains $m M$ and $m C+\left|m\left(D+K_{V}\right)\right|$. Hence $\kappa\left(C+D+K_{V}, V\right)>0$, which is a contradiction. Hence $C \subseteq B s\left|C+D+K_{V}\right|$. This implies $\left|D+K_{V}\right| \neq \phi$. The above exact sequence then implies $(C \cdot D) \leqq 1$, hence $(C \cdot D)=1$. This is the case for C_{1}. It is then readily seen that the above argument applies even if C and D replaced by C_{2} and $C_{1}+D$. Thus we can show that $\left(C_{2} \cdot C_{1}\right)=0$ and $\left(C_{2} \cdot D\right)=1$. We apply the above argument for C_{i} and $C_{1}+\cdots+C_{i-1}+D+K_{V}, 1 \leqq i \leqq r$, to conclude that $\left(C_{i} \cdot C_{j}\right)=0$ for $i \neq j$ and $\left(C_{i} \cdot D\right)=1$. This implies that $\tilde{X}-X$ is a disjoint union of irreducible curves isomorphic to \boldsymbol{A}_{k}^{1}.
(IV) Case $\bar{\kappa}(X)=-\infty$. The assertion was verified in [9].
Q.E.D.

Hereafter, we assume that the ground field k is the complex number field \boldsymbol{C}. Let X be a nonsingular affine surface defined over \boldsymbol{C} and let V be a nonsingular completion of X such that $D:=V-X$ is a divisor with simple normal crossings. Let $e(X), e(V)$ and $e(D)$ be the Euler numbers of X, V and D, respectively. If $D=D_{1}+\cdots+D_{r}$ be the decomposition into irreducible components, the Euler number $e(D)$ is given as

$$
e(D)=\sum_{i=1}^{r}\left\{2-2 g\left(D_{i}\right)\right\}-\sum_{i<j}\left(D_{i} \cdot D_{j}\right),
$$

where $g\left(D_{i}\right)$ is the genus of a nonsingular curve D_{i} (cf. [10]). Suppose X has a finite etale endomorphism $f: X \rightarrow X$ of degree $n>1$. Then $e(X)=n e(X)$ by virtue of the well-known formula of the Euler numbers for a finite étale covering. Hence we have $e(X)=0$. This condition provides a strong restriction on the
structure of X. More precisely, we have the following:
Theorem 11. Let X be a nonsingular affine surface defined over \boldsymbol{C}, which is endowed with a finite étale endomorphism $f: X \rightarrow X$ of degree $n>1$. Then X is one of the following:
(1) Case $\bar{\kappa}(X)=-\infty . X$ is either $\boldsymbol{A}_{\boldsymbol{C}}^{1} \times \boldsymbol{A}_{*}^{1}$ or a relatively minimal elliptic ruled surface with one cross-section deleted off.
(2) Case $\bar{\kappa}(X)=0$ or 1 . We have then either
(i) X is a rational surface with $\bar{\kappa}(X)=0$ such that, if (V, D) is any nonsingular completion of X with the boundary divisor D of simple normal crossings and if $D=D_{1}+\cdots+D_{r}$ is the decomposition into irreducible components, any component D_{i} is rational and $\left(K_{V}^{2}\right) \leqq 12-r$, or
(ii) there exists a surjective morphism $\phi: X \rightarrow C$ onto a nonsingular curve which defines an \boldsymbol{A}_{*}^{1}-fibration or a twisted \boldsymbol{A}_{*}^{1}-fibration and which has no singular fibers except those of the type $S=\alpha \Gamma_{1}$ with $\Gamma_{1} \cong A_{*}^{1}$.

Proof. Note that if Y_{1} is an open set in a nonsingular affine surface Y such that $Y-Y_{1}$ is isomorphic to $\boldsymbol{A}_{\boldsymbol{C}}^{1}$, then $e\left(Y_{1}\right)=e(Y)-1$.
(1) Suppose $\bar{\kappa}(X)=-\infty$. Consider, first of all, the case where X is irrational or $\Gamma\left(X, O_{X}\right)^{*} \neq C^{*}$. By Lemma 3, either X is elliptic-ruled or $\operatorname{rank}\left(\Gamma\left(X, O_{X}\right)^{*} / C^{*}\right)=1$. As shown in the proof of Lemma 3, there exist a surjective morphism $\phi: X \rightarrow C$ onto a nonsingular curve C and a finite étale endomorphism $h: C \rightarrow C$ such that $\phi \cdot f=h \cdot \phi$, where C is a complete elliptic curve or isomorphic to \boldsymbol{A}_{*}^{1}. Let $S_{i}(1 \leqq i \leqq t)$ exhaust all singular fibers of ϕ, which defines an \boldsymbol{A}^{1}-fibration and let δ_{i} be the number of irreducible components of S_{i}. If we note that every component of S_{i} is isomorphic to $\boldsymbol{A}_{\boldsymbol{C}}^{1}$, we know, by the above remark, that $e(X)=\sum_{i=1}^{t}\left(\delta_{i}-1\right)$. Hence $\delta_{i}=1$ for $1 \leqq i \leqq t$, and $S_{i}=\alpha_{i} \Delta_{i}$ with $\alpha_{i}>1$ and $\Delta_{i} \cong \boldsymbol{A}_{C}^{1}$. Note, on the other hand, that X is isomorphic to the fiber product of $\phi: X \rightarrow C$ and $h: C \rightarrow C$; see the proof of Lemma 3. Hence $\operatorname{deg} h=\operatorname{deg} f=n>1$. Then, for any singular fiber $S_{i}, f^{*}\left(S_{i}\right)$ consists of n singular fibers. Indeed, if $P_{i}=\phi\left(S_{i}\right)$ and $h^{-1}\left(P_{i}\right)=\left\{Q_{i 1}, \cdots, Q_{i n}\right\}$, then $\phi^{*}\left(Q_{i j}\right)$ $(1 \leqq j \leqq n)$ is a singular fiber. Thus we have $n t=t$. This implies that ϕ has no singular fibers. If $C \cong \boldsymbol{A}_{*}^{1}$, then X is isomorphic to $\boldsymbol{A}_{C}^{1} \times \boldsymbol{A}_{\boldsymbol{*}}^{1}$.

Consider, next, the case where X is rational and $\Gamma\left(X, O_{X}\right)^{*}=C^{*}$. Since X is an affine surface with $\bar{\kappa}(X)=-\infty$, there exists a surjective morphism $\phi: X \rightarrow C$ which defines an \boldsymbol{A}^{1}-fibration, where $C \cong \boldsymbol{A}_{C}^{1}$ or \boldsymbol{P}_{C}^{1} (cf. [8; Chap. I]). Let S_{i} ($1 \leqq i \leqq t$) exhaust all singular fibers of ϕ and let δ_{i} be the number of irreducible components of S_{i}. Then we have

$$
e(X)=1+\varepsilon+\sum_{i=1}^{t}\left(\delta_{i}-1\right)
$$

where $\varepsilon=0$ or 1 according as $C \cong \boldsymbol{A}_{\boldsymbol{C}}^{1}$ or $\boldsymbol{P}_{\boldsymbol{C}}^{1}$. Hence $e(X)>0$, which contradicts
the hypothesis that f is a finite étale endomorphism with $\operatorname{deg} f>1$.
(2) Suppose $\bar{\kappa}(X)=0$ or 1 . Consider the case where either $\bar{\kappa}(X)=1$ or $\bar{\kappa}(X)=0$ and X is irrational. As in the proof of Theorem 10 , there exists a surjective morphism $\phi: X \rightarrow C$ onto a nonsingular curve which defines either an \boldsymbol{A}_{*}^{1}-fibration or a twisted \boldsymbol{A}_{*}^{1}-fibration on X. Let $S_{i}(1 \leqq i \leqq t)$ exhaust all singular fibers of ϕ, let $P_{i}=\phi\left(S_{i}\right)$ and let $C_{0}=C-\left\{P_{1}, \cdots, P_{t}\right\}$. Then $e(X)=$ $e\left(\phi^{-1}\left(C_{0}\right)\right)+\sum_{i=1}^{t} \gamma_{i}$, where $e\left(\phi^{-1}\left(C_{0}\right)\right)=e\left(C_{0}\right) \cdot e\left(\boldsymbol{A}_{*}^{1}\right)=0$ and γ_{i} is the contribution of S_{i} as described below. Let S be one of S_{i} 's, and write $S=\Gamma+\Delta$ (cf. Lemma 4). Let γ be the contribution of S to $e(X)$. If $\Gamma=0$ then $\gamma=\delta:=$ the number of irreducible components of Δ. If $\Gamma=\alpha \Gamma_{1}$ with $\Gamma_{1} \cong \boldsymbol{A}_{*}^{1}$ then $\gamma=\delta$ as in the preceding case. If $\Gamma=\alpha_{1} \Gamma_{1}+\alpha_{2} \Gamma_{2}$ with $\Gamma_{1} \cong \Gamma_{2} \cong \boldsymbol{A}_{C}^{1}$ then $\gamma=\delta+1$. Since $e(X)=0$, we conclude that any singular fiber S of ϕ is of the form $S=\alpha \Gamma_{1}$ with $\alpha>1$ and $\Gamma_{1} \cong \boldsymbol{A}_{\boldsymbol{*}}^{1}$. This verifies the assertion in the present case.

The remaining case is the one where X is a rational surface with $\bar{\kappa}(X)=0$. Let V be a nonsingular completion of X such that the boundary divisor $D:=$ $V-X$ is a divisor with simple normal crossings. With the same notations as in [8; Chap. II, 5], let (V_{m}, D_{m}) be a relatively minimal model of (V_{m}, D_{m}) and let $X_{m}=V_{m}-\operatorname{Supp}\left(D_{m}\right)$. Then X_{m} is an affine open set of X, and $X-X_{m}$ is a disjoint union of irreducible curves isomorphic to \boldsymbol{A}_{C}^{1}. Hence $e\left(X_{m}\right) \leqq 0$. Suppose now that D contains an irrational irreducible component. By virtue of [8; Chap. II, Lemma 5.5], we know that $e\left(X_{m}\right)=3$ or 4, which is a contradiction. Therefore every irreducible component of D is a nonsingular rational curve. Let $D=D_{1}+\cdots+D_{r}$ be the decomposition into irreducible components. Note that $\operatorname{dim} H^{0}\left(V, D+K_{V}\right) \leqq 1$ because $\bar{\kappa}(X)=0$, that $H^{2}\left(V, D+K_{V}\right)=0$ and that $H^{1}\left(V, D+K_{V}\right)=0$ because V is rational and D is 1 -connected. Hence, by virtue of the Riemann-Roch theorem.
where

$$
\begin{gathered}
\operatorname{dim} H^{0}\left(V, D+K_{V}\right)=\frac{1}{2}\left(D \cdot D+K_{V}\right)+1 \leqq 1 \\
\left(D \cdot D+K_{V}\right)=-2 r+2 \sum_{i<j}\left(D_{i} \cdot D_{j}\right)
\end{gathered}
$$

Hence we have

$$
e(V)=e(D)=2 r-\sum_{i<j}\left(D_{i} \cdot D_{j}\right) \geqq r
$$

By virtue of Noether's formula $12 \chi\left(O_{V}\right)=\left(K_{V}^{2}\right)+e(V)$, we obtain

$$
12-\left(K_{V}^{2}\right)=e(V) \geqq r
$$

Remark. The following results in the complete case show that there are good similarities between the affine and complete cases. Let V be a nonsingular projective surface with an étale endomorphism $f: V \rightarrow V$ of degree >1. Then V is relatively minimal, i.e., there are no exceptional curves of the first kind
on V, V has the Euler number $e(V)=0$, and V is, indeed, one of the following:
(1) Case $\kappa(V)=-\infty$. Then V is a ruled surfáce over an elliptic curve.
(2) Case $\kappa(V)=0$. Then V is either an abelian surface or a hyperelliptic surface.
(3) Case $\kappa(V)=1$. Then V is an elliptic surface $\phi: V \rightarrow C$ whose singular fiber, if any, is a multiple of a nonsingular elliptic curve.

References

[1] J. Ax: The elementary theory of finite fields, Ann. of Math. 88 (1968), 239-271.
[2] H. Bass, E.H. Connell and D. Wright: The Jacobian conjecture: Reduction of degree and formal expression of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287330.
[3] A. Borel: Injective endomorphisms of algebraic varieties, Arch. Math. 20 (1969), 531-537.
[4] M. Demazure and P. Gabriel: Groupes algébriques, Tome 1, Masson et Cie, Paris and North-Holland, Amsterdam, 1970.
[5] S. Iitaka: On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 384-396.
[6] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, A collection of papers dedicated to K. Kodaira, 175-189, Iwanami Shoten Publishers-Cambridge University Press, 1977.
[7] Y. Kawamata: Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension one, Proc. internat. symp. on algebraic geometry at Kyoto (1977), 207-217, Kinokuniya, Tokyo, 1978.
[8] M. Miyanishi: Non-complete algebraic surfaces, Lecture Notes in Mathematics 857, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
[9] M. Miyanishi: Singularities of normal affine surfaces containing cylinderlike open sets, J. Algebra 68 (1981), 268-275.
[10] F. Sakai: Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980), 89-120.
[11] H. Sumihiro: Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.

Department of Mathematics Osaka University
Toyonaka, Osaka 560
Japan

