Harada, M. and Yukimoto, Y. Osaka J. Math. 22 (1985), 321-326

ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES IV

To the memory of Professor Takehiko MIYATA

MANABU HARADA AND YOSHITO YUKIMOTO

(Received February 8, 1984)

In the previous papers [1] and [2], we have studied conditions under which every maximal submodule of a finite direct sum D of certain hollow modules over a right artinian ring with 1 contains a non-zero direct summand of D. The present objective is to generalize slightly Theorems 3 and 4 of [2] related to the property mentioned above.

Throughout this paper, R will represent a right artinian ring with identity, and every R-module will be assumed to be a unitary right R-module with finite composition length. We denote the Jacobson radical and the length of a composition series of an R-module M by J(M) and |M|, respectively. Occasionally, we write J=J(R). If M has a unique maximal submodule J(M), M is called hollow (local). When this is the case, $M \approx eR/A$ for some primitive idempotent e and a right ideal A in eR.

Let $\{N_i\}_{i=1}^n$ be a family of hollow modules, and $D = \sum_{i=1}^n \bigoplus N_i$. We are interested in the following condition [1]:

(**) Every maximal submodule of D contains a non-zero direct summand of D. As was claimed in [1], [2], whenever we study the conition (**), we may restrict ourselves to the case where R is basic and $N_i = eR/A_i$ for a fixed primitive idempotent e and a right ideal A_i in eR. Now, let N = eR/A be a hollow module. Put $\Delta = eRe/eJe = \overline{eRe} = \operatorname{End}_R(N/J(N)) = \operatorname{End}_R(eR/eJ)$, and $\Delta(A) (=\Delta(N)) =$

 $\{x \mid x \in eRe \text{ and } xA \subset A\}$ (see [2]). We denote by $N^{(m)}$ the direct sum of m copies of N. Then $N^{(m+1)} = N \oplus N^{(m)}$. If M is a maximal submodule of $N^{(m)}$ then $N \oplus M$ is a maximal submodule of $N^{(m+1)}$. Thus we get a mapping $\theta(m)$ of the isomorphism classes of maximal submodules in $N^{(m+1)}$.

Theorem 1 (cf. [3], Corollary 2 to Theorem 3). Let N=eR/A be a hollow module. Then the following conditions are equivalent:

- 1) $[\Delta: \Delta(A)] = k.$
- 2) If m > k, every maximal submodule M in $D = N^{(m)}$ contains a submodule

isomprphic to $N^{(m-k)}$ but not to $N^{(m-k+1)}$. In this case, such a submodule of M is a direct summand of D.

3) $\theta(i)$ is not epic for every $i \leq k-1$, but $\theta(j)$ is epic for every $j \geq k$.

Proof (cf. [2], the proof of Theorem 3).

1) \rightarrow 2). Put $D=N^{(m)}=D(k)\oplus D'(n)$, where m=k+n, D(k) is the direct sum of the first k copies of N and D'(n) the direct sum of the last n copies of N. Let $\{\overline{1}, \overline{\delta}_2, \dots, \overline{\delta}_k\}$ be a set of linearly independent elements in Δ over $\Delta(A)$. Set $\beta_i=(\widetilde{\delta}_i, \widetilde{0}, \dots, \widecheck{e}, \widetilde{0}, \dots, \widetilde{0})$ in D(k), and $M=\sum_{i=2}^k \beta_i R+D'(n)+J(D)$ in D, where \widetilde{x} means the residue class of x in eR/A. Then M is a maximal submodule of D. Suppose that $M \supset M_1 \oplus M_2 \oplus \dots \oplus M_q \oplus M^*$ and $M_i \approx N$ for all i. Then

$$(\alpha) M_i \subset J(D) .$$

Actually, if not, $N \approx M_i \subset J(D) = DJ$, which is impossible. Since $M_i \approx eR/A$, $M_i = \rho R$ and $r_R(\rho) = \{r \in eR \mid \rho r = 0\} = A$. Now let $\rho = \sum \beta_i y_i + y + j$, where $y_i \in eRe$, $y \in D'(n)$ and $j \in J(D)$. Then $\rho = (\sum_{i \geq 2} \tilde{\delta}_i y_i, \tilde{y}_2, \dots, \tilde{y}_k, \tilde{0}, \dots, \tilde{0}) +$ $(\tilde{0}, \tilde{0}, \dots, \tilde{z}_{k+1}, \dots, \tilde{z}_{k+n}) + (\tilde{j}_1, \tilde{j}_2, \dots, \tilde{j}_{k+n})$, where $z_i \in eRe$ and $j_i \in eJ$. By the structure of D and $r_R(\rho) = A$, $(y_i + j_i)A \subset A$, and $(\sum \delta_i y_i + j_i)A \subseteq A$. Noting that eA = A, we see that $\bar{y}_i \in \Delta(A)$ for $2 \leq i \leq k$, and $\sum_{i \geq 2} \tilde{\delta}_i \bar{y}_i \in \Delta(A)$. Therefore, $\bar{y}_i = 0$ for $2 \leq i \leq k$, since $\{\bar{1}, \bar{\delta}_2, \dots, \bar{\delta}_k\}$ is linearly independent. Hence

$$(\beta) \qquad \qquad \pi(M_i) \subset J(D(k)) ,$$

where $\pi: D=D(k)\oplus D'(n)\to D(k)$ is the projection. Let p_s be the projection on the s-th component of $D=N^{(k+n)}$. Since $M_1 \oplus J(D)$ and $\pi(M_1) \oplus J(D(k))$, $p_j | M_1$ is an epimorphism for some j > k, say j=k+1, and hence an isomorphism for $M_1 \approx N$. Therefore

$$(\gamma) D = D(k) \oplus M_1 \oplus D'(n-1),$$

where $D'(n)=N\oplus D'(n-1)$. Now assume that $D=D(k)\oplus M_1\oplus M_2\oplus\cdots\oplus M_s$ $\oplus D'(n-s)$. Let $\pi_{D'(n-s)}$ be the projection of D onto D'(n-s) in the above decomposition. Suppose $\pi_{D'(n-s)}(M_{s+1}) \subset J(D'(n-s))$. Then $\pi_{D(k)\oplus D'(n-s)}(M_{s+1})$ $\subset J(D)$ by (β). On the other hand, $0=M_{s+1}\cap (M_1\oplus M_2\oplus\cdots\oplus M_s)=$ ker $(\pi_{D(k)\oplus D'(n-s)}|M_{s+1})$, so M_{s+1} is monomorphic to a submodule in J(D), which is impossible. Hence $\pi_{D'(n-s)}(M_{s+1}) \subset J(D'(n-s))$, and so $D=D(k)\oplus M_1\oplus M_2\oplus$ $\cdots\oplus M_{s+1}\oplus D'(n-s-1)$ by the above argument. Accordingly, $q \leq n$, and hence M does not contain a submodule of D isomorphic to $N^{(n+1)}$. Let M' be an arbitrary maximal submodule of D. Then, by induction on m and [2], Theorem 2, $M'=N'^{(m-k)}\oplus M^*$, where $N'\approx N$.

2) \rightarrow 1). Take m=k+1. By (α) and the argument employed in proving (γ), we see that D contains a direct summand which is isomorphic to N. Hence

322

 $[\Delta: \Delta(A)] = k$ by [2], Theorem 2.

1) \leftrightarrow 3). In case $\theta(t)$ is epic, every maximal submodule M of $N^{(t+1)}$ contains a direct summand M_1 which is isomorphic to N. Then, by 2), M_1 is also a direct summand of $N^{(t+1)}$. Hence $\theta(t)$ is epic if and only if $N^{(t+1)}$ satisfies (**), and the equivalence of 1) and 3) is clear by [2], Theorem 3 (see Remark below).

In Theorem 1, we have studied a direct sum of isomorphic copies of a fixed hollow module. Next, let $N_1 = eR/A_1$ and $N_2 = eR/A_2$. If there exists an epimorphism φ of N_1 to N_2 then we write $N_1 > N_2$. Since φ is given by the left-sided multiplication of a unit element x in eRe, we have $xA_1 \subset A_2$, and furthermore $N_1 \approx eR/xA_1$. Hence, when we study the direct sum $N_1 \oplus N_2$ with $N_1 > N_2$, we may assume that $A_1 \subset A_2$.

Theorem 2. Let $\{N_i = eR/A_i\}_{i=1}^n$ be a family of hollow modules $(n \ge 2)$. Assume that $|A_1| \ge |A_2| \ge \cdots \ge |A_n|$. Then $D = \sum_{i=1}^n \bigoplus N_i$ satisfies (**) if and only if, for any sequence $\{\overline{\delta}_2, \dots, \overline{\delta}_n\}$ of n-1 elements in Δ , there exist an integer $t \ (2 \le t \le n)$ and $\overline{y}_i \in \Delta(A_i, A_i) \ (2 \le i \le t-1)$ such that

$$(\ddagger) \qquad \qquad \sum_{i=2}^{t-1} \overline{\delta}_i \overline{y}_i + \overline{\delta}_t \in \Delta(A_t, A_1),$$

where $\Delta(A_i, A_i) = \{\bar{x} \mid x \in eRe \text{ and } xA_i \subset A_i\}.$

Proof. We may assume that R is basic. Take the maximal submodule Min D generated by $\beta_i = (\tilde{\delta}_i, \tilde{0}, \dots, \check{\tilde{e}}, \tilde{0}, \dots, \tilde{0})$ $(i=2, 3, \dots, n)$. Then M contains a direct summand M_1 of D, i.e., $D = M_1 \oplus D_1$ and $M_1 \approx N_p$ for some p; M_1 is generated by $\alpha = \sum_{i \geq q} \beta_i y_i + j$, where $y_i \in eRe$ $(y_q \notin eJe$ for some q) and $j \in J(D)$. Now, $\alpha = (\sum_{i\geq 2} \tilde{\delta}_i y_i + \tilde{j}_1, \tilde{y}_2 + \tilde{j}_2, \cdots, \tilde{y}_n + \tilde{j}_n)$. Assume that $\bar{y}_n = \bar{y}_{n-1} = \cdots = \bar{y}_{i+1} = 0$ and $\bar{y}_t \neq 0$. Let π_t be the projection of $D = \sum \bigoplus N_i$ onto N_t . Then $\pi_t | M_1$ is an epimorphism, so $M_1 > N_t$. On the other hand, let π be the projection of $D=M_1\oplus D_1$ onto M_1 . We shall show that $\pi_t \mid M_1$ is an isomorphism. Suppose, to the contrary, that $|M_1| > |N_t|$. Then, since $|N_k| \le |N_t|$, $\pi(N_k) \subset J(M_1)$ for $k \leq t$, and $\alpha = \pi(\alpha) = \pi(\sum_{i \geq 2} \tilde{\delta}_i y_i + \tilde{j}_1, \tilde{0}, \cdots, \tilde{0}) + \pi(\tilde{0}, \tilde{y}_2 + \tilde{j}_2, \tilde{0}, \cdots, \tilde{0}) + \cdots + \pi(\tilde{0}, \cdots, \tilde{0})$ $\tilde{y}_t + \tilde{j}_t, \tilde{0}, \cdots, \tilde{0}) + \pi(\tilde{0}, \cdots, \tilde{y}_{t+1} + \tilde{j}_{t+1}, \tilde{0}, \cdots, \tilde{0}) + \cdots + \pi(\tilde{0}, \cdots, \tilde{y}_n + \tilde{j}_n) \in J(M_1) \subset J(M_1)$ J(D), which is a contradiction. Hence $M_1 \approx N_t$. Now, let $\varphi: eR \rightarrow M_1$ be a homomorphism given by setting $\varphi(er) = \alpha er$. Then, since $y'_t(\ker \varphi) \subset A_t$ and $|M_1| = |N_t|$, we have ker $\varphi = y_t^{\prime-1}A_t$, where $y_t^{\prime} = y_t + j_t e$. Hence $(\sum_{i=2}^t \delta_i y_i + j_i e)$. $y_t'^{-1}A_t \subset A_1$ and $(y_i+j_ie)y_t'^{-1}A_t \subset A_i$ $(2 \le i \le t-1)$. Conversely, assume the above property. Let M be a maximal submodule of D, and put $\overline{D} = D/J(D) \supset$ $\overline{M} = M/J(D)$. If \overline{M} contains some $\overline{eR/A_i}$ then $M \supset eR/A_i$. Hence we may M. HARADA AND Y. YUKIMOTO

assume that $\overline{M} = \sum \overline{\beta}_i R$, where $\beta_i = (\widetilde{\delta}_i, \widetilde{0}, \dots, \widetilde{\widetilde{e}}^i, \widetilde{0}, \dots, \widetilde{0}) \in M$. By assumption, there exists $\{y_i\}_{i=2}^{t-1}$ such that $\sum_{i=2}^{t-1} \overline{\delta}_i y_i + \overline{\delta}_t \in \Delta(A_t, A_1)$ and $\overline{y}_i \in \Delta(A_t, A_i)$ $(i \ge 2)$. We define a homomorphism $\theta : N_t \to \sum_{j=i}^{t-1} \oplus N_j$ by setting $\theta(x) = ((\sum_{i=2}^{t-1} \widetilde{\delta}_i y_i + \widetilde{\delta}_t + \widetilde{j})x,$ $\widetilde{y}_2 x, \dots, \widetilde{y}_{t-1} x)$, where $j \in eJe$ and $(\sum \delta_i y_i + \delta_t + j)A_t \subset A_1$. Then $\sum_{i=1}^{t} \oplus N_i = \sum_{i=1}^{t-1} \oplus N_i \oplus N_t(\theta)$ and $N_t(\theta) = (\theta + 1_{N_t})N_t = (\theta + 1_{N_t})\widetilde{e}R = (\sum \beta_i y_i + \widetilde{j}e)R \subset M$.

REMARK. If we put all $A_i = A$ in Theorem 2, then we obtain [2], Theorem 2. Next, in [2], Theorem 3, we can take a set of linearly independent elements $\{\delta_{i1}, \dots, \delta_{isi}\}$ in Δ over $\Delta(N_i)$. Apply Theorem 2 for the set $\{\delta_{ij}\}_{i=1}^{t}$. Then we obtain [2], Theorem 3, because $\Delta(N_i, N_j) \neq 0$ implies $N_i \approx N_j$.

The next is a dual to [3], Corollary to Theorem 4.

Corollary 1. Let N_1 and N_2 be hollow modules. Assume that $[\Delta: \Delta(N_2)] = k < \infty$. Then $N_1 \oplus N_2^{(k)}$ satisfies (**) if and only if $N_1 > N_2$ or $N_1 < N_2$.

Proof. Apply Theorem 2 to a basis $\{\bar{e}, \bar{\delta}_2, \dots, \bar{\delta}_k\}$ of Δ over $\Delta(N_2)$.

For two hollow modules N_1 and N_2 , we put $N_1 \sim N_2$ when $N_1 > N_2$ or $N_1 < N_2$. Given a family $\{eR/A_i\}_{i=1}^n$ of hollow modules, we set

$$D = \sum_{i=1}^{n} \oplus eR/A_i = \sum_{j=1}^{n_1} \oplus eR/A_{1j} \oplus \sum_{j=2}^{n_2} \oplus eR/A_{2j} \oplus \cdots \oplus \sum_{j=1}^{n_m} \oplus eR/A_{mj},$$

where $(eR|A_{ik} \sim eR|A_{ij}$ for some k and j, and) $eR|A_{ik} \sim eR|A_{i'j}$ for all k and j provided $i \neq i'$.

Corollary 2. Let D be as above. Then D satisfies (**) if and only if so does some $\sum_{i} \bigoplus eR/A_{ij}$.

Proof. If some $D_i = \sum_{j=1}^{n_i} \bigoplus eR/A_{ij}$ satisfies (**), then so does D by [2], Lemma 1. Next, we shall show that D does not satisfy (**) if none of D_i does. We may assume that $|A_{i1}| \ge A_{i2} \ge \cdots \ge |A_{ini}|$. Then there exists $\{\overline{\delta}_{i2}, \overline{\delta}_{i3}, \cdots, \overline{\delta}_{ini}\}$ $\subset \Delta$ for which (\$\$) never holds if $n_i \ge 2$. If D satisfies (**) then there exist B_i and $\overline{y}_k \in \Delta(B_i, B_1)$ such that

(
$$\delta$$
) $\sum_{h=2}^{t-1} \overline{\varepsilon}_h \overline{y}_h + \overline{\varepsilon}_t \in \Delta(B_t, B_1),$

where B_p is equal to some A_{ij} , $|B_p| \ge |B_{p+1}|$ for all p, \mathcal{E}_p is equal to some δ_{ij} , and $\delta_{i1} = e$ for all i. First, assume that $B_i = A_{ik}$ and $B_1 = A_{i1}$. Since $\Delta(A_{ij}, A_{i'j'}) = 0$ for $i \neq i'$, (δ) becomes

$$\delta_{i2}\bar{y}_{i_2} + \dots + \delta_{i_{k-1}}\bar{y}_{i_{k-1}} + \delta_{i_k} \in \Delta(A_{i_k}, A_{i_1})$$

and $\bar{y}_{i_p} \in \Delta(A_{ik}, A_{ip})$, which is a contradiction. Next, assume that $B_t = A_{ik}$ and $B_1 = A_{i'1}$ for $i \neq i'$. Then (δ) becomes

324

$$\bar{e}\bar{y}_{i_1} + \bar{\delta}_{i2}\bar{y}_{i_2} + \dots + \bar{\delta}_{ik-1}\bar{y}_{i_{k-1}} + \bar{\delta}_{ik} = 0$$

and $\bar{y}_{i_p} \in \Delta(A_{ik}, A_{i_p})$. But, $\bar{e}\bar{y}_{i_1}$ being in $\Delta(A_{i_p}, A_{i_1})$, we have a contradiction. Therefore D does not satisfy (**).

Corollary 3. Let $\{N_i = eR/A_i\}_{i=1}^{m+1}$ be a family of hollow modules $(m \ge 1)$. Assume that $[\Delta: \Delta(A_i)] = n$ for all i and $A_i \supset A_j$ for i < j. If $n \le 3$ then $\sum_{i=1}^{n+1} \bigoplus N_i$ satisfies (**).

Proof. If n=1, this is clear by [2], Theorem 1. Assume n=2. If $\Delta(A_3, A_1) \supseteq \Delta(A_3)$ then (#) holds trivially. So, we assume that $\Delta(A_3, A_1) = \Delta(A_3)$. Since $\Delta(A_3) = \Delta(A_3, A_1) \supset \Delta(A_2, A_1) \supset \Delta(A_2)$, we get $\Delta(A_3) = \Delta(A_2) = \Delta(A_2, A_1)$. In view of $[\Delta: \Delta(A_3)] = 2$, for any $\overline{\delta}_2, \overline{\delta}_3 \in \Delta$ we can find $\overline{z}_2, \overline{z}_3 \in \Delta(A_3)$ such that $\overline{\delta}_2 \overline{z}_2 + \overline{\delta}_3 \overline{z}_3 \in \Delta(A_3) = \Delta(A_3, A_1)$ and $\{\overline{z}_2, \overline{z}_3\} \equiv 0$. This shows that $\{\overline{z}_2, \overline{z}_3\}$ satisfies (#). Finally, assume that n=3. Let $\overline{\delta}_2, \overline{\delta}_3$ and $\overline{\delta}_4$ be elements in Δ . First assume that $\Delta(A_3) \cong \Delta(A_3, A_1)$. Then $[\Delta/\Delta(A_3, A_1): \Delta(A_3)] \leq 1$. If $\overline{\delta}_3$ is in $\Delta(A_3, A_1)$ then (#) holds trivially. So, assume that $\overline{\delta}_3 \in \Delta(A_3, A_1)$. Then there exist $\overline{y}_3, \overline{y}_4 \in \Delta(A_3)$ such that $\overline{\delta}_3 \overline{y}_3 + \overline{\delta}_4 \overline{y}_4 \in \Delta(A_3, A_1)$ and $\{\overline{y}_3, \overline{y}_4\} \equiv 0$. Since $\overline{y}_4 \pm 0$ by $\overline{\delta}_3 \in \Delta(A_3, A_1)$, $\overline{\delta}_3 \overline{y}_3 \overline{y}_1^{-1} + \overline{\delta}_4 \in \Delta(A_3, A_1) \subset \Delta(A_4, A_1)$, and $\overline{y}_3 \overline{y}_4^{-1} \in \Delta(A_3) \subset \Delta(A_4, A_3)$. Hence (#) holds. Next, assume that $\Delta(A_3) = \Delta(A_3, A_1) \subset \Delta(A_4, A_1) \subset \Delta(A_4, A_1)$ and $\{\overline{y}_i, \overline{y}_4 \in \Delta(A_3)$ such that $\overline{\delta}_2 \overline{y}_2 + \overline{\delta}_3 \overline{y}_3 + \overline{\delta}_4 \overline{y}_4 \in \Delta(A_3) \subset \Delta(A_4, A_1)$ and $\{\overline{y}_i\} \equiv 0$. Now, by making use of a similar argument as above, we can easily see that $\{\overline{y}_i\}$ satisfies (#).

By making use of the above argument and Corollary 1, we can prove the following corollary.

Corollary 4. Let $\{N_i = eR/A_i\}_{i=1}^{m}$ be a family of hollow modules. Assume that $\Delta(A_i) = \Delta(A_1)$ for all *i* and $[\Delta: \Delta(A_1)] = n$. Then all the direct sums $\sum_{i=1}^{n+1} \bigoplus T_i$ with T_i isomorphic to some one in $\{N_i\}$ satisfy (**) if and only if $\{N_i\}$ is linearly ordered with respect to <.

EXAMPLE. Let k be a field and x an indeterminate. Let L=k(x), and $K=k(x^5)$. Consider the ring

$$R = \begin{pmatrix} L & L \\ 0 & K \end{pmatrix}.$$

Put $A_{4-i} = (0, K + Kx + \dots + Kx^i) \subset e_{11}R$ $(0 \le i \le 3)$, and $N_i = e_{11}R/A_i$. Then $A_1 \supset A_2 \supset A_3 \supset A_4$ and $\Delta(A_i) = K$. We can show directly the following facts: Both $N_1 \oplus N_3 \oplus N_4$ and $N_1 \oplus N_2 \oplus N_4$ satisfy (**). But, no direct sum $N_i \oplus N_j$ $(i \ne j)$ satisfies (**) and neither $N_1 \oplus N_2 \oplus N_3$ nor $N_2 \oplus N_3 \oplus N_4$ does. (Note that $\begin{array}{l} \Delta(A_4,\ A_1) = K + Kx + Kx^2 + Kx^3 \ \text{and} \ \Delta(A_3,\ A_1) = \Delta(A_4,\ A_2) = K + Kx + Kx^2.) \\ N_1 \oplus N_2 \oplus N_3 \oplus N_4 \ \text{satisfies (**), but neither } N_i^{(4)} \ \text{nor } N_i^{(5)} \ \text{does.} \ \text{If } m \geq 6 \ \text{then} \\ \sum_{i=1}^m \oplus N_i' \ \text{with } N_i' \ \text{isomorphic to some one in } \{N_i\} \ \text{satisfies (**).} \ \text{If we replace} \\ K = k(x^5) \ \text{by } k(x^7), \ \text{none of } N_1' \oplus N_2' \oplus N_3' \ \text{satisfies (**).} \end{array}$

References

- [1] M. Harada: On maximal submodules of a finite direct sum of hollow modules I, Osaka J. Math. 21 (1984), 649–670.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan