ON ARTINIAN RINGS WHOSE INDECOMPOSABLE PROJECTIVES ARE DISTRIBUTIVE

YOSHITO YUKIMOTO

(Recieved July 25, 1984)

1. Introduction

A module $L \neq 0$ is called local (or hollow) if $L = L_1 + L_2$ implies $L = L_1$ or $L = L_2$. Especially a noetherian module is local if and only if it has a unique maximal submodule.

A module M is called distributive if $X \cap (Y+Z) = (X \cap Y) + (X \cap Z)$ for every submodules X, Y, Z in M (cf. [2]). It is clear that any sub- (or factor) module of a distributive module is distributive.

We call a ring R right locally distributive, right LD in abbreviation, if it is right artinian and every projective indecomposable right R-module is distributive. It is evident that every local right module over a right LD-ring is distributive. The class of right LD-rings is a generalization of the class of right serial rings.

In this note right *LD*-rings are studied, mainly to construct a number of right *LD*-algebras.

2. Right LD-rings

The following lemma, shown by Fuller, is basic to study distributive modules over a semiperfect ring.

Lemma 1. Let R be a semiperfect ring. The following conditions on a right R-module M are equivalent:

(1) *M* is distributive.

(2) For every primitive idempotent e of R, the set $\{x \in R | x \in M\}$ of all homomorphic images of eR in M is linearly ordered.

(3) For every primitive idempotent e in R, the right eRe-module Me is uniserial.

Proof. See Fuller [1].

Theorem 2. The following conditions on a right artinian ring R are equivalent:

Υ. Υυκιμοτο

(1) Every projective indecomposable right R-module eR is distributive.

(2) For every primitive idempotents e and f of R, eRf is a uniserial right fRf-module.

(3) Every submodule in a projective indecomposable right R-module eR is characteristic, and the lattice of two-sided ideals in R is distributive.

Proof. $(1) \Leftrightarrow (2)$ is a special case of Lemma 1.

 $(1) \Rightarrow (3)$. Every submodule in eR is a sum of local submodules and every local submodule is characteristic in eR by Lemma 1. Hence every submodule in eR is characteristic.

Let $\{e_i\}_{i=1}^n$ be a complete set of primitive idempotents, and let I, J, K be two-sided ideals in R. Then by the distributivity of $e_i R$,

$$e_i(I \cap (J+K)) = e_iI \cap (e_iJ+e_iK)$$

= $(e_iI \cap e_iJ)+(e_iI \cap e_iK) = e_i(I \cap J)+e_i(I \cap K)$.

Summing up each side of the equations $(i=1, \dots, n)$, we have $I \cap (J+K) = (I \cap J) + (I \cap K)$.

 $(3) \Rightarrow (1)$. Let A be a submodule in a projective indecomposable submodule eR. Since A is characteristic in eR, eReA = A. We notice that the two-sided ideal A' := RA = ReA satisfies the equation eA' = A.

If X, Y, Z are any submodules in eR, then

$$eX' \cap (eY' + eZ') = e(X' \cap (Y' + Z')) = e((X' \cap Y') + (X' \cap Z')) = (eX' \cap eY') + (eX' \cap eZ').$$

Hence eR is distributive.

A right artinian ring is called right LD if it satisfies the equivalent conditions in Theorem 2.

3. Construction of right LD-algebras

We begin with a general remark on modules. For a module M we denote by H(M) the inclusion-ordered set of all local submodules in M. A homomorphism $f: M \to N$ of modules induces a correspondence: $H(M) \to H(N), X \mapsto f(X)$. This correspondence is not a mapping in general (the image of some local submodule $\leq M$ by f may be 0). If M is a module of finite length and f is an epimorphism, then there is a natural surjection

(*)
$$\{X \in H(M) \mid X \leq \operatorname{Ker}(f)\} \to H(N).$$

In fact, there exist $X_1, \dots, X_n \in H(M)$ such that $f^{-1}(Y) = X_1 + \dots + X_n$ for every $Y \in H(N)$, and $f(X_i) = Y$ for some $i \in \{1, \dots, n\}$. Moreover if M is distributive, i is unique by Lemma 1, and (*) is bijective.

340

In this section a method to construct some right LD-algebras is presented. We introduce some terminology.

Suppose C is a fixed set. A pair (P, t) of a set P and a mapping $t: P \rightarrow C$ is called a C-set. When (P, t) and (P', t') are C-sets, a mapping $f: P \rightarrow P'$ is called a C-set homomorphism if t=t'f. Moreover, in case that P and P' are posets, f is called a C-poset homomorphism if f is both a C-set homomorphism and a poset homomorphism.

A subposet U of a poset P is said to be an upper part of P if $x \in U$, $y \in P$ and $x \leq y$ imply $y \in U$. In particular, when P is finite, U is an upper part of P if and only if it is of the form $\{x \in P | x \geq p_1\} \cup \cdots \cup \{x \in P | x \geq p_n\}$ $(p_1, \dots, p_n \in P)$.

DEFINITION. Let C be a set. A family of C-posets $\{(P_1, t_1), \dots, (P_n, t_n)\}$ is called an admissible system (of C-posets) if it satisfies the following conditions $(i=1, \dots, n)$:

(1) Every poset P_i has a unique maximal element m_i .

(2) $C = \{t_1(m_1), \dots, t_n(m_n)\} (t_i(m_i) \neq t_j(m_j) \text{ if } i \neq j).$

(3) For every $c \in C$ the subposet $\{x \in P_i | t_i(x) = c\}$ is linearly ordered.

(4) For every $a \in P_i$, there exist $j \in \{1, \dots, n\}$ and a C-poset homomorphism from an upper part of P_j to $\{x \in P_i | x \le a\}$.

REMARK 1. Suppose that the conditions (1), (2), (3) of the above definition are satisfied and that f is a C-poset isomorphism from an upper part of P_j to $\{x \in P_i | x \le a\}$. Then j is determined by $t_j(m_j) = t_i f(m_j) = t_i(a)$.

Let b_0 be any element in P_j and $b_0 \le \dots \le b_r = m_j$ be a chain with b_{k-1} maximal in $\{x \in P_j | x \le b_k\}$ $(k \in \{1, \dots, r)\}$. Then $f(b_{k-1})$ is maximal in $\{x \in P_i | x \le f(b_k)\}$. Since $t_j(b_{k-1}) = t_i f(b_{k-1})$, $f(b_{k-1})$ is unique in $\{x \in P_i | x \le f(b_k)\}$ by (3). Therefore $f(b_0)$ is determined inductively, and the isomorphism in (4) of the above definition is unique.

REMARK 2. By a similar argument we can replace (4) with (4') If $a \in P_i$ is maximal in $P_i \setminus \{m_i\}$, there exist $j \in \{1, \dots, n\}$ and a C-poset isomorphism from an upper part of P_j to $\{x \in P_i | x \le a\}$.

If R is a right LD-ring with the Jacobson radical J, and $\{e_i\}_{i=1}^n$ is a basic set of primitive idempotents for R, then by the first remark of this section, the posets $H(e_1R), \dots, H(e_nR)$ form an admissible system with the mapping

top() (:=()/()): $H(e_i R) \to T(R)$ ($i \in \{1, \dots, n\}$),

where T(R) denotes the set of all isomorphism class of simple R-modules.

Theorem 3. For any admissible system $\{(P_i, t_i)\}_{i=1}^n$ of C-posets, there exists a right LD-ring R such that $H(e_iR)$ is isomorphic to (P_i, t_i) (T(R) is identified with C by a bijection β : (the isomorphism class of $top(e_iR)$) $\mapsto t_i(m_i)$), where $\{e_i\}_{i=1}^n$ is a basic set of primitive idempotents for R. Υ. Υυκιμοτο

Proof. Since the C-poset isomorphism of (4) in Definition is uniquely determined by an element $a \in P_i$ (Remark 1), we denote the isomorphism by a. Letting any element in P_i outside the domain of definition of a correspond to no element, the isomorphism a is extended to a correspondence: $P_j \rightarrow P_i$, which operates P_j on the left. This extension is so trivial that it is also denoted by a.

For two correspondences $\bar{a}_1: P_i \rightarrow P_j$ and $\bar{a}_2: P_k \rightarrow P_k$ $(a_1 \in P_j, a_2 \in P_k)$, we define $\bar{a}_1 \bar{a}_2 = 0$ if (the composition $\bar{a}_1 \circ \bar{a}_2$ of the correspondences) $= \emptyset$ or $h \neq i$, and otherwise $\bar{a}_1 \bar{a}_2 = \bar{a}_1 \circ \bar{a}_2$ the composition of correspondences. Then the disjoint union of $\{a \mid a \in P_i\}_i$ and $\{0\}$ forms a semigroup S with the multiplication defined above. If $a_1 \leq a_2$ in P_i , there exists $x \in S$ satisfying $\bar{a}_1 = \bar{a}_2 x$ by (4) in Definition.

Let R := KS be the semigroup algebra of S over a field K. Then R is an artinian algebra over K with the Jacobson radical $\{\Sigma k_a a | a \neq m_i \text{ for any } i, \text{ and } k_a \in K\}$ and $\{\overline{m}_i\}_{i=1}^n$ is a basic set of primitive idempotents for R.

For any element $x \neq 0$ in $\overline{m}_j R \overline{m}_i$, $x = k_1 \overline{a}_1 + \cdots + k_s \overline{a}_s$ with some distinct $\overline{a}_1, \dots, \overline{a}_s \colon P_j \to P_j$ and $k_1, \dots, k_s \in K \setminus \{0\}$. Since $a_1, \dots, a_s \in P_i$ and $t_i(a_1) = \cdots = t_i(a_s) = t_j(m_j)$, there exists uniquely the maximal element a(x) of $\{a_1, \dots, a_s\}$ by (3) in Definition. If $a_u = a(x)$ ($u \in \{1, \dots, s\}$),

 $x = \bar{a}_{\mu}(k_{\mu} + \text{an element of the Jacobson radical})$

and xR = a(x)R. Therefore R is right LD by Theorem 2. It is easily verified that α_1 : $H(\overline{m}_i R) \to P_i$; $xR \mapsto a(x)$ is an isomorphism of poset, and that the diagram

$$\begin{array}{ccc} H(\overline{m}_i R) \stackrel{\alpha_i}{\longrightarrow} P_i \\ top() & & \downarrow t_i \\ T(R) \stackrel{\beta}{\longrightarrow} C \end{array}$$

is commutative.

4. Right and left *LD*-rings

If R is a right LD-ring with a basic set $\{e_i\}_{i\in IR}$ of primitive idempotents, we construct a semigroup S_R from the admissible system $\{(H(e_iR), ()/()J\}_{i\in I})$. Let $X \in H(e_iR)$ and $X/XJ \cong e_iR/e_jJ(i, j\in I)$, then the correspondence X is induced by the left multiplication of some $x \in e_iRe_j$ (cf. the first paragraph and Remark 1 in the section 3) and X = xR.

Symmetrically we have a semigroup ${}_{R}S$, the left version of S_{R} , from the admissible system $\{(H(Re_{i}), ()/())\}_{i \in I}$ if R is a left LD-ring with a basic set $\{e_{i}\}_{i \in I}$ of primitive idempotents, where correspondences operate $H(Re_{i})$ on the right.

The semigroup algebra KS_R (resp. K_RS) over a field K is considered a model of right (resp. left) LD-ring R with respect to the submodule-lattice structure of

ARTINIAN RINGS

the projective indecomposable right (resp. left) R-modules.

However, if R is a right and left LD-ring, the "one-sided model" KS_R or K_RS is two-sided (see Proposition 5 below).

Lemma 4. Let e be an idempotent of a ring R, and suppose that every submodule in eR is characteristic. Then $Rx \le Ry$ implies $xR \le yR$ for any $x, y \le eR$.

Proof. If $Rx \le Ry$, there is $r \in eRe$ satisfying x = ry. Since yR is characteristic in eR, $xR = ryR \le yR$.

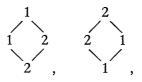
Proposition 5. Let R be a right and left LD-ring with a basic set $\{e_i\}_{i \in I}$ of primitive idempotents. Then $S_R \cong_R S$, $KS_R \cong K_R S$ is a right and left LD-ring, and one of the admissible systems $\{H(e_iR)\}_{i \in I}$, $\{H(Re_i)\}_{i \in I}$ is obtained by the other.

Proof. A bijection $S_R \rightarrow_R S$; $\overline{xR} \mapsto \overline{Rx} \ (x \in e_i Re_j)$ is defined by Lemma 4, where \overline{xR} (resp. \overline{Rx}) is the correspondence $H(e_iR)$ $H(e_iR)$ (resp. $H(Re_i) \rightarrow$ $H(Re_i)$) associated to xR (resp. Rx) adopting the notation in the proof of Theorem 3. Since $\overline{xR} \ \overline{yR} = \overline{xyR}$ and $\overline{Rx} \ \overline{Ry} = \overline{Rxy}$ for $x \in e_i Re_j$ and $y \in e_k Re_k$ $(i, j, k, h \in I)$ (cf. Remark 1 in the section 3), this bijection is an isomorphism. The rest follows immediately.

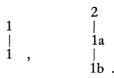
5. Examples

The construction of right LD-rings in the section 3 is useful especially in case that the Loewy length is small.

(1) From the admissible system of C-posets ($C = \{1, 2\}$) with the Hasse diagram;



a QF-LD-ring is given, where the numbers on the vertices are their values in C.
(2) Let R be a right LD-ring with the admissible system of {1, 2}-posets;



Then R is not left LD, since there is no element x in S_R satisfying $\bar{b}=x\bar{a}$.

Υ. Υυκιμοτο

References

- K.R. Fuller: Rings of left invariant module type, Comm. Algebra, 6 (1978), 153– 167.
- W. Stephenson: Modules whose lattice of submodules is distributive, Proc. London Math. Soc. (3) 28 (1974), 291-310.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan