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1. Introduction

We call submanifolds with parallel second fundamental form parallel
submanifolds. It is well-known that parallel submanifolds in Riemannian
locally symmetric spaces are locally symmetric. It is an interesting problem
to classify the parallel submanifolds in a specific Riemannian symmetric space.
In fact, these submanifolds have been classified by several authors when the
ambient spaces are real space forms and complex space forms (for reference
see remark after Theorem 3.10). In this paper we shall classify parallel sub-
manifolds in a quaternion projective space and its non-compact dual.

A quaternion projective space and its non-compact dual are quaternionic
Kaehler manifolds. After recalling these notions, we define in §2 three kinds
of immersions of a Riemannian manifold into a quaternionic Kaehler manifold,
namely, totally real, totally complex, and invariant immersions, and then study
fundamental properties of these immersions. In §3, we shall show that a
parallel but not totally geodesic submanifold in a quaternion projective space
or its non-compact dual is one of the following (Theorem 3.10):

(R-R) totally real submanifold which is contained in a totally real totally
geodesic submanifold,

(R-C) totally real submanifold which is contained in a totally complex
totally geodesic submanifold,

(C-C) totally complex submanifcld which is contained in a totally complex
totally geodesic submanifold,

(C-H) totally complex submanifold which is contained in an invariant
totally geodesic submanifold whose dimension is twice the dimension of the
submanifold.

It is known that a totally real totally geodesic submanifold and a totally complex
totally geodesic submanifold of a quaternion projective space or its non-compact
dual are a real space form and a complex space form respectively. Therefore
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in order to determine all submanifolds in question we have only to classify
the submanifolds of type (O-H).

In §4, we give a characterization of a totally complex immersion into an
n-dimensional quaternion projective space. Namely, associated with a totally
complex immersion, there exists a Kaehler immersion into a (2n-1)-dimen-
sional complex projective space whose composition with the projection of the
complex projective space onto the quaternion projective space coincides with
the given totally complex immersion (Theorem 4.1). In §6, we construct
models of totally complex parallel immersions of Hermitian symmetric spaces
into a quaternion projective space using the notion of the symplectic repre-
sentations. For this purpose we review in §5 Kaehler immersions of Her-
mitian symmetric spaces into a complex projective space. In §7 we shall
determine totally complex parallel immersions into a quaternion projective space
and its non-compact dual. In fact, we show that there is no totally complex
parallel immersion into the non-compact dual besides totally geodesic ones
(Theorem 7.2) and that a totally complex parallel immersion of type (O-H)

into a quaternion projective space is one of the models constructed in §6 (Theo-

rem 7.3).
The author wishes to express his hearty thanks to Professor K. Ogiue for

his useful comments and Dr. K. Mashimo who advises the author on the re-
presentation theory of Lie algebras. He would like to express his sincere
gratitude to Dr. H. Naitoh for his valuable suggestions.

2. Quaternionic Kaehler manifolds and their submanifolds

Let H be the algebra of quaternions, i.e., H={\ =a+bi+c¢+dk|a, b, ¢, d
ER, ’=j*=kKF=—1, {j=—ji=k, jk=—kj=1i, ki=—ik=j}. Let V be an n-
dimensional right vector space over H with a quaternion Hermitian inner
product (, ) such that (u\, v)=2X(u, v) for u,veV, A& H. We call this space
a quaternionic Hermitian vector space. We shall treat this space also as a real
vector space V' endowed with an algebra A4 of linear transformations of V" and a
Euclidean inner product < , > which satisfy the following condition:

(2.1) 'There is an algebra isomorphism of the algebra H of quaternions onto A4
such that the unit element of H corresponds to the identity transfor-
mation. Denote by 4’ the subspace of 4 spanned by the linear trans-
formations which correspond to 7, j, and k& of H by this isomorphism.
Then the Euclidean inner product {,> on V is invariant by any element
L of A', i.e., {Lu, v>+<u, Lv>=0 for u, vV,

We note that the subspace 4" of A defined in (2.1) does not depend on the
choice of algebra isomorphisms of H onto A. In fact, it is easily verified that
A’ coincides with the subset consisting of elements L&A such that L?=—bid
for some non-negative number b, where id denotes the identity transformation
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of V.

Lemma 2.1. From a quaternionic Hermitian vector space, we can con-
struct a real vector space with an algebra of real linear transformations and a Eu-
clidean inner product which satisfy (2.1). Conversely given a triple (V, {,>, A)
sfitisfying (2.1), we can define a structure of quaternionic Hermitian vector space
on V. Moreover under this correspondence, the set of quaternion linear trans-
formations which preserve the quaternicn Hermitian inner product ( , ) coincides
with that of real linear transformations which commute with each element of A
and preserve the Euclidean inner product {,).

Proof. Let V be a quaternionic Hermitian vector space with a quaternion
Hermitian inner product ( , ). We restrict the coefficient field to R and view
V as a real vector space. Define real linear transformations I, J, and K by
I(u)=u(—i), J(u)=u(—j), and K(u)=u(—Fk) for ucV respectively, and define
A to be the set of real linear transformations of V" which are real linear combi-
nations of I, J, K and id. Putting <{u, v>—the real part of (u, v) for u, vEV,
we obtain a Euclidean inner product {,> on V. Then the set 4 and the Euclid-
ean inner product <{,> satisfy (2.1). Conversely let (V, {,>. 4) be a triple which
satisfies (2.1). Denote by I, J, and K the real linear transformations of ¥V
which correspond to 7, j, and % respectively by an algebra isomorphism of H
onto A. Define a quaternion scalar product by w(a-+bi-cj+dk)=(a—bl
—cJ—dR)u for ucV and define a quaternion Hermitian inner product ( , )
by (4, v)=<u, v>+<u, Ivdi+<lu, Jo>j+<u, Kodk. Then V is a quaternionic
Hermitian vector space with the quaternion Hermitian inner product ( , ).
The last statements are easily verified.

By this Lemma, we call a triple (V, {,>, A4) satisfying (2.1) also a quater-
nionic Hermitian vector space.

DerFINITION 2.2. We call a basis {I, J, K} of A’ a canonical basis of A’
if there is an algebra isomorphism of H onto 4 by which I, J, and K corre-
spond to 7, §, and & of H respectively.

Lemma 2.3. Let (V, {,>, A) be a quaternionic Hermitian vector space
with dimgV=4n and A’ be the subspace of A defined in (2.1). Let F and G be
mutually orthogonal elements of A’ which have the same length /4n with respect
to the metric naturally induced from {,>. Set H=FG. Then {F, G, H} is a
canonical basis of A'.

Proof is easy and so is omitted.

Now we define quaternionic Kaehler manifolds and review their curvature
properties (cf. Ishihara [8]).
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DEFINITION 2.4. Let M be a connected smooth manifold and # and A4’
be a Riemannian metric of M and a 3-dimensional subbundle of the vector
bundle Hom(7T'M, TM) over M respectively, where TM is the tangent vector
bundle of M. Assume that § and A’ satisfy the following conditions:

(a) For an arbitrary point p of M there is a neighborhood U of p over
which there exists a local frame field {I, J, K} for A’ satisfying

= —R— —ig IJ— —JT=R,
JR——RJ—1 RI—_IR—].

(b) For any element L& A4}, the metric §, is invariant by L, i.e., g,(Lu, v)
+8,(u, Lv)=0 for u, ve T,M, p= M.

(¢) The vector bundle A’ is parallel in Hom(TM, TM) with respect to
the Riemannian connection V associated with g. 'This means that if {I, J, K}
is a local frame field for A’ over U which satisfies (a), then there exist local
1-forms a, B, and v defined over U such that

Vil = Y(X)J—-BX)K
Vil = _'Y(X)i +a(X)K
VK= BX)I-a(X)].
Then the triple (M, g, A’) or simply M is called a quaternionic Kaehler mani-

fold and (3, A') a quaternionic Kachler structure. We call {I, J, K} in (a) a
local canonical basis of A'.

Here we remark that, at any point pe M, (T,M, g, A,) is a quaternionic
Hermitian vector space, where A4, denotes the algebra generated by A} and
the identity transformation of T',.

A Riemannian manifold is a quaternionic Kaehler manifold if and only if
its holonomy group is a subgroup of Sp(1)-Sp(n) (see [8], [20]). Wolf [20]
classified symmetric spaces which have quaternionic Kaehler structures. An
n-dimensional quaternion projective space and its non-compact dual are such
spaces. Their quaternionic Kaehler structures will be given in §4.

We need following lemmas.

Lemma 2.5 ([8]). The curvature tensor R of a quaternion projective space
or its non-compact dual is of the form:

RX,Z = % {3(Y, Z) X—g(X, Z)Y+g(IY, Z)IX—g(IX, Z)IY+

2JY, Z)JX—§(JX, Z)JY+§RY, Z)RX—gKX, Z)KY
—28(IX, V)IZ—2(JX, Y)JZ—28(RX, Y)RZ} ,

where X, Y, Z are vector fields, {I, J, K} is a local canonical basis and T is a posi-
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tive or negative constant according as the space is a quaternion projective space or
its non-compact dual.

A complete and simply connected quaternionic Kaehler manifold whose
curvature tensor is of the form given in Lemma 2.5 will be called a quaternionic

space form and will be denoted by M(c).

Lemma 2.6 ([8]). Let M be a quaternionic Kaehler manifold with dimg M
=4m=8. Then M is an Einstein space. Moreover if E, F, and G are the com-
ponents of the curvature tensor R acting on the vector bundle A’ with respect to
a local canonical basis {I, J, K}, i.e.,

Rx, VI = G(X,Y)J-F(X, K
Rx, V)= -GXx, I +EX, VK
RX, V)K= FXVI-EXY)],

then E, F, and G are as follows;

=2 -7 0

E=2da+BA7)=—- D oY,

I _— '?: ~

F=2dB+YNa) = ey Q7
T

G=2(d =————Qf

(dv+aNnp) dm(mt2) %
Here o, B, and v are the connection forms with respect to this local canonical basts
{I, J, K} (cf. Definition 2.4), * denotes the scalar curvature of M, and Qr, Q7,
and Qx denote local 2-forms defined by Qi (X, Y)= #1IX,Y), 03X, V)=4(JX, V),
and Qx(X, Y)=§KX,Y).

We shall define three kinds of immersions into a quaternionic Kaehler
manifold. For this purpose, put.

DEFINITION 2.7 (Funabashi [6]). Let (V, {,), 4) be a quaternionic Her-
mitian vector space viewed as a real vector space and A’ be the subspace of 4
spanned by I, J, and K. Let W be a real subspace in V.

(i) W is called an invariant subspace if L(W)CW for any LeA4'.

(i) W is called a totally complex subspace if there exists a one-dimen-
sional subspace A, of A’ such that L(W)CW for L&A, and L(W)_| W for
Le A’ such that L_| A,.

(iii) W is called a totally real subspace if L(W)_| W for any L& A4’.

DreFINITION 2.8 ([6]). Let M be a quaternionic Kaehler manifold and
f: M—M be an isometric immersion of a Riemannian manifold M into M.
(1) f is called an invariant immersion if f, T,M is an invariant subspace
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of T,(,)M at any point pe M.

(ii) f is called a totally complex immersion if f, T,M is a totally complex
subspace of T';,M at any point pE M.

(i) f is called a totally real immersion if f,T,M is a totally real subspace
of Tf(,,)M at any point p& M.

RemARk. If f is invariant, then M is of dimension 4% and if f is totally
complex, then M is of even dimension.

We shall discuss fundamental properties of these immersions. First the
following fact is known.

Proposition 2.9 ([6]). If f is an invariant immersion into a quaternionic
Kaehler manifold, then f is totally geodesic.

As for totally complex immersions, we have

Lemma 2.10. Let (M, 3, A’) be a quaternionic Kaehler manifold with
dimp M=4m=8 whose scalar curvature does not vanish. Let f be a totally com-
plex immersion of a Riemannian manifold M with dimg M =4 into M. Then
for an arbitrary point pc M, the induced bundle f*A' has a local canonical basis
{1, J, R} over some neighborhood U around p such that If T M=f,T M, Jf T,M
LfeT M, Rf T,M ] T ,M at any point g€ U and that ¥ I=0, VJ=a(X)K,
ViK=—a(X)]. Here ¥V denotes the connection on f*A’ induced from the connec-
tion on A’, and X and a are a vector field and a 1-form on U respectively.

Proof. By assumption we have the following orthogonal decomposition
at any point peM;

Afy = Ayt+4,,

where A, is a one-dimensional subspace of A} and Lf,T,MC foT,M for
LeA, LfyT,M| fT,M for L A,. 1t is easily checked that 4, and A4, are
subbundles of f*4' and hence f¥*4'=A4,+ A4, is an orthogonal decomposition
of vector bundles. Over some neighborhood U of p we take a local section
I of A, which has the length \/4m and a local section J of A4, which has the
length \/4m. We set K=I]. Then by Lemma 2.3 K is a local section of
A, and {I, J, K} is a local canonical basis of f*A' over U. Moreover this basis
satisfies Ify T M=fT,M, Jf«T ,M| fT,M, KfsT,M_| f,T,M at any point
geU. We denote by «a, 8, and v the connection forms of the induced connec-
tion ¥V on f*4’, and by E, F, and G the components of the curvature tensor R
with respect to this basis {I, J, K}. Then by Lemma 2.6 and by the above,
we have

22) E=2datBAY)= “ Y
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(23) F=2dB+7Aa)=0
(24)  G=2dv+anp)=0.

Differentiating (2.4), we have da AB—a AdB=0. Together with (2.2) and (2.3),
it follows
?

gmmrz) =0

Since the scalar curvature # of M does not vanish, we have
(2.5) QrAB=0.

Now we shall show 8=0 over U. Suppose that 840 at a point g U. Since
dimg M =4, there exist unit vectors X and Y of T,M such that X, IX €kerg
and Y | kerB, ie., B(Y)+0. Substituting X, IX, and Y in (2.5), we have

0=0QrABX, IX,Y)
= (X, IX)8(Y)+r(IX, Y)B3(X)+Qr (Y, X)B(IX)
= ﬁ(Y) )

which is a contradiction. Thus we have 8=0 over U. Similarly we have
v=0. This proves Lemma.

RemARk (1) By Lemma 2.10, 4, and 4, are parallel subbundles of f*A4’'.
(2) This Lemma does not hold when dim, M=2. Consider the Clifford
torus of S3. Regarding S3 as a totally geodesic submanifold of S* and com-
posing the totally geodesic imbedding of S* into a quaternion projective space,
we have a totally complex immersion of the torus into a quaternion projective
space. But the statements in Lemma 2.10 do not hold for this immersion.

Proposition 2.11. Under the same assumptions as in Lemma 2.10, M admits
locally a Kaehler structure I induced from the quaternionic Kaehler structure of
M and the fibres of the normal bundle N(M) also admit locally a complex structure
I such that VxI=0, where V= denotes the connection of the normal bundle N(M).
Moreover if h is the second fundamental form of f, the equation h(IX, Y)=h(X,
1Y)=IhX,Y) holds.

Proof. Let {I, J, K} be a local canonical basis of f*4’ taken as in Lemma
2.10. Then the tensor field I is an almost complex structure of the induced
bundle f*7M on U and it is parallel with respect to the induced connection V.
Therefore I induces complex structures in the fibres of the tangent bundle
TM and of the normal bundle N(M) over U, which we denote both by I. This
almost complex structure 7 on M and the Riemannian metric define a Kaehler
structure on U. The complex structure I of the normal bundle is parallel
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with respect to the normal connection V*. Moreover we have A(IX, Y)=h(X,
IY)=IhX,Y).
In view of this proposition, we put the following.

DEerINITION 2.12. Let M be a Kaehler manifold with the complex struc-
ture I and M be a quaternionic Kaehler manifold. An isometric immersion
f of M into M is called a totally complex immersion of Kaehler type if f is a to-
tally complex immersion and at any point p =M there exists a canonical basis
{I, J, K} of A}, such that fu IX=If.X for X&T,M.

Under the same notation and assumptions as in Lemma 2.10, we define
a tensor field T of (0, 3) over U by putting

T(x, y, 2) = <h(x,y), J&>  for x,y,2€T,M peU,
where {,> denotes the metric g of f*TM.

Lemma 2.13. (1) T is a symmetric tensor field.
(2) T{=x,y, 2)=T(x, Iy, 2)=T(x, y, I2) for any x, y, z&€ T ,M.

Proof. (1) For vector fields X, Y, and Z on U, we have

T(X,Y,Z) = <WX,Y), JZ> = {V;Y, JZ> = —<Y, Vx(JZ)
=<V Z, JY>=<WX, Z2),JY>=T(X, Z, Y).
Therefore T is symmetric. (2) By Proposition 2.11, we have A(/X, Y)=h(X,
1Y). This, together with (1), implies that T(IX, Y, Z)=T(X, 1Y, Z)=T(X,
Y, 1Z).

Now we discuss totally real immersions into a quaternionic Kaehler mani-

fold.

Lemma 2.14. Let f be a totally real immersion of a Riemannian manifold
M into a quaternionic Kaehler manifold (M, g, A') and h be the second funda-
mental form of f. Then for an arbitrary point pE M, there exists a neighborhood
U of p such that f*A' has a parallel local canonical basis {I, J, K} over U. More-

over we have

<h(x, v), I = <h(x, 2), I v
<h(x, v), Kz = <h(x, 2),Ky>

for any tangent vectors x, y, 2 at a point of U.

Proof. By Lemma 2.6, we see that the curvature tensor of ¥4’ vanishes.
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Therefore we can extend a canonical basis {I, J, K} of f*4’ at p over some
neighborhood U of p so that VI=VJ=VK=0 on U. Since the connection
V¥ is a metric connection of f*A4’, Lemma 2.3 implies that {I, ], K} is
a local canonical basis of f¥4’ over U. The second part is proved by similar
calculations as in Lemma 2.13. q.e.d.

We recall some results on curvature invariant subspaces of a quaternionic
space form M(¢). If a subspace W of the tangent space T,M of a Riemannian
manifold M at a point p& M satisfies (W, W)W CW, where R denotes the
curvature tensor of M, then W is called a curvature invariant subspace.

Proposition 2.15 (Funabashi [6]). Let M(¢) be a quaternionic space form
with ¢+0 and with dimp M=8. Then the subspace W of the tangent space T,M
is a curvature invariant subspace if and only if W is one of the following:
When dimgp W =4,

(1) W is an invariant subspace;

(2) W is a totally complex subspace;

(3) W is a totally real subspace.

When dimp W=3,
(1) W is a totally real subspace;
(2) {I,], K} being a canonical basis of A}, there exists a vector X&W
such that W is linearly spanned by X, IX, and JX.
When dimg W=2,
(1) W is a totally complex subspace;
(2) W is a totally real subspace.

3. Reduction theorem

Let M be an m-dimensional Riemannian manifold with the Riemannian
connection ¥V and M be an n-dimensional Riemannian manifold with the Rie-
mannian connection V. We denote by R and R the curvature tensor for ¥
and V respectively. Let f be an isometric immersion of M into M. We de-
note by % the second fundamental form of f, by V* the normal connection on
the normal bundle N(M) of f, and by R* the curvature tensor for V*. For
a point pe M, we define the first normal space N;(M) and the first osculating
space O(M) as follows:

N}’(m = '{k(X’ Y)ENP(IW)) X: YE TPM}R
O}(M) = T,M~+N}(M).

For the second fundamental form %, we define

VHX,Y, Z) = Vzh(X,Y)—h(V,X,Y)— WX, V,Y),
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where X, Y, and Z are vector fields on M. The isometric immersion f is called

parallel if Vh=0. If f is parallel and M is connected, the dimensions of N;(M)

and Oj(M) are constant on M. Therefore N (M)=UNyM) and O'(M)
»

= U O}(M) are subbundles of the induced bundle f*TM
?

Lemma 3.1 (Naitoh [11]). If the immersion f is parallel and M is locally
symmetric, the following holds:
(a) RX,Y)VZeT M
(b) R(X, VAT, Z)EN}M)
(c) RHT, SIX,Y)=~R(T, S)X, Y)+hX, R(T, S)Y)
(d) WT, R(X,Y)Z)=RWT, X),V)Z+R(X, T, Y))Z+R(X, Y))(T, Z)
(e) RWT, X), (S, Z)+R(X, W(T, Y))k(S, Z)cOyM),
for X,Y,Z, S, TeT,M and pEM.

Proposition 3.2. Let f be a parallel but not totally geodesic isometric immer-
sion of a connected Riemannian manifold M (dim M =2) into a quaternionic space
form MI(T), =0 with dimg M(2)=8. Then, for any point pEM, the tangent
space T,M and the first osculating space Oy(M) are curvature invariant subspaces
in T,M(¢). Moreover the following cases occur:

(a) When dim, M =4,

T,M O;(M)
(R-R) totally real totally real
(R-C) totally real totally complex
(C-0) totally complex totally complex
(C-H) totally complex invariant and dim Oy(M)=2 dim T ,M
(b) When dimp M=3,
T, M O}(M)
(R-R) totally real totally real
(R-C) totally real totally complex
(E-H) E invariant and dimp Oy(M)=4
(c) When dimp M=2,
T,.M O(M)
(R-R) totally real totally real
(R-C) totally real totally complex
(Cc-0C) totally complex totally complex
(C-E) totally complex E
(C-H) totally complex invariant and dimpy O,(M)=4,

where E in (b) means that for a fixed canonical basis {I, J, K} of A}, there exists a
vector X € T,M such that T,M is spanned by X, I1X, and JX and similarly E
in (c) means that if we take a canonical basis {I, J, K} of A} such that I T,M
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=T,M, JT,M | T,M, and K T,M_| T, M, then there exists a vector X € T,M
such that Oy M) is spanned by X, IX, and JX. Moreover, each property ((R-R),
(R-C), -+ etc) holds everywhere on M if it holds at one point of M.

Proof. Note that the subsets of points p&M such that T,M are totally
real, totally complex, invariant, or E are respectively closed sets. Similarly
the subsets of points p& M such that O;(M) are totally real, totally complex,
invariant, or E are respectively closed sets. Thus the last claim follows.

By Lemma 3.1 (a), the tangent space T,M is a curvature invariant sub-
space in T,M(¢). Curvature invariant subspaces are classified in Proposition
2.15 and by the above note, we see that each tangent space of M is a curvature
invariant subspace of the same type. If T,M is an invariant subspace in the
quaternionic Hermitian vector space T,M(¢), the immersion f is invariant and
thus totally geodesic by Proposition 2.9, which is the case excluded by assump-
tion. Hence it is sufficient to consider the following four cases which may
occur:

Case I: T,M is a totally real subspace,

Case II:  T,M is a totally complex subspace with dimg T,M =4,

Case III: T,M is a totally complex subspace with dimp T',M=2,

Case IV: T,M is a 3-dimensional subspace and for a fixed canonical basis
{I, J, K} of Aj, there exists a vector X & T,M such that T,M is spanned by
X, IX, and JX. We shall treat these four cases separately.

Case I. We prepare three lemmas. Denote by <,> the Riemannian
metric on T,M(Z) and let {I, J, K} be a canonical basis of 4}.

Lemma 3.3. In the Case I, the following equations hold:

(RY, H>KX—<KX, HYRKYENM),

(3.2) <Y, H>INT, X)—<IX, H>INT, Y)+<JY, H>JW(T, X)—
JX, H>JWT, Y)+<RY, H>KWT, X)—<KX, H>RWT, Y)—
AT, X), HY)IY+<INT, V), HXIX—<JW(T, X), H>JY+
KT, Y), H>JX—<RKT, X), H>RY+<{RWT, Y), H) KX €0} M),

for X, Y, T€T,M and HENXM).

Proof. Applying Lemma 3.1 (b), we obtain (3.1). Applying Lemma 3.1
(e) and Lemma 2.14, we obtain (3.2). q.e.d.

Denote by (N3(M))* the orthogonal complement of Ny(M) in N,(M).
For a normal vector §€N,(M), we denote by &, (resp. &) the Nj(M)-com-
ponent (resp. (N;(M))*-component) of £.
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Lemma 3.4. For any element LA}, there exists a constant k(L) such
that {(LX),, (LY)>=kL)XX, Y) for X, YT, ,M.

Proof. If L=0, then Lemma 3.4 holds trivially. If L=0, for a suitable
constant ¢, cL has the length \/4n, where dimp M(¢)=4n. By Lemma 2.3,
we can take a canonical basis {I, J, K} such that I=cL. Therefore it is suf-
ficient to prove Lemma 3.4 in the case of L=1 for an arbitrary canonical basis
{I, ], K}. By (3.1), we see that

<Yy HYIX)y—<(IX) 0 HXIY)s+<(J Y HY(JX),—
<(.7X)a)H>(.7Y)b+<(lzy)a’H>(KX)b_<(KX)a7 H>(KY)I: =0.

Putting H=(IX), and taking the inner product of this equation with (IX),,
we have
STV ) (TX) S <IX sy (TX)>—<IX) o (TS IV, (TX)
V)0 TX)STX ) (TS —TX) o TS T V) (TX)s>
R Y )y (TX),> SRy (IX) > — (R X) o (IX) R Y (IX) >
= {(IY)o(TX) ALK, XD —(IX) 1, (1) D} — (TX) o IX) DALY, XD —<TV ), (IX) D}
TV o (T ALY (TX) 5 —< K)o TX) ATV )or (TX) D
LR Yy (IX) A~ LB X) oy (1K), —(BX) o IX) AR V), (IX) 5}
= {(IY),, (IX) <X, X>—<(IX),, IX),><Y, XD
=0.

If X is not zero, we get
IX) o (IY)> = {TX)oy IX) <X, Y5 <X, X

Since X and Y are arbitrary, the above equation implies that (IX), and (IY),
are orthogonal for any mutually orthogonal vectors X and Y. Therefore the
value {(IX),, (IX),> /<X, X is independent on the choice of a non-zero vector
X. Denote this value by %(I). Then we have {(IX),, (IV)>=k(I)<X, V>
for X, YeT,M. q.e.d.

Lemma 3.5. The first normal space N,(M) is a totally real subspace in
T,M(?).

Proof. Since T,M is a totally real subspace, the immersion f is totally
real on M. By Lemma 2.14, we can take a local canonical basis {I, J, R} of
f*A' over some neighborhood U of p such that VI=VJ=VK=0. Now we
define a tensor field T of type (0, 3) over U by

T(X,Y,Z2)=<WX,Y),1Z>.
Then by Lemma 2.14, T is symmetric. For vector field X, Y, Z, and ¥ on
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U, we have

V1) (X,Y,Z) =V T(X,Y,Z)—T(vyX,Y,Z)—T(X,V, Y, Z)— T(X, Y,V,Z)
= VWX, Y) IZ>— (Vo X, V), 1Z>— WX,V V), IZ)
—<WX, V), I(VyZ)>
= VH(X, Y)), IZ>+<h(X,Y),Vi(IZ)>
— Wy X, V), IZ>— (X, Vy V), IZ>—<WX, Y), (Vv Z)>
= VKX, Y, V), IZ>+<WX,Y), Yy (12)—1(V, Z)>
= <h(X’ Y)’T(vVZ‘VVZ)>
= WX, V), IHZ,V)>.

Thus we obtain (V, T)(X,Y, Z)=<WX, V), INZ,V)>. Since W(X,Y), INZ,V)>
=<{(X,Y), INV,Z)>, we see that VT is a symmetric tensor field of type (0, 4).
Moreover we have (VxT) (X, X, X)=<h(X, X), InX, X)>=0 for X&T,M and
hence VT'=0. This implies that <k(X, Y), In(Z, V)>=0for X, Y, Z, and V €
T,M. Therefore we have I N}(M) is orthogonal to N3(M). Similarly we see
that JNj(M) and K Nj(M) are orthogonal to Nj(M). Consequently Ny(M)
is totally real. q.e.d.

Now consider Case I. For a fixed unit vector X< T,M we define 4;(X)
by the subspace of N,(M) linearly spanned by LX, L A;. Since dimg A5(X)
=3, the following four cases may occur:

Case 1: dim 4y(X) NN(M)=3,

Case 2: dim 4j(X) NN(M)=2,

Case 3: dim A} X)NN(M)=1

Case 4: dim 45(X) N N(M)=0.

Case 1 and Case 2. These cases do not occur.

Proof. We may take a canonical basis {I, J, K} of 4} such that IX and
JX are included in N}(M). By Lemma 3.5 we see that JX=K(IX) is ortho-
gonal to N(M), which is a contradiction.

Case 3. The first osculating space Oj(M) is a totally complex subspace
in T,M(©).

Proof. We may take & A4} such that IX&N}(M) and I has the length
V. Since {(IX),, (IX),>=<IX, IX>=<X, X>, the constant k(I) defined
in Lemma 3.4 is equal to 1. 'This implies that I(T,M) is contained in N}(M).
We take J<Aj which has the length \/4n and is orthogonal to I and put K

The following proof of Case 3 and Case 4 is suggested by Dr. H. Naitoh. The original proof was
more complicated.
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=IJ. Then by Lemma 2.3, {I, ], K} is a canonical basis of Aj.  Since Ix
EN}(M) and N}(M) is totally real, we have (JX),=(K(IX)),=0 and (KX),=
(—JIX)),=0. Hence by Lemma 3.4 we see that JT,M_| NyM), KT,M
1 N}M). By (3.2) we have <I'Y, HOINT, Z)—<1Z, H>INT, Y)€0)M). For
an arbitrary vector Z&T,M, we take an orthogonal vector Y to Z. Putting
H=]Y in the above equation we get Ih(T, Z)cO)(M). Thus we see that
Ioy(M) c O}(M), JO}(M)_| O)M), and KO} M)| OXM). This means that
Oj}(M) is a totally complex subspace in T',M(&).

_Case 4. The first osculating space O(M) is a totally real subspace in
T,M(2).

Proof. By (3.1), we have

B3 AV)o H>IX)—IX)0 HYTV)s+L(JV)or H>(JX)s
~JX)or H (JY )5+ (R Y )y H(RX),—(RX)o, HY(KY), = 0

for X,YeT,M, HEN,(M). Since N;(M) is totally real by Lemma 3.5, we
apply I to (3.1) and get

—<Y),, H>XALIX),, HYY+LJY),, HYRX—{(JX),, H)RY
—{(RY)oy HYJX+L(RX),, HYJY € T,M+(N)(M))* .

Therefore we have

B4 JY), H>(KX),—<(JX)., H>(KY),
—(RY) o H>(JX),AH<RX)o HX(JY), = 0.

Similarly applying J and K to (3.1), we have

(35)  (RY),, HY(IX),—<(RX), H>IY),
—{(IY)o, HY(RX),+<(IX),, H>(RY), = 0

(3'6) <(7Y)a7 H> (]X)a—<(TX)a) H>(]Y)a
—(JY)e, H>(IX) AL X)0 H>IY), = 0.

We take an orthonormal system {X, Y}. Putting H=(JX), in (3.4) and taking
the inner product of its both sides with (JX),, we have

37  LKY), (JX)><UX)., (JX).> =0.
Commuting X and Y in (3.7), we have

(3’8) <(EX)G) (]Y)a> <(]Y)a’ (]Y)a> =0.
Putting H=(IX), in (3.5) and taking the inner product with (IX),, we have

39  <RY)., IX)><IX)., IX)> =0
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and commuting X and Y, we get

(310) <([€X)aa (TY)a> <(IY)m (IY)a> =0
Putting H=(IX), in (3.6), we have similarly

(311) <(.7Y)a) (‘TX)a> <('TX)¢" ('TX)a> =0 ’

(312) <(.7X)a’ ('TY)a> <(fY)a) (IY)a> =0.

If dim A}X)NN(M)=0 for some non-zero vector Xe&T,M, then
dim A Y)NNy(M)=0 for any YT, M. In fact for an element LEA} of
length \/4n, we have (LX);=+0 and hence the constant k(L) defined in Lemma
3.4 is not 1. Therefore in Case 4 (IY),, (JY),, and (KY), are linearly inde-
pendent for any non-zero vector Y&T,M. Assume that k(I)=0 and k(J)
+0. Then by (3.7)~(3.12) we have <{(KY), (JX)>=<(JY)., (KX)>
=<(KY)m (TX)a>=<(TY)a) (KX)a>=<(]Y)a’ (TX)4>=<('TY)a> (.TX)a>=O for
an orthonormal system {X, Y}. Since 0=<KY, JX>=<KY),, JX)>+
{(KY)y, (JX),», we have {(KY),, (JX);»=0. Similarly we get <(J¥);, (KX);>
— RV, (IX)> =< V), (RX)>=LJ V), IX);>={T V)i, (JX)s>=0. There-
fore the subspace in N,(M) spanned by (IX),, (JX);, and (KX), is orthogonal
to the subspace spanned by (I'Y),, (JY),, and (KY),. Thus (IX),, (JX);, (KX)s,
(IY),, (JY),, and (KY), are linearly independent. By (3.3) it follows then
(IX),=0, which is a contradiction. Next assume that k(I)=0, and k(J)=
k(K)=0. Then by (3.3) we have (IX),=0, which is a contradiction. By
these arguments in Case 4 LT,M is orthogonal to N(M) for any L& Aj.
This, together with Lemma 3.5, implies that O(M) is a totally real subspace
in T,M(©).

Case II. Since T,M is a totally complex subspace, the immersion f is
totally complex on M. Let {I, J, K} be a local canonical basis of f*4’ over
some neighborhood U of p taken as in Lemma 2.10. Note that IN}(M)=N}M)

by Proposition 2.11.
Applying Lemma 3.1 (b) and (e), we have

Lemma 3.6. In the Case II, the following equations hold:
(3.13)  <JY, HYJX—<JX, HYJY+<RY, HYRX—<KX, HYRY €N} M)

(3.14)  JY, H>JWT, X)—<JWT, X), HyJY++<KY, HYRI(T, X)
—<RWT, X), HYRY—2{JWT, X), YyJH—2{RWT, X), YyKH
—<JX, H>JWT, Y)+<JWT, Y), H)JX—<KX, H)Kh(T, Y)
+<RIT,Y), HYKX+2{JW(T, Y), X JH+2<{RK(T,Y), Xx>KH € O}(M)

for X, Y, TeT,M, He N (M).
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Similarly to Lemma 3.4, we may prove

Lemma 3.7. There exists a constant k such that {(JX),, (JY).>=<(KX),,
(RY)>=kX, V> for X, YET,M.

Lemma 3.8. The first normal space Ny(M) is a totally complex subspace,
e, INy(M)=Ny(M), JN)(M)_LN}M), RN}M)_LN}(M).

Proof. We define a tensor field T of type (0, 3) as Lemma 2.13. Differ-
entiating T, we obtain

VD) (X, Y, 2)= —a(NT(X, Y, IZ) <X, Y), JNZ, V)>.
Using the same arguments as Lemma 3.5, we have <i(X,Y), JW(Z, V)>=0.
Therefore JN}(M)=KN}(M) is orthogonal to N}(M). q.e.d.

By Lemma 3.7, the following two cases may occur;
Case 1: k=1,
Case 2: k<1.

Case 1. The first osculating space Oj(M) is an invariant subspace in
T ,M(?) and the dimension of O}(M) is twice that of T',M.

Proof. By Lemma 3.7, the subspace JT,M=KT,M of N,(M) is con-
tained in Nj(M). For an arbitrary vector X €T ,M, we take a non-zero vector
YET,M which is orthogonal to X and IX. Putting H=JY in (3.14), we

have

<Y, YOJKT, X)E0(M) .

Therefore JN}M)=KN}M) is contained in O}(M). Consequently the
first osculating space O}(M) is an invariant subspace. Moreover Lemma 3.8
implies that JN}(M) is contained in T,M. Therefore the dimension of O}(M)
is twice that of T',M.

Case 2. The first osculating space Oj(M) is a totally complex subspace
in T,M(¢).

Proof. By Lemma 3.7, we have
UX), JY)w> = <X, YO—<(JX)s, JY)o> = (1-R) <X, Y.

Therefore (JX),, (JV)s, (KX),=—(J(IX)),, and (RY),=—(J(IY)), are linearly
independent for an orthonormal system {X, IX, Y, IY}. By (3.13), we have

TV, H(JX)y—<JX, H)(JV)y+<KY, H) (K X),—<RX, H)(KY), = 0.
Therefore we get (KX),=0 and hence k=0. This means that JT,M=KT,M
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is orthogonal to Nj(M). Thus Oj(M) is a totally complex subspace.

Case III. Since T,M is a totally complex subspace, the immersion f is
totally complex on M. Then on some neighborhood U of p the induced bun-
dle f*A’ has a local canonical basis {I, J, K} such that at any point g U, IT,M
=TM, JT M1 T,M, KT,M_| T,M and that

vxj = 'Y(X)]_B(X)K
Vi = —7(X)I +a(X)K
VK= B(X)T—a()()j

We remark that 8 and ¥ do not vanish in general when dimp M=2. By usual
computations, we obtain

(3.15) WX, IV)—InX,Y)=vX)JY—BX)KY for X,YET,M.
Applying Lemma 3.1 (b) and (e), we have
Lemma 3.9. In Case 111, we have

(3.16)  <JY, H)JX—<JX, H)JY+<KY, H)KX—RX, H)KY
—~XIX,Y>IH e Ny(M),

(3.17)  <JY, HOJWT, X)—<JKT, X), HYJY-+<RY, HYRN(T, X)
—RWT, X), HYRY—2{JW(T, X), Y>JH—2{RW(T, X), Y>RH
—{JX, HYJW(T, Y)+<JKT, Y), H>JX—(RX, HYRW(T, Y)
HCRI(T, Y), HYRX+2JW(T, V), XoJH+2XRI(T,Y), XyKH €OYM),

for X, Y, TeT,M and He= Ny M).

We consider the following three cases:
Case 1: dim JT,M N Nj(M)=2,
Case 2: dim JT,M NNy(M)=1,
Case 3: dim JT,M N N}(M)=0.

Case 1. The first osculating space Oy(M) is an invariant subspace and
its dimension is 4.

Proof. In this case JT,M is contained in Nj(M) and hence by (3.16) we
have I(N}(M))=N}(M). Since the dimension of N}(M) is even and is not
greater than 3, it is just 2 and the first normal space N (M) coincides with
JT,M. Thus O}(M) is an invariant subspace.

Case 2. There exists a vector X&T,M such that Oy(M) is spanned by
X, IX, and JX.
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Proof. We fix a unit vector X € T,M such that JX is an element of N}(M)
and J(IX)=—KX is not contained in Nj}(M). Putting Y=IX in (3.16), we
obtain

(3.18)  <JX, H>RX—IHeNYM).

At first we shall show that KX is orthogonal to N}(M). Assume that the
N}(M)-component (KX), of KX does not vanish. By (3.18), I(KX), is con-
tained in N)(M). Putting H=I(KX), in (3.18), we see that <{JX, [(KX),>
KX=—||(KX),|’KX is an element of N} M). This contradicts the assump-

tion of Case 2.
Putting Y=1IX and H=JX in (3.17), we obtain

(3.19)  RWT, X)—JWT, IX)e0)M).
Using (3.15), we have
RWT, X)—JW(T, IX) = 2RNT, X)+v(T)X+B(T)IX

and hence Kk(T, X) is contained in O}M) for any T€ T ,M. We shall prove
that the first normal space Nj(M) is spanned by JX. Assume that there exists
a non-zero vector H in N}(M) which is orthogonal to JX. Then by (3.18),
IH is also contained in N}(M). Since JX, H, and IH are mutually orthogonal,
the dimension of Nj(M) is equal to 3. Therefore there exists a vector T'E€
T,M such that h(T, X)—<h(T, X), JX>JX is not zero, which is denoted by
H. Then H is an element of N}(M) which is orthogonal to JX. Since
Kh(T,X) is contained in Oy(M), sois KH. Moreover KH is orthogonal to T',M.
Thus JX, H, IH, and KH are mutually orthogonal vectors in N}(M). This
is a contradiction. By the above arguments, we see that Oj(M) is linearly
spanned by X, IX, and JX.

Case 3. The first osculating space Oj(M) is a totally complex subspace.
Proof. Putting Y=1IX in (3.16), we obtain
(320) —<KX, H)JX+<JX, H)KX—IHEN}M)

for any unit vector X & T, M and H e N (M).
Putting H=h(X, X) in (3.20) and using (3.15), we have

{—<RX, WX, Xp+v(X)}JX+{JX, (X, X)>—BX)}KXENYM).
Since (JX), and (KX); are linearly independent, we have
(RX, WX, X)> = v(X) and <JX, WX, X)> = B(X).
Putting H=A(X, IX) in (3.20) and calculating similarly, we have
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RX, WX, IX)> = —B(X) and <JX, WX, IX)> = 7(X).

These equations and (3.15) imply that B(X)=7(X)=0 for any unit vector X
€T,M. Therefore by (3.15), NyM) is invariant by I. JT,M=KT,M is
orthogonal to NjM). By (3.17), JN}(M)=KN}(M) is orthogonal to N(M).
Thus O}(M) is a totally complex subspace.

Case IV. We fix a unit vector X&T,M such that T,M is spanned by
X, IX, and JX. Applying Lemma 3.1 (b), we have

(3.21) <KX, HyJX+IHeN}M)
(3:22) <KX, HyIX—JHeN}M)
(3.23) <RX,H)X+RHeNyM) for HENYM).

We consider the following two cases:
Case 1: KXeENy(M),
Case 2: KXe&ENH(M).

Case 1. The first normal space N}(M) is linearly spanned by KX and
hence the first osculating space O)(M) is spanned by X, IX, JX, and KX.

Proof. Assume that there exists a non-zero vector H in Nj(M) which
is orthogonal to KX. Then by (3.21), (3.22), and (3.23), IH, JH, and KH
are also contained in N)(M). We can show that the equation of Lemma 3.1
(d) does not hold under this situation. Therefore N (M) is linearly spanned
by KX.

Case 2. This case does not occur.

Proof. At first we shall prove that KX is orthogonal to Nj(M). Assume
that the N }(M)-component (KX), of KX does not vanish. Let H be an ar-
bitrary vector of N}(M) which is orthogonal to (KX),. Then by (3.21), IH
is contained in N}M). Since <I(KX), H>=—{(KX), IH>=<RX, IH»
={JX, H>=0, I(KX), is orthogonal to N} M). Then by (3.21), we have
I(RX),=—||(RX),|)JX and hence KX=(KX),/|l(KX),/?. This contradicts
the assumption of Case 2. Therefore KX is orthogonal to Nj(M). By the
same way as in Case 1, we can show that the equation of Lemma 3.1 (d) does
not hold under this situation. Therefore this case does not occur.

Thus the proof of Proposition 3.2 is completely finished.

Theorem 3.10 (Reduction theorem). Let f be a parallel isometric immer-
sion of a connected Riemannian manifold M (dim M =2) into a quaternionic space
form M(€), €0 with dimy M(¢)=8. Then there exists a unique complete con-
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nected totally geodesic submanifold N of M(C) such that the image f(M) is con-
tained in N and T,N=0}M), pM. Moreover the following cases occur:

When dimg M =4,

(R-R) The submanifold N is a real projective space or a real hyperbolic
space with sectional curvature T/4 according as >0 or £<0,

(R-C) The submanifold N is a complex projective space or a complex hyper-
bolic space with the holomorphic sectional curvature T according as ¢>0 or ¢<0
and f is totally real into N,

(C-C) The submanifold N is a complex projective space or a complex hyper-
bolic space with the holomorphic sectional curvature € according as t>0 or ¢<0
and f is Kaehlerian into N,

(C-H) The submanifold N is a quaternionic space form and f is totally com-
plex into N.  Moreover the dimension of N is twice that of M.

When dimgM=3, in addition to (R-R) and (R-C) the following occurs:

(E-H) The submanifold N is a 4-dimensional sphere or a 4-dimensional real
hyperbolic space with sectional curvature T according as >0 or ¢<0.

When dimgp M=2, in addition to (R-R), (R-C), and (C-C) the following
cases occur:

(C-E) The submanifold N is a 3-dimensional sphere or a 3-dimensional
real hyperbolic space with the sectional curvature ¢ according as ¢>0 or <0,

(C-H) The submanifold N is a 4-dimensional sphere or a 4-dimensional
real hyperbolic space with the sectional curvature ¢ according as ¢>0 or ¢<0.

Proof. 'Theorem 3.10 follows from Proposition 3.2 by the same way as
Theorem 2.4 in Naitoh [13].

ReEMARK. Parallel submanifolds of a real space form with sectional curva-
ture ¢ have been classified by Ferus [3], [4], [5] when =0 and by Takeuchi
[18] when €<0. Also parallel submanifolds of a complex space form with
holomorphic sectional curvature ¢ have been classified. Kaehler parallel sub-
manifolds of a complex space form have been classified by Nakagawa and Takagi
[14] when >0 and by Kon [10] when £<0. Totally real parallel submanifolds
of a complex space form have been classified by Naitoh [12], [13]. Therefore
in order to classify all parallel isometric immersions reduced by Theorem 3.10,
we have only to classify the (C~H)-case, which will be done in § 7.

4. Hopf fibrations and totally complex immersions into a quater-
nion projective space

In this section, after recalling definitions of complex and quaternion pro-
jective spaces following Besse [1] Chapter 3, we shall give a characterization of
totally complex immersions into a quaternion projective space.

Let K be either the field C of complex numbers or the algebra H of qua-
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ternions. The product space K"*' is endowed with its right scalar product:
N = t(xo, “ee, x,,)?x — t(xoy\,, “eey x,,)») , xEKﬂ+l’ rEK,

its Hermitian inner product:
(x,y)=§x;y,-, x, yEK",

and its real scalar product:

{, > =thereal partof (, ).

We denote by SK"*' the unit sphere in K"*' defined by the equation
<x, x)=1. The projective space P,(K) is defined as the orbit space for the
right action of the group SK, where SK=U(1)=S"' for K=C and SK=
Sp(1)=S? for K=H. We denote by zg(x) the orbit of x. Then we get the
principal fibre bundle SK"*(P,(K), SK) over the base manifold P,(K) with
the structure group SK. The tangent space T,SK"*' of SK"*' at a point x
may be identified with the real subspace of K"** as follows:

T .SK"* = {uc K" |<x, u> = O}.

The subspace tangent to the fibre at x in the principal fibre bundle
SK"*'(P,(K), SK) is then identified with {xA |\ E K, real part of A=0}, which
will be denoted by V., SK"*'. Put H,SK""'={uc K"*'|(x, u)=0}. Then we
have the decomposition orthogonal with respect to <, >:

T.SK""' =V, SK*"'"®H SK"!.

Moreover the distribution {H,SK"*'; x&SK"*'} is invariant by the S K-action,
and hence defines a connection on the principal fibre bundle SK**(P,(K), SK).

We shall give the descriptions of projective spaces as Riemannian sym-
metric homogeneous spaces. In the case K=C, G denotes SU(n+1) the
Lie group of complex linear transformations of C”*' with determinant 1 which
leave the standard complex Hermitian inner product ( , ) invariant, and in the
case K=H,G denotes Sp(n-+1) the Lie group of quaternion linear transforma-
tions of H"*' which leave the standard quaternion Hermitian inner product
( , ) invariant. Note that G acts as automorphisms of the principal fibre
bundle SK"*(P,(K), SK) which preserve the connection and that G acts transi-
tively on SK"™' and hence transitively on P,(K). Let {e, e, -+, e,} be the
canonical basis of K"*' (i.e., ¢; is the vector of K"*! whose (4 1)-st component
is one and the other components are zero), and K be the subgroup of G keeping
the point z(e,) fixed. Then P,(K) may be identified with G/K by the diffeo-
morphism ¢: G/K—P,(K) which is given by ¢(AK)=ng(Ae,) for A€ G.
Every element 4 K has the following form:
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[1/detB 0 .
4= with B€ U(n), when K= C,
L 0 B
and
™ 0 .
4= 0 B with A€ Sp(1) and B Sp(n), when K = H .

Hence K is isomorphic to S(U(1)x U(n)) or Sp(1)x Sp(n) according as K=C
or K=H. It is well-known that (G, K) is a symmetric pair. The Lie algebra
Su(n+1) of SU(n+1) is the set of X EM,,,(C) such that *X-4X=0 and trace
X=0, and the Lie algebra Sp(n+1) of Sp(n+1) is the set of X €M, ,(H) such
that *X+X=0, where M,,,(K) denotes the set of all matrices of degree n-}1
with coefficients in K.

Let g be the Lie algebra of G and g=I+p the canonical decomposition
of g for the symmetric pair( G, K). Then t and p are given as follows:

—trace Y 0 _
{i: 0 Y:l; YeMm,C), ‘Y—}—Y:O},When K=cC,
t

{[X O:I'XESP(I) Yes (n)} when K= H
O Y ’ ’ F ’ ’

- 3 Fer).

Thus we may identify p with K" as real vector space. With this identifica-
tion the adjoint representations of K and f on p, denoted by Ad, and ad, re-
spectively, are written as follows;

A 0 ™ 0
Ad 7Z) = (BZ)X f K
p[o B_() (BZ) or_O BJG
and
A 07 ™ 07
ad, [0 Y_(Z):(YZ)—Zx for 0 Y_et.

The vector space P may be canonically identified with the tangent space of
P,(K)=G|/K at the point o=ng(e,). The standard real scalar product <{, >
on p=K" is Ade-invariant and so defines a G-invariant Riemannian metric
on the homogenenous space G/K by which P,(K) is a Riemannian symmetric
space. Moreover the fibration z: SK**'—P (K) is a Riemannian submersion
of the sphere SK"*' with the Riemannian metric induced from the real scalar
product <{, > in K"*, and H,SK"*' xSK"*' are horizontal subspaces with
respect to this submersion. To see this, define the mapping ¢: G— SK"*! by
g(A)=Ae, AEG. Then it is easily seen that the differential of ¢ at the iden-
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tity of G defines a linear isometry of p onto H, SK"*' Since mgoq is the
projection of G onto P,(K)=G/K, the differential of 7, at ¢, is then a linear
isometry of H, SK"*' onto T,P,(K). Since the Riemannian metrics on SK"*
and P,(K) and the distribution {H,SK""'; x&SK"*'} are all G-invariant,
it follows the assertion.

The complex structure of a complex projective space P,(C) is defined by
the complex structure I on b given by

I[O JZJ—[ 0 tz‘/_—l} for ZeC"
zZ 0| lzv=1 o or :

Note that ¢(IZ)=q(Z)\/—1 for Z €p, i.e., q is a complex linear isomorphism
of p with the complex structure I onto H, SC"*'. Here ¢ is the identification
mapping of p with H, SC"*' defined above. This complex structure I on p
is invariant by the adjoint representation of K and so defines a G-invariant
almost complex structure on P,(C). This almost complex structure and the
Riemannian metric defined above give a Kaehler structure on P,(C).

Now we shall construct a quaternionic Kaehler structure on a quaternion
projective space P,(H). We define the subspace 4’ of the algebra Hom(b, p)
consisting of all real linear endomorphisms of p by A’'=ad,(Sp(1)), where
Sp(1) denotes the first factor of the Lie algebra I=Sp(1)+Se(n). We set
the basis {I, J, K} of A’ as follows:

Y P R S R S

Then it follows that I?=J?=R?= —id, IJ=—JI=K, JR=—KJ=I, RI=
—JIR=]. Since the real scalar product {,> on p is advf- and so adpsz(l)—
invariant, the triple (p, {, >, 4) is a quaternionic Hermitian vector space,
where A denotes the subalgebra of Hom (P, p) generated by 4’ and the identity
transformation. Note that ¢(IZ)=q(Z)(—?), ¢(JZ)=q¢(Z)(—j), and ¢(RZ)=
¢(Z)(—k) for Z €p, where ¢ is the identification mapping of p with H, SH"*
defined above. Since the subspace Sp(1) in f is invariant by the adjoint
representation of K, we can define the vector bundle V'=GX xSp(1) over
G/K=P,(H) with the standard fibre Sp(1) associated with the principal fibre
bundle G(G/K, K). This vector bundle V' may be regarded as a 3-dimensional
subbundle of the vector bundle Hom (7(G/K), T(G/K)) consisting of tensors of
type (1, 1) by the following bundle homomorphism +» of V' into Hom(7(G/K),
T(GIK)):

V(8 M) = gradr gy’ € Hom(T(G/K), T(G/K))

for g= G, n&Sp(1), where g4 denotes a linear isometry of T,x(G/K) onto
T.x(G/K), e being the identity element of G. Moreover {r(V') is parallel in
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Hom(T(G/K), T(G/K)) with respect to the canonical connection in G(G/K, K)
defined by the decomposition g=£-+p, which coincides with the Riemannian
connection on G/K=P,(H). Denote this subbundle y(V) by A’. Then A4’
and the Riemannian metric defined before give a quaternionic Kaehler struc-
ture on P, (H).

Return to the principal fibre bundle SH**(P,(H), Sp(1)). The set {41}
is a normal closed subgroup of Sp(1) and hence acts on SH**' on the right.
Let SH"*'/{+1} be the quotient space of SH"*' by the action of {4-1}, which
is denoted by PSH"*'. Then PSH"*Y(P,(H), SO(3)) is a principal fibre bun-
dle over the base manifold P,(H) with the structure group SO(3)=Sp(1)/{+1}
(see Proposition 5.5 in [9] p. 57). Moreover it has the connection induced
from that of the principal fibre bundle SH**'(P,(H), Sp(1)). We shall show
that the principal fibre bundle PSH"*(P,(H), SO(3)) is viewed as the bundle
of canonical bases of 4’ on P,(H). For each g&Sp(n+1), define a canonical
basis {I, J, K} of Ajx by

i 0 j o
I =g*ad,,[0 O}g;‘, 7=g*a%[0 O}g;‘, and

k0
K=g*ad-plt0 O}gil-

The mapping ¢q: Sp(n+1)— SH"*' defined by ¢(g)=ge, is a bundle homomor-
phism of the principal fibre bundle G(G/K, K) onto SH**(P,(H), Sp(1)) which
preserves the connections. Two elements g and g’ of Sp(n+1) such that
gK=g'K define the same canonical basis of A« if and only if ¢(g)=-+q(g’).
Hence the principal fibre bundle PSH"*Y(P,(H), SO(3)) may be regarded as
the bundle consisting of canonical bases of A4’. Moreover the connection
of A’ coincides with the one induced from the principal fibre bundle
PSH"*(P,(H), SO(3)).

The field C of complex numbers is included in the algebra H of quater-
nions in the standard way. Then S'={A&C; |r|=1} is a closed subgroup
of Sp(1). Consider the fibre bundle with standard fibre Sp(1)/S* associated
with the principal fibre bundle SH**Y(P,(H), Sp(1)). Since the total space
of the fibre bundle is identified with SH"*'/S", it is a 2n-+1-dimensional com-
plex projective space P,,,,(C). Denote by u the projection SH*"'—>SH"*!/S!
=P,,+,(C). For each weP,,,,(C), define the horizontal subspace H,P,,.,(C)
in the tangent space T,P,,,,(C) as follows (cf. [9] p. 87). Choose a point u&
SH"' such that u(u)=w. Then the horizontal subspace H,P,,,,(C) is, by
definition, the image of H,SH"™ by u. The subspace H,P,,,,(C) is indepen-
dent of the choice of u. Next we introduce a complex structure on H,P,,,,(C).
For ue SH"", p(u)=w, let {I, J, K} be a canonical basis of A, defined by
g€ Sp(n+1) such that ¢g(g)=wu. Identifying H,P,,,,(C) with T, P,(H) by the
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fibration mapping 7z: P,,,,(C)—P,(H), define a complex structure I on
H,P,,..(H) by I=I. Then the complex structure I on H,P,,.,(C) is indepen-
dent of the choice of # and g. Moreover the complex structure on H,P,,,,(C)
defined in this way coincides with the restriction of the complex structure
on P,,,,(C) defined before.

Theorem 4.1. Let M be a connected Riemannian manifold with dimgp M =4

and let f be a totally complex immersion of M into P,(H). Then there exists a

Kaehler manifold M which is a Riemannian covering manifold of M of degree at

most two such that foz is a totally complex immersion of Kaehler type of M into

P,(H) (see Definition 2.12), where # is the covermg mapping of M onto M. More-

over there exists a Kaehler immersion f of M into P,,,\(C) such that the following
commutative diagram holds:

f

M——> P, .,(C)

Proof. By the immersion f, the following four fibre bundles over M are
induced from the fibre bundles over P,(H):

f f

(1) P—1— SH™ (2) P ——> PSH"™"
|, s |, lso®
M —— P,(H) M —— P,(H)

®) E'—'f—>P2n+l(C) () f*A'—f; A’

L, |,

ML pm) n L pm)

Here note that the fibre bundle over M in (3) and (4) are associated with the
principal fibre bundles in (1) and (2) respectively. By Lemma 2.10, f*4’ is
orthogonally decomposed into the subbundles 4, and 4,, where 4,={L&4’;
Lfy TM=fTM} and A,={L€A'; LfTM | f,TM}. Moreover A, and 4,
are parallel with respect to the connection induced on f*4’. Now we may
assume that there exists a global section I of 4, over M such that 2————id
otherwise, we have only to replace M by a two-fold Riemannian covering M
of M. By Proposition 2.11 the global section I of A, and the Riemannian
metric give rise to a Kaehler structure on M. For ucP’, let {I, J, K} be the
canonical basis of Az 7., defined by flwyePSH"'. We put Q'={ucP’;
I=1I as element of A;Hf'(u)}. Then Q’ is the subbundle of P’ with the struc-
ture group S*. Denote by Q the subbundle of P with the structure group S*
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which is induced from Q' by the projection of P onto P’. Then the associated
fibre bundle E admits a cross section s: M—E such that s(x)=pu(u) for u€Q
and x=n(u), where p is a projection p: P—E (Proposition 5.6, [9] p. 57). Since
A, is parallel, the connection of P reduces to that of Q. The image of T,M
by s is a horizontal subspace of T,)E for each x&M (Proposition 7.4, [9] p.
88). Therefore (fos)xT.M is included in Hy.;)Py,41(C). Since I, defines the
complex structure on Hy .sz)P,+,(C) under the identification with T..7. s(,,)P (H)
=T ;»P,(H), we have I(fos)y=(fos)4l on T .M. Set f=fos. Then fis a
Kaehler immersion of M into P,,,,(C), and by this construction it is obvious

that zof=f.

5. Kaehler immersions of Hermitian symmetric spaces into a
complex projective space

In this section, following Nakagawa and Takagi [14], Takagi and Takeuchi
[16], and Takeuchi [17], we describe the canonical imbeddings of Hermitian
symmetric spaces into a complex projective space. We give another proof
to Theorem 2 in [16] on degrees of canonical imbeddings (Theorem 5.2).

First we recall the construction of Kaehler C-spaces M such that
dim H3(M, R)=1 (cf. [14]). Here by a C-space we mean a compact simply
connected complex homogeneous space and by a Kaehler C-space a C-space M
which admits a Kaehler metric such that a group of holomorphic isometries
is transitive on M. All irreducible Hermitian symmetric spaces of compact
type are Kaehler C-spaces. Let g be a complex simple Lie algebra and §) be
a Cartan subalgebra of §. Put /=dim¢). We denote by A the set of all non-
zero roots of § with respect to ). Then we have a direct sum decomposition:

d=5+> CE,,
®EA
where E, is a root vector of a root @. Let B be the Killing form of . For
Eeh*, let H; be the vector such that B(H, Hy)=E&(H) for all HE). Put
h=> RH,. Then dimgpY%,=/ and the dual space H¥ of §, can be regarded

asA
as a real subspace of h*. We define an inner product (, ) on HF by (&, )=
B(Hg, H,) for any &, n€b¥. Let {a,, -+, a;} be a fundamental root system of
d. We choose a lexicographic order in h§ with respect to which {a,, *--, a;}
is the set of simple roots, and denote by A* and A~ the sets of positive and
negative roots respectively. Let {A,, -, A;} be the fundamental weight
system of § associated with {a,,-+,&;} which is defined by

Z(Ai) a,-) = (ai’ otj)S,-,« (l.,j = 1’ ey l) .
On the other hand, we may choose root vectors E, (¢ €A) in the following way;

B(Ew E—a) = —1
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[Ea, Eﬁ] == Nd,ﬂEti-Q-ﬂ) Nm.s = N_a_ﬂER .
Then, /—1 E)o—}—mg_(RA,,—I—RBm), denoted by g, is a compact real form of §,

where A,=E,+E_, By=\/—1(E,—E_,) (a€EA").
We choose a simple root ¢; (i=1, -+, /) and denote it by v. We define
a subset Ay of A~ to be the set of roots

a=no,+ +noEA”

such that the coefficient of v in « is strictly negative. Define the subalgebra
t and the subspace P of g as follows:

t=v—16+ 3 (RA,+RB,)
SAT Ay
p=_3 (RA.+RB,).
Shy

Let G and K be a simply connected Lie group and its connected (closed)
Lie subgroup which correspond to g and ¥ respectively. Then the compact
homogeneous space M=G/K is known to be simply connected, and the com-
plex structure I on p defined by I4,=B,, IB,=—A4,, aEA, gives rise to
a G-invariant complex structure on M. Then M is a Kaehler C-space with
dim H*(M, R)=1. Conversely, every Kaehler O-space M with dim H* M, R)
=1 can be obtained in this way from the pair (g, ¥) of a complex simple Lie
algebra § and a simple root v. We note that the decomposition g=%+p ob-
tained from the pair (g, 7) becomes a canonical decomposition of an orthogonal
symmetric Lie algebra of Hermitian type if and only if the coefficient of ¥ in
every a €A, is equal to —1.

Next we construct holomorphic imbeddings of a C-space M obtained
from the pair (3, ¥) into a complex projective space. We put Ay=A; if v=«;.
Let p be an irreducible complex representation of § with the highest weight
pAy for a positive integer p. The representation p restricted to g defines an
irreducible representation of G, which will also be denoted by p. Since G is
compact, we can choose a complex Hermitian inner product and a unitary
frame {e,, :*+, ey} on the representation space sich that e, is the highest weight
vector and that p(G)CSU(N+-1). Then the representation p of g induces
a Lie algebra homomorphism p: §—>S«(N+1). Let Su(N-+1)=F+p be the
canonical decomposition of S«(N+1) which corresponds to an /N-dimensional
complex projective space Py(C) (cf. §4). Recall that ¥ is given by

= {4€8u(N-+1); Aey = e\, NEV/ 1 R}.

Note that p(da)eo= p(Ea+ E-a)eo= p(Ea)es p(Ba)eo=p(v/ —1(Ey—E_,)e,=
(P(Eule/—1, for a€ A~ and p(v/ T H)ey=ey pAy(H)\/—1) for HEB,. Since
(a, pAy) is zero for a=A™—A,, a+pAy is not a weight and hence we have
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p(Ay)eo= p(Bas)eos=0. Therefore p(X) for X<t is contained in ¥ Since
(a, pAy) is not zero for *EAy, a+pA, is a weight and p(4,)e, and p(B,)e, are
non-zero vectors in the weight space of weight a+pAy. Let j be the projec-
tion of S«(IN+1) onto § and ¢ be a complex linear isomorphism of § onto
H, SC¥*! defined in §4. Then gojop(A,)= p(Aa)e, and gojop(B,) = p(B,)e,
for a€Ay. Hence the linear mapping gojop of p into H, SCV*' is injective
and jop is also a linear injection of p into H. Therefore the mapping x&G—
n(p(x)e,) of G into Py(C) induces an immersion f of M into Py(C), where
= denotes the Hopf fibration of SC¥*! onto Py(C) (cf. §4). Since p(I4,)e=
p(BLes=(p(Ee) 1= (p(Aue)/ =T and p(IB,)ey——p(A)es——p(Eaer=
(p(Ba)e)v/—1 for a€A,, the mapping gejop is a complex linear mapping
of p into H, SC"** and hence jop is a complex linear mapping of p into P.
Therefore the mapping f is holomorphic. It is known that f is a full imbed-
ding, i.e., that f(M) is not contained in any proper totally geodesic submanifold
of Py(C). The imbedding f introduces a G-invariant Kaehler metric g on M.
Thus (M, g) is a Kaehler O-space. Especially when the pair (g, 7) defines an
orthogonal symmetric Lie algebra of Hermitian type, the Kaehler C-space (M, g)
becomes an irreducible Hermitian symmetric space of compact type. The
imbedding f constructed in this way is called the p-th canonical imbedding of M.

Now we shall construct a full Kaehler imbedding of the product mani-
fold of a number of Kaehler C-spaces M such that dim H* M, R)=1 into a
complex projective space (cf. [16] and [17]). Let M; (1=:=s) be Kaehler
C-spaces with dim H?*M,, R)=1 obtained from the pairs (g;, ;) of complex
simple Lie algebras g; and simple roots ;. Let f;: (M;, g;)—=>Py,(C) (1=i=5s)
be the p,-th canonical imbeddings of M; constructed by the representations
p; of 8. LetY, and (§,), be Cartan subalgebras of §; and their real parts re-
spectively. Then the direct sum H=9,P --- P, is a Cartan subalgebra of
the direct sum §=g,P ---PgJ,.. The dual spaces h¥ naturally become the
subspaces of H* and the set of all roots of § coincides with the union of each
set of all roots of §. The direct sum H,=(H,)yP-:-D(H,), is a real part of b.
We choose a lexicographic order in HF such that each fundamental root of
g; is a simple root. Let g; be compact real forms of §;. Then the direct
sum g=@,P---Pg, is a compact real form of g We define a subalgebra t
and a subspace p of g by I=,PD-.-Df, and p=p,P---PPp, respectively, where
g;=%+p; (1=i=s) are the decompositions of g; which correspond to M;.
Let G; and K; be compact simply connected Lie groups and their connected
(closed) Lie subgroups which correspond to g; and ¥; respectively. Then the
product Lie group G=G,X - X G, and K=K, X -+ X K, are a Lie group and
its connected Lie subgroup which correspond to g and ! respectively. Since
a homogeneous space G/K=M coincides with M;X --- X M, it is a Kaehler
C-space. Let p be the external tensor product p,[X]---[X]p, of representations p;
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of ;. Let v; be the highest weight unit vectors with the highest weights p;Ay,.
Then v;®--Qu, is the highest weight vector of p with the highest weight

};‘i piAy,. 'The mapping x&G — z(p(x)(v,® - ®v,)) of G into Py(C) induces a
full Kaehler imbedding of the product Kaehler manifold (M, g)=(M;X -+ X M,
&1X X g,) into Py(C), where N=1jI (N;4+1)—1. We call this Kaehler im-

bedding of M into Py(C) the temsor product of f,, -, f,, and denote it by
S e

It is known that any full Kaehler immersion into a complex projective
space of a product Kaehler manifold of some Kaehler C-spaces M with
dim H*(M, R)=1 is obtained in this way (cf. [14], [17]).

We recall the notion of the degrees of Kaehler immersions (cf. [16]). Let
M and M be Kaehler manifolds and f: M—> M be a Kachler immersion of M
into M. Then we have the following orthogonal decompositions:

f*TM = TM+-N(M)

f*TMC = TMC°+N(M)°

f*TM* = TM*4+N(M)*,
where f*TMC, TM¢, and N(M)° denote the complexifications of f*TM, TM,
and N(M) respectively and f*TM*, TM*, and N(M)* denote the ++/—1-
eigenspaces of f¥*TMC, TMC, and N(M)® by the action of the complex struc-
tures respectively. We shall define the kigher fundamental form H’ (j=2) of
f as a smooth section of the complex vector bundle Hom(Q®/TM*, N(M)*).
Let e C~(Hom(Q*TM, N(M)) be the second fundamental form of f. We
define /e C~(Hom (®TM, N(M))) (j =3) inductively by

B2y, o, ), %540) = V’;‘;+1hj(X1: e Xj)

_é hj(xli °% in‘*le’ °tty xi)
for x, €T ,M (1=k=j+1),

where X, is a smooth local vector field on M around p with (X,),=x;. Extend
h# complex linearly to a smooth section of Hom (®/(TM)¢, N(M)) and denote
it by the same symbol #/. Then we have

Wy, oo, %) EN,(M)*, for x, €T ,M* .
Now we define H'e C~(Hom(®Q/TM*, N(M)*)) by
Hi(sy, oo, x;) = B(xy, -+, %)) for x, €T ,M*.

Then note that
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H Z(Xv Xz) = vxz l_szXl
HiYX,, -, X, X)) = Vj{-jﬂHi(Xh -, X))
i .
—1§1 H](le ) VXJ.HXI@’ R XJ)

(j =2) for X,€0~(TM*).

(5.1)

Here we extend the connections V, V, and V* on f*TM, TM, and N(M) to
the complexifications f*THM €, TM€, and N(M)® respectively.

For an integer j =1 and p& M, denote by #j(M) the subspace of T',,M*
spanned by T,M* and HYQ®'T,M™*), 2<k=j. For an integer j =1, we
define a subset R; of M inductively as follows. Define Rj=M. For j=2,
assume that R;_, is already defined. Then we define

R; = {pER;_,; dim; Ij(M) = max dim¢ Hj(M)} .

Then it is known ([16]) that there exists a unique integer d such that J5~'(M)
S Hy(M) for some pER,_, and Hi(M)=I5" (M)=93**(M)=--- for each
PER,, where J5(M) is understood as {0}. This integer d is called the degree
of f and denoted by d(f).

From now on we assume that M=P,(C). The following lemma is given
in Takagi and Takeuchi [16].

Lemma 5.1. Let f: (M, g)—P(C) be a full Kaehler immersion of a Kaehler
manifold (M, g). Then we have

N = dimcHENM)  for pER,) .
Theorem 5.2 ([16]). Let
fi: (M, g) = Py(C)  (1=i=s)

be the p,-th canonical imbeddings of irreducible Hermitian symmetric spaces (M,
g:) of compact type with rank r; (1<i=<s) and

f: (M, g) — Py(C)
be the tensor product of f; (1=i=<s). Then the degree d(f) of [ is given by

d(f) = g rip;.

We shall give another proof to this Theorem depending on Tits’ tables
[19]. For this we prepare some lemmas.

Let S«(N+1)=!+p be the canonical decomposition of S«(N+1) which
corresponds to Py(C) (see §4). Then the complexification H€ of P is given by
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w0 ]: zwee)
p - Z 0 ’ ’ M

Since the complex structure I acts on P as follows (see §4):
0 —'Z 0 ‘Zv—1
I = . V-1 zelr,
Z 0 Z\/—1 0
the -++/— 1-eigenspaces §* of §C by the action of I are given by

oo ) zeche -} Tpwec),

We extend the adjoint representation of ¥ on § to the complex representation
on £¢. Then the eigenspaces §* are invariant subspaces by this representation.

Denote by
adg:: f - gl(p*)

the representation of ¥ on *. These are written as follows:
A 0][0 O 0 0
ad+ =
i B||Z BZ—Zn 0
A 0][0 W 0 ‘Wrx—'WB A0
ad;- = for et.
P B0 O 0 0 0 B

Define a mapping ¢: * — H, SCV*! by
gX)=Xe, for Xe&p*.

Then ¢ is a complex linear isomorphism. For X&! we define a complex
linear homomorphism ¢(X): C¥*'— C¥*! by the equation ¢(X)v=Xv—v(e,, Xe,)
for veCV*!. Evidently ¢(X) induces a complex linear homomorphism of
H, SC"*!into H, SCV*'.

Lemma 5.3. The homomorphism ¢ is a representation of ¥ on H, SCV*'.
Moreover the following diagram commutes:

o ¥ O

B 7 > H, SCV+!

adr(X)l l(j)(X) for Xet.
B+ q N Heo SOV
Let M; be a Kaehler C-space obtained from the pair (g;, ;) of a complex
simple Lie algebra §; and its simple root 7; and g,=%;4+P; be the decomposi-
tion of the compact real form g; which corresponds to M;. The ++/—1
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eigenspaces 7 of the complexification p¢ by the action of the complex struc-
ture [ are given by

p:‘: 2 CE«» and 5:—= 2 CE—ao'

WEA.Y : dEAyi

Moreover pi are invariant subspaces of P¢ by the complex extension of the
adjoint representation of f,, Let M=M;Xx -+ XM, be a product manifold
of M; (1=<i=<s) and g=I+p be the decomposition of the compact real form
g which corresponds to M. Then the ++/—1-eigenspaces p* of PC are given
by p*=pf-+ .-+ +pf. The eigenspaces p* are invariant subspaces of p¢ by
the complex extension of the adjoint representation of . Denote by

adpt: t — gl(p*)

the representation of ¥ on p*.

Let f; be the p;-th canonical imbeddings of M; constructed by the representa-
tions p; of §;. Let p be the external tensor product of p,, -+, p, and f be the
tensor product of f;, -+, f,. Identify § and p with the tangent spaces at the
origins of Py(C) and the product manifold M respectively. Then we can view
the j-th fundamental form H’ of the Kaehler imbedding f at the origin as an
element of Hom(®7p*, §*).

Lemma 5.4. The following diagram commutes:

Hi
®pt ——> §*
ad,,+(X)l . lad5+(p(X)) xet.
®pr ——> B+
Moreover combining this with the diagram in Lemma 5.3, we obtain the following
commutative diagram:
oH/
®p* _q____> H‘oSCN+1
o] sy xet.
®ip+ q N H¢0SCN+1
Here ¢(p(X)) is given by
d(p(X))r = p(X)v—v(ey, p(X)e)) vEH, SCVH.

Proof. Let G be a compact and simply connected Lie group which corre-
sponds to g. Since the imbedding f is G-equivariant, the j-th fundamental
form H/ is G-invariant, i.e.,

H(gyxy, +++, ga%j) = p(&)sH (%1, -+, %;)
for geG and «x,, -+, x;,€T,M" .
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In fact we can prove this inductively using the equation (5.1). Therefore
Lemma 5.4 holds.

From now on we consider exclusively Hermitian symmetric spaces of
compact type. Let (d;, ;) be the pair which defines an orthogonal symmetric
Lie algebra of Hermitian type and M; be an irreducible Hermitian symmetric
space of compact type obtained from (g;, ¥;). Let p; be an irreducible complex
representation of §; with the highest weight p;A,. We check each Hermitian
symmetric space one by one using Tits’ tables in [19] and obtain the following
fact.

Lemma 5.5. The coefficient of v; in “p;Ay- (the lowest weight of p;)” is
equal to (rank of M) X p,;.

Proof of Theorem 5.2. By the equivariance of the imbedding f, we see
that R, =M and so we discuss the higher fundamental forms at the origin.
Here we recall that if §, is the real part of the Cartan subalgebra §) of 3,
then \/—T1 Y, is contained in £. For representations of ¥ we consider weights
with respect to f), and when a weight & is given, we write & =§‘_. c(€; ¥)Y, where

7 runs over the fundamental root system and ¢(€; ) denotes the coefficient of
7. The set of all weights of the representation ad,+: ¥—>gl(p*) is equal to iL;JlA-,,.
and ¢(&; v;)=—1 for E€A,,. The set of all weights of the representation
ad,+: 1—>gl (@7p*) is given by {&+ -+ +&;3 ekeing,,. (1=k<j)}. Hence we
have ’%}c({:‘ ; Vi)=—j for any weight & of that representation.

Next we consider the representation ¢op of ¥ on H, SC"*' defined in
Lemma 5.4. Let V; be the sum of all weight spaces of ¢op corresponding to

weights A such that ‘;,“ ¢(\; v;)=—j. Lemma 5.4 implies that the image goH’

(®7%p*) is contained in V;. Since the imbedding f is full, by Lemma 5.1 the
image goH/(®7p*) coincides with V;. Note that each weight of the represen-
tation ¢op has the form: A—AEh¥, where A and A are a weight and the
highest weight of the representation of p of § respectively. In fact we have,
for Heb, and a weight vector v, of p with weight A,

d(p(v —1H))vy = p(V/ —TH)v,—v)(e0, p(v/ —1H)e,)
= o,(MH)V —1)+ox(— AH)V --1)
— o —A) E)VT) -
In our case the highest weight A is given by A=§ Pil\y,. Therefore V; co-

incides with the sum of all weight spaces of the representation p: g—gl(CV*!)
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corresponding to weights A such that )3 c(— p3! Dil\y,; Vi)=—j. It is known
k=1

i=1
that the coefficient of 7; of the lowest weight of p is not larger than that of any
weight of p. Therefore,

g 5(2 Py, =25 7))

k=1

= X:; c(g PiAy,—the lowest weight of p; 7;)

I

i C(ki PkA-yb—ki the lowest weight of p,; 7;)
i=1 =1 =1

Il

ﬁ c(p;Ay,—the lowest weight of p;; v;)
= i} (rank of M;)xp;  for any weight X of p.

The last equality in the above equation is due to Lemma 5.5. Then we have
dfH=s i‘, (rank of M;)xp;. Since f is full, by Lemma 5.1 we obtain d(f):g‘_,1
(rank of M;) X p;.

6. Totally complex immersions of Hermitian symmetric spaces
into a quaternion projective space

First we shall recall the notion of symplectic and orthogonal representa-
tions. Let p: §—gl(V) be a representation of a complex semi-simple Lie
algebra g on a complex vector space V. A bilinear form Q on V is called an
invariant form for the representation p if Q(p(X)u, v)+Q(u, p(X)v)=0 for
Xegand u, vel.

DEeFINITION 6.1. The representation p is called orthogonal or symplectic
according as it has an invariant symmetric or skew-symmetric bilinear form.

Note that if p is irreducible and if there exists a non-zero invariant bi-
linear form for p, then it is non-degenerate and unique up to a constant multi-
ple and moreover it is symmetric or skew-symmetric (cf. Tits [19]). Let g
be a compact real form of §. We introduce a complex Hermitian inner product
(, ) on V such that p(X) is skew-Hermitian for any X&g. This inner product
( , ) is anti-linear with respect to the first factor.

Lemma 6.2. Suppose that the representation p of § is irreducible and let
Q be an invariant form for p. We define a real linear endomorphism J of V such
that Q(u, v)=(Ju, v) for u, vEV. Then,

(i) The real linear endomorphism J is semi-linear, i.e.,
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J@r) = Juw)x  for ueV and nEC.

(i) By taking a suitable multiple of Q if necessary, we have J*=id or —id
according as p is orthogonal or symplectic, where id denotes an identity transforma-
tion.

Proof. (i) Actually we have (J(z)), v)=Q (), 2)=Q (s, v)A=(Ju, V)7
=((Ju)X, v) for u, vEV and A&C. Therefore J(urn)=J(u)X holds.

(i) Since (Jo(X)u, 2)=Q(p(X)u, v)=—Qft, p(X)0)=—(Jit, p(X)e)=(p(X)
Ju, v) for XEg, p(X) and J commute. By (i) J? is a complex linear endo-
morphism of ¥V, and moreover J? and p(X) for X &g commute. Since p is
irreducible, there exists a non-zero complex number ¢ such that J?=c id. Here
¢ is positive or negative according as p is orthogonal or symplectic. In fact
if p is orthogonal, for a non-zero vector vV we get (J%, v)=Q(Jv, v)=
Q(v, Jo)=(Jo, Jv). On the other hand (J%, v)=¢(v, v) and hence t=(Jo, Jv)/

(v, v) is positive. Thus ¢ is positive. Replacing Q by 71:(),, we have J?=id.
c

When p is symplectic, we can similarly prove J?=—id.
Let § and B, be a Cartan subalgebra of § and its real part respectively.
Suppose that the compact real form g contains v/ —1 §, (cf. §5).

Lemma 6.3. Let p: §—gl(V) be an orthogonal or symplectic representation
of § and J be a real linear endomorphism defined in Lemma 6.2. If NEY¥ is a
weight of p and V), is a weight space with the weight N, then —\ is also a weight and
]Vlz V_)\.

Proof. If v is a non-zero vector in V,, Jv is contained in V_,. In fact
we have p(v/—TH) Jo=J p(v/—1H) v=J(oMH) —T)=(Jo) (—A(E)v/'=1)
for any He,.

From now on we assume that p: 3—gl(V’) is a symplectic representation.
We fix a complex Hermitian inner product ( , ) and a semi-linear endomor-
phism J of 7 defined in Lemma 6.2. We shall introduce the structure of a
quaternionic Hermitian vector space on V. We restrict the coefficient field
of ¥ to R and define a real linear endomorphism I of ¥ by putting Jo=vv/—1
for v€V. Then we have I?~=—id and IJ=—JI. Put K=IJ. Then it
follows that I?’=J?=R?—=—id, IJ=—JI=K, JR=—KJ=I, RKI=—IR=].
Let {, > be the real part of the complex Hermitian inner product (. ). Since
(Tu, Iv)=(u, v), we have {Ju, To>=<u, v> and, since (Ju, Jo)=(u, v), <Ju, Jo>
=<{u, v>. Hence we have (Ku, Kv>=<u, v>. Denote by A the subspace of
real linear endomorphisms of ¥ spanned by I, J, K, and the identity transfor-
mation. Then by Lemma 2.1 (V, {, >, 4) is a quaternionic Hermitian vector
space. Since p(X)I=Ip(X), p(X) J=Jp(X), and p(X) K=Kp(X) for X g,
p(X) is a quaternion linear endomorphism of V. Moreover since {p(X)u, >+
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<u, p(X)v>=0 for X&g, u, vEV, p(X) is skew-Hermitian with respect to the
quaternion Hermitian inner product.
Thus we have the following

Lemma 6.4. Let p: 3—>gU(V) be a symplectic representation of a complex
semi-simple Lie algebra 3. Then we can introduce the structure of a quaternionic
Hermitian vector space on V such that for any X in the compact real form g of 8,
p(X) is skew-Hermitian with respect to this quaternion Hermitian inner product.

The following theorem constructs totally complex immersions of Kaehler
C-spaces into a quaternion projective space.

Theorem 6.5. Let M; (1=1<s) be Kaehler C-spaces obtained from the
pairs (8;, ;) and f;: (M;, g)—>Px,(C) be the p;-th canonical imbeddings of M,
construcred by the representations p; of §;. Let (M, g) be the product Kaehler
manifold of (M, g;) and f: (M, g)—>Py(C) be the tensor product of f; constructed
by the external tensor product p of p; (1=i=<s). We assume that each p; is eather
orthogonal or symplectic and that the number of symplectic representations p; is
odd. Then p is a symplectic representation and in particular N is odd. Set N=
2n-+1. Except for the one case mentioned in Remark 6.7, there exists a totally
complex immersion f of (M, g) into P,(H) such that the following diagram commutes:

(M) g) _i? P2n+l(C)

\fA l -
P,(H)

ReEMARK 6.6. Orthogonal or symplectic representations of a complex
simple Lie algebra have been determined in Tits [19]. Let {A,, -+, A;} be
the fundamental weight system of a complex simple Lie algebra § and p; be
the irieducible complex representation of § with the highest weight A;. The
members of orthogonal or symplectic representations p; are given in Table 1
due to Tits [19]. If p; is an orthogonal representation, then the irreducible
representation p with the highest weight pA; is also an orthogonal representa-
tion. If p; is a symplectic representation, the representation p with the highest
weight pA; is orthogonal or symplectic according as p is even or odd. In par-
ticular, we give in Table 2 an irreducible Hermitian symmetric space of com-
pact type obtained from the pair (§, «;) of a complex simple Lie algebra g and
its simple root «; such that p; is an orthogonal or symplectic representation.

Remark 6.7. Let M=Sp(2l)/Sp(2[—1)x U(1) be a Kaehler C-space
obtained from the pair (C,, ;) (!=2) and f: (M, g)—Py(C) be the p-th canonical
imbedding into Py(C) with holomorphic sectional curvature ¢. It is known
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Table 1
Dynkin diagram Orthogonal representation | Symplectic representation
O—O0~————0—0 Por+z When [=4k+3 Por+1 When [=4k+1
A a  a, Q. a = . = vee
(k=0, 1, -+) (k=0, 1, -+)
B pi 1=:i=<I1—1 for any !
(=2) a @ o a oy when [=4k—1 or 4k p; whenl=4k-+1or4k—2
k=1, 2, ) (k=1,2, )
G o—o0-—  —0&=0 | gy 1§i§[i] faina osig[i]
(7=3) a; A ., a 2 2
2]
D pi 1=i=<1—2 for any [ 0;and p;_; when [=4k+2
1 O—-O——— = .o
(=4 a a o, p; and p;-, when [=4k (k=1, 2, -)
a, k=1, 2, )

0—(>—ia—60——0
Es Ps3, Ps

7 P2, P4y P55 P P1y O3, O
E 3 Y7
a, a, 3 .\ . 3 2y M4 Fsy Pe ’ 4]

Qg

Eg . i lélés
a, a, da; oA, o; o a,

F, O———O&=—0—0 o 1sis4
a [22) 28] a,
G, o&=D0 01, P2
o a,

that (M, g) is a 2/—1 dimensional complex projective space with holomorphic
sectional curvature c/p (cf. Takeuchi [17] Remark 2.4). But (Sp(2l), Sp(2l—1)
x U(1)) is not a Riemannian symmetric pair. If p is odd, by Remark 6.6 and
Table 1, f is a Kaehler imbedding constructed by a symplectic representation.
When p=1, then N=2/—1 and hence there does not exist a totally complex
immersion such that the diagram in Theorem 6.5 commutes. This is the
exceptional case stated in Theorem 6.5.

Proof of Theorem 6.5. Denote by V' the representation space of p. From
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the assumption it follows that p: §=8§,D---@®F,—g¢l(V) is a symplectic represen-
tation. By Lemma 6.4 we can introduce the structure of a quaternionic Heimi-
tian vector space on V. Therefore we have dimgV=even. Set dimcV=2
(n+1). We fix a complex Hermitian inner product ( , ) and a semi-linear
endomorphism J of V as in Lemma 6.4, and choose a suitable quaternion uni-
tary frame {e, -, e,} such that ¢, is the highest weight vector of p. Then
{ey, Jeo ***> €s Jes ***, €,, Je,} is a unitary frame with respect to the complex
Hermitian inner product (, ). Let g=g,D---@g, be a compact real from of
d, where g; denote compact real forms of §; (1=i/=<s). Then by Lemma 6.4
p(g) is contained in Sp(n+-1) and especially we obtain a Lie algebra homo-
morphism p: g—Sp(n+1).

Let Sp(n-+1)=F+5 be the decomposition of Sp(n-1) which corresponds
to P,(H) (see §4) and j: Sp(n+1)—Pp be the projection with respect to this
decomposition. Recall that ¥ is given by

f= {AdeSp(n+1); dey = e, NESp(1)} .

Let g be the identification mapping of § with H, SH"*' defined in §4. Here
q is given by ¢(X)=Xe, for X&p and ¢ preserves the structure of a quater-
nionic Hermitian vector space (see §4). Let g=%-+b be the decomposition of
a compact real form g which corresponds to M. First we shall show that p(f)
is contained in f. By the arguments in §5 we have p(4)e;=e\, AE\/ 1R for
Aet. Therefore p(f) is contained in ¥ and especially p(4) has the form:

iR 0
p(4) = ( 0 Y) YeSp(n) for A<t

Next we shall show that the real linear mapping gojop of p into H, SH"* is
injective and hence jop is also a linear injection of p into H. We denote by
V, a weight space of p with a weight . For simplicity we use the notation

A for the highest weight >3 piAy,. Then we have ¢V, and, by Lemma 6.3,
i=1

Je,€V_,. Since A is the highest weight, it follows that dim¢V ,=1 and hence,
by Lemma 6.3, dim¢V_,=1. Therefore the quaternion subspace of V' spanned
by e, coincides with the sum V,+4V_,. For acAy, we get p(A4,) ee=p(E,+
E_o) ey=p(Ea) € Vs and p(Ba) e—p(v/—1(Ea—E_a)) e=(p(Es) e/ — 1€
Vaia Here the weight @+ A is not equal to —A. In fact if M is reducible,
i.e., s=2, for any a€A,, evidently a+A is not equal to —A. If M is ir-
reducible, i.e., s=1, except the case when M is obtained from the pair (C}, «;) or
(4, a;) and p=1, we can see that for any = A, the coefficient of v in a+A
is positive and hence a+ A= — A by checking the tables in Tits [19] or Bourbaki
[2]. Therefore we have p(b)e, is contained in H, SH"*' and hence gojop(X)=
p(X)e, for X€p. The injectivity of gojop is obvious by the arguments in §5.
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Let G be a compact and simply connected Lie group which corresponds to g,
and we extend p to the representation of G. Then we have p(G)CSp(n+1).
Let z: SH**'—P,(H) be the Hopf fibration. Then by our arguments the map-
ping x€G—>r(p(x)e,) of G into P,(H) induces an isometric immersion f of (M, g)
into P,(H).

Finally we shall show that the immersion f is totally complex. By the
equivariance of f, it is sufficient to show that the subspace jop(p) is totally com-
plex in §. Since gojop(X)=p(X)e, for X&), it follows that

25°pP)C3 3 Vara-

By the arguments in §5, we have p(I4,)ee=p(Ba)ee=(p(Aw)es)'—1=Ip(A4)es
i pUB Yo Py (b B e~ LT By and hence T gojop(Bres
goj°op(p)-
For J, we get

T (ejop®) T (33 2 Varn) = Voues-

i= 1 weA.Y

Define the sets ®* and &~ of welghts of p by

O = {a+A; aEAy, (= L. s)}
and
O = {—a—A;ach,, (E=1, -, )}

respectively. We shall show that ®*N®~ is empty. In the irreducible case,
i.e., s=1, since the coefficient of 7 in a4 A is positive for any a€ Ay, PN D"

is empty. When M is reducible and s=3, for any aE L‘JA.,j the number of ¢
i=1

(1=1=s) such that the coeflicient of 7; in @+ A is positive is at least s—1. On
the other hand, the number of 7 (1 =<7=s) such that the coefficient of 7, in —a—A
is positive is at most 1. Therefore ®* NP~ is empty. When M is reducible
and s=2, we may assume that p, is a symplectic representation and p, is an
orthogonal representation. Then we see

DF = {a+pAy,+PAy, (AEAy), 1Ay +B+p:Ay, (BEAY)} ,

D= '{_a_Pleyl _P2A'Yz (CIE A‘Yl)’ _PlAyl_ﬁ—PZA‘Yz (B S A‘Vz) } .
Again checking tables in [2] and [19], we see that B4-p,Ay,+ —p,A,, for any
BEA,, Therefore even if a-+pAy =—pAy for some aEA,, it follows that
—a—p Ay, — PNy, F Py +B+pAy, and —pAy —B—p Ay, Fa+pi Ay, +PolAy,
Hence ®* N @~ is empty. Consequently in all cases ®* N ®~ is empty. There-

fore J| (Z‘, 2 V,,+ ) is orthogonal to DR % »+a With respect to the complex

i=1 weAy
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Hermitian inner product (,). So J(gojop(p)) is orthogonal to gojop(p) with
respect to ( , ) and also with respect to its real part <, >. Since K=—]JI,
K (geojop(p)) is orthogonal to gojop(p) with respect to the Euclidean inner product
<{,>. Thus we see that jop(p) is totally complex in p. Hence the immersion
f is totally complex and it is obvious that f satisfies the commutative diagram
in Theorem 6.5.

We note that the almost complex structure I can be defined globally on
f*TP,(H) such that I, A}, and folo=If,v forve T,M. In fact denote by I
the complex structure on the tangent space T,P,(H) at the origin defined by

. 0
adg((; O) under the identification of T,P,(H) with . Let K be a connected

Lie subgroup of G which corresponds to . Then by the form of p(4) A<H,
we have Adg(p(x)) I=TI Adg(p(x)) for x€K. So we can define the complex
structure I on T'7 P, (H) by p(x)sIp(x)3" for x€G.

Since totally complex immersions are quite similar to Kaehler immersions
(cf. Proposition 2.11), we can define the notion of higher fundamental forms
and degrees of totally complex immersions by the same way as Kaehler immer-
sions. On the degrees of totally complex immersions of Hermitian symmetric
spaces into a quaternion projective space, the following holds.

Theorem 6.8. In addition to the assumptions in Theorem 6.5, we assume
that each pair (§;, ;) defines an orthogonal symmetric Lie algebra of Hermitian
type. If fis a totally complex immersion of (M, g) into P,(H) constructed in the
proof of Theorem 6.5, then the degree d(f) of f is given by

df)=d(f)-1=3 rip—1,
where r; denote the rank of M; (1=i=<5s).

Remark 6.9. This Theorem does not hold if (§;, ;) dces not define an
orthogonal symmetric Lie algebra of Hermitian type for some 7. It does not
hold even if (M, g) is a Hermitian symmetric space as a Riemannian manifold.
For example, we consider a Kaehler C-space M obtained from the pair (C;, ;)
(I=2) and its p-th canonical imbedding f: (M, g)—Py(C). Then(M, g)=P,_,(C)
(cf. Remark 6.7). If p is not less than 3 and odd, (M, g) has a totally com-
plex immersion f into a quaternicn projective space. But we have d(f)=d(f)

=p.
Proof of Theorem 6.8. For simplicity we denote by M =P,,.(C), M=
P,(H). The vector bundle f*TM over M has the Hermitian structure (I, §)

and the Riemannian connection V induced from the ones on TM. Similarly
the vector bundle f*TM over M has the Hermitian structure (I, ) constructed
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in the proof of Theorem 6.5 and the Riemannian connection V induced from
the one on TH. The Riemannian submersion z: M—J1 induces the vector
bundle homomorphism f *TM—> F*TM, which is denoted by the same notation
7. (As for Riemannian submersions, see O’Neill [15]). By = we have the
following orthogonal decomposition:

F*TM = 4+,

where J{, and CV for peM denote the horizontal subspace and the vertical
subspace of Tf(p)M with respect to the Riemannian submerswn m respectively.
Since 9, and <V, for p€M are complex subspaces in Tme f* TM?* has the
decomposition f*TM E=Y*4+CP*, where H* and CVV* denote the ++/—1-
eigenspaces of the complexifications (¢ and C/¢ by the action of the complex
structure I respectively. If we restrict = to the subbundle K, z: H—>F*TM
is a linear isomorphism which preserves Hermitian structures and hence #»: H*
—f*TM* is a complex linear isomorphism. We note that £, T,MC 4, and
wfsTyM=F4T,M for pcM. By Lemma 3 in [15] for a local cross section &
of 9 and a local vector field X on M (V&)= 7;,%(5) holds. Denote by V*
and V™ the connections of the normal bundles in f*T' M and f *TM respectively.
Then, for a normal and horizontal vector field & of f* TM 7z(E) is a normal
vector field of f*TM and =(Vx E)=V% =(£) holds. We denote by H’ and
H the j-th fundamental forms of f and f respectively.

Lemma 6.10. Let d(f) be the degree of f. Then, for any p= M we have
HD (@) T,M*) = V3

and

d(f)-1
SHTM 3 HN®'T,M*) = i .

Proof. We use the same notations as in Theorem 6.5. Let p be the re-
presentation of G which defines the Kaehler imbedding f ot (M, g) into P,,,(C).
Since p(G) is contained in Sp(n+1), p(x) for x&G is an automorphism of the
Riemannian submersion z: P,,,,(C)—P,(H), i.e., p(x) is an automorphism of
the Kaehler manifold P,,,,(C) and maps each fibre into a fibre and hence each
horizontal subspace into a horizontal subspace. Since f is G-equivariant, it is
sufficient to prove this Lemma at the origin of M.

Let V' be the representation space of p. By Lemma 6.4, ' has two struc-
tures of the complex Hermitian vector space and the quaternionic Hermitian
vector space. Since SH""'=S8C*"*V T, SH**' coincides with T, SC*"* as
the subspaces in V. The vertical subspace V, SH"*' of T, SH*" with respect
to the fibration zg5: SH""'—P,(H) is given by {(aI4+-bJ+cK) ¢; a, b, cER}.
Let H, SC***" be the horizontal subspace of T, SC*"*V with respect to the
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fibration z¢: SC*"*P—P,,, (C). Then the intersection H,SC***’NV,
SH" is given by {(bJ+cK) ey=(Je,) (b++/—1c); b, ccR}. Therefore H,
SC*d NV, SH*! coincides with V_,. The image =q(H, SC***VNV,,
S H"*) is the vertical subspace €V, of T,P,,,(C) with respect to the submersion
w: Pp(C)—P,(H). Let Su(2(n+1))=¥+5 be the canonicald decomposition
which corresponds to P,,.;(C) and p=9+CV be the decomposition which is
induced from the decomposition T,P,,.,(C)=9,+<V,. Then ¢(¢V’) coincides
with V_, and hence ¢(<{/*)=V_,. Recall that goH/(®’ p*) coincides with the

sum of all weight spaces of the representation p with weights A such that 2
c(A—A; v;)=—7 (see the proof of Theorem 5.2). Then we have goH¢” ’(®"’(;;
pt)=V_,. In fact since —A is the lowest weight of p, we have 23 c(—A—A;
v;)=—d(f). Moreover the representation theory of semi—simple‘ —i,ie algebras
implies that

3 e A5 ) > 3 d(—A—A; 1) = —d(f)

for a weight A (= —A) of p. Therefore we have H*(Q? p*)=C*. Thus

Lemma 6.10 is proved.
Owing to Lemma 6.10, it is sufficient to prove that

nHi(%y, -+, ;) = Hi(xy, -+, x;) for 2= j<d(f)—1
and Xy, oy 0, €T,MT .

We shall prove this inductively. Since H*(Xj, X2)=‘A7X2 X,—Vy, X, for X}, X,
€0>(TM*) and 7:(6,{2 X1)=Vy, Xi, we have

w(H (X, X)) = 2(Vy, Xi— Vi, Xi) = Vi, X,— Vi, X,
== Hz(Xl, XZ) .

Here we assume that
nH (xy, -+, x) = H*(xy, -, ) 2y, -, %, ET,M*

holds for 2<k=<d(f)—1 at any point pEM.
Since H*(xy, +++, x,) € H; by Lemma 6.10, we have

71'Hk+l(X1, Xk-H)
3
= ”(Vj{-k+1 Hk(Xl o ‘Xvk)—'g1 Hk(le RS VXk+1 Xi: Tty Xk))

= Vhrn eHH(X, o X)—3) wHY (X, Vi Xy o+, Xo)

k
= v;k+1 Hk(Xl’ ) Xk)_g Hk(Xl, A VX)H—I Xi! R Xk)
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= HHI(Xb ) Xk+1) Xl) °t% X,,+1EC'°°(TM+) .
Therefore we have zH* (xy, -+, x41) = H* oy, -+, %p4a) for x,, -+, 0T ,M™.

Corollary 6.11. Let f: (M, g)—Py(C) be one of the following Kaehler
imbeddings (1)~(4) of Hermitian symmetric spaces. Then it satisfies the assump-
tion of Theorem 6.5 and the totally complex immersion f of (M, g) into P,(H) con-
structed in the proof of Theorem 6.5 has parallel second fundamental form. More-
over we have dimcM=n.

(1) M=SU(6)/S(U3)x U@3)), Sp(3)/U(3), SO(12)/U(6), or E;/Es-T* and
f is the first canonical imbedding.

(2) M=P,(C)XPy(C) and f is the tensor product of the first canonical im-
bedding of the former P\(C) and the second canonical imbedding of the latter P,(C).

(3) M=P,(C)xXP(C)XP\|(C) and f is the tensor product of the first canon-
ical imbeddings of Py(C).

4) M=P(C)XQ,(C) (m=3) and f is the tensor product of the first canon-
ical imbedding of P\(C) and the first canonical imbedding of Q,,(C).

Proof. By checking Table 2 in Remark 6.6 we see that the Kaehler im-
bedding f: (M, g)—>Py(C) satisfies the assumption of Theorem 6.5. Also we
know that dimeM=n referring to Table 2 in Nakagawa and Takagi [14]. By

Table 2 Hermitian symmetric spaces with orthogonal representations.

M dimgM | rank M
s e G200 | O gzll;‘zt((ii—l))/S(U(Zk-f—Z) xUQr+2) | FRTD | k42
By, @) (122) QOu-(C)=SOQI+1)[SO@I-1)x SO@) | 2I~1 2
(Can, azp) (k22) Sp(2k)|U(2k) kQ2k+1) 2k
(D1, @) (124) Ou-2(C) = SO@)|SORI—2) x SO(2) 212 2
(Dasy a4) (k22) SO(8k)[U(4k) 2k(4k—1) 2k

Hermitian symmetric spaces with symplectic representations.

M dimgM rank M
(4, @) Py(C) 1 1
Gak+1,26+1(C)
>
(Asp+1, Qai+1) (RZ1) = SU(®4k+2)[S(U2k+1) X UQk+1)) (2k+1)? 2k+1
(Cab+1y O2p+1) (RZ1) | Sp(2R+1)[U(2k+1) 2k+1)(k+1)| 2k+1
(Dip+2, Agpr2) (k21) | SO2(4k+2))|U(4k+2) (2k+1) (4k+1)| 2k+1
(E7, o) E,/E¢ T 27 3
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Theorem 6.8 we have d(f)=2 and the image H*®?T,M™) spans the normal
space N,(M)* in Ty, P,(H)* for any point pc M. Hence the image #%(R?T,M)
spans the normal space N,(M) in Ty, P,(H). In fact the mapping veN,(M)*
—v+0EN,(M) is a real linear isomorphism of N,(M)* onto N,(M) and we
have

H¥(x, y)+H(x, y) = H(x, y)+ H*(%, §) = F(x+&, y+7)
for x, yeT ,M*.

Let g=%+4p be the decomposition of the compact real form g which corre-
sponds to M. Then note that g=%+4p is the canonical decomposition of an
orthogonal symmetric Lie algebra. Let G be a compact and simply connected
Lie group which corresponds to g. Then recall that the totally complex immer-
sion f is G-equivariant. We shall show that <V#%(y, 2, x), h*(u, v)>-+<H(y, 2),
VR (u, v, x)>=0 x, y, 2, u, vET,M. By the equivariance of f it is sufficient
to prove this at the origin of M. Let X&) be the vector which corresponds to
x€T,M. Define a curve ¢(t) by c(t)=exptX-o, where exptX denotes a one-
parameter subgroup of G generated by X. Then ¢(#) is a geodesic such that
é(0)=x. Set Y=(exptX),y, Z=(exptX)y2, U=(exptX)u, and V=(exptX),v.
Then it is known that Y, Z, U, and V are parallel vector fields along the geo-
desicc. We get

(Y, 2), (U, V)
= CR(exptX) e, (xptX)yz), F((ExptX) st (exptX)yo)>
= <P(exth)*Zz(y’ 2), p(exth)*ﬁz(u, v)>
= <ﬁz(y’ 2)’ Ez(u’ 'Z)))

and hence <#¥(Y, Z), ”(U, V) is constant along ¢. Therefore we have G
(9, 2, %), B(u, 0)>-+<H(y, =), VA (u, v, x)>=0. Since f is totally complex,
VH(y, 2, ¥)=VH(y, x, 2) holds by the equation of Codazzi. Using the above
equations, we have {V#(x, y, 2), W(u, v)>=—L(x, v), VA (u, v, 2)>={Vh*
(x’ ¥ ‘Z)), iiz(z) u)>:_<;;2('v’ x)) Vﬁz(z’ U, y)>:<vﬁz(v, Xy u)’ zz(y’ z)>:—<ﬁz
(u, v), VH(y, 2, x)>=—<Vh¥(x, y, 2), F*(u, v)> and hence <VA(x, y, 2), F(u, v)>
=0. Since the image #*(®?T,M) spans the normal space N,(M), we obtain
Vh*=0.

7. Totally complex parallel immersions into a quaternionic space
form

In this section we shall determine totally complex parallel immersions into
a quaternionic space form.

Lemma 7.1. Let f: (M, g)—M(&) be a totally complex parallel immersion
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of a connected Riemannian manifold M with dimgM =4 into a quaternionic space
form M(€) ¢+0. Then M is a Hermitian locally symmetric space with the local
complex structure induced from the quaternionic Kaehler structure of M(C).

Proof. Since the submanifolds with parallel second fundamental form
in a Riemannian locally symmetric space are locally symmetric, M is locally
symmetric. Moreover by Proposition 2.11, M with I is locally Kaehler and
hence M is a Hermitian locally symmetric space.

Theorem 7.2. If f is a totally complex parallel immersion of a connected
Riemannian manifold M with dimgM =4 into a quaternionic space form MI(C)
¢<<0, then f is totally geodesic.

Proof. By Theorem 3.10, two cases (C-C) and (C-H) may occur. M.
Kon has shown that there is no Kaehler parallel submanifold in a complex
hyperbolic space besides totally geodesic one ([10]). Therefore we consider
the case (C~H). In this case the Gauss equation is given as follows:

(RX,Y)Z, Wy = g KY, Zy <X, Wy—<(X, Z> <Y, W

Y, Zy X, Wy—IX, Z IV, Wy—2IX, V> <IZ, W}
WY, Z), WX, WY>—Ch(X, Z), (Y, W)
for X,Y,Z WeTlT M,

where R denotes the curvature tensor of M. Note that it is quite similar to the
Gauss equation of the Kaehler submanifold in a complex space form with holo-
morphic sectional curvature & Nakagawa and Takagi showed that a Kaehler
immersion of a Hermitian locally symmetric space into a complex hyperbolic
space is totally geodesic (Theorem 3.2 [14]). If M is a Hermitian locally sym-
metric space different from a complex space form, we can prove similarly to
their proof, using the Gauss equation, that there is no totally complex immer-
sion of M into a quaternionic space form M(Z), ¢<0. If fis a totally complex
immersion of an n-dimensional complex space form M into a quaternionic
space form and f is not totally geodesic, then we have dim N y(M)=n(n+1)/2
(cf. Lemma 2.3 of [14]). On the other hand, the dimension of the first normal
space is equal to that of the tangent space by Theorem 3.10, which is a con-
tradiction. 'This proves Theorem 7.2.

Next we shall determine totally complex parallel immersions into a quater-
nionic space form M(&), &>0, i.e., a quaternion projective space P,(H).

Theorem 7.3. Let M be a simply connected complete Riemannian mani-
fold with dimpM =4 and f: M—P,(H) be a totally complex parallel immersion.
We assume that Oy M)=T s, P,(H) for some point pM. Then such a pair
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(M, f) is one of the pairs consisting of the Hermitian symmetric spaces and their
totally complex immersions given in Corollary 6.11.

The rest of this section is devoted to proving this Theorem. By Lemma
7.1 M is a Hermitian symmetric space. By Theorem 4.1 M admits a Kaehler
immersion into P,,,,(C) and hence, by Theorem 4.1 (2) in Takeuchi [17], M
is of compact type.

Following Helgason [7] we shall associate an orthogonal symmetric Lie
algebra g with M. Let g and R be the Riemannian metric and the curvature
tensor of M respectively. We fix a point oM and put p=T,M. For TE
gl(b), we naturally extend 7" to a derivation of the mixed tensor algebra ,2 (RP)®

®*p*) over P.

We put t={T'egl(p); T-g,=0 and T-R,=0}. Then ¥ is a Lie subalgebra of
gl(b). Since M is a semi-simple Riemannian symmetric space, ¥ is spanned
by the set {R,(X, Y); X, YT ,M}. Consider the direct sum g=Ef+p and

we introduce a bracket operation [ , ] in g as follows:

For X,Yep [X,Y]=—R(X,Y)
For XepTet [T,X]= —[X,T]=TX (T operating on X)
For S, Tet [S, T] = ST-TS.

Then g with this bracket operation is a real Lie algebra. Next define the map-
ping o: g—=>g by o(T4+X)=T—X for Tet X€p. Then ¢ is an involutive
automorphism of g. Consequently (g, &) is an effective orthogonal symmetric
Lie algebra (Helgason [7] Lemma 5.4 p. 220). Moreover (g, o) is of Hermitian
type and g is isomorphic to the Lie algebra of I(M), where I,(M) denotes the
identity component of the full group of isometries of M. Let G and K be
a simply connected Lie group and its connected Lie subgroup which correspond
to g and ¥ respectively. Then we can reconstruct M as the quotient manifold
G/K.

We recall the Lie algebra §=Spg(n+1) and its canonical decomposition
g=1+P which corresponds to a quaternion projective space P,(H) (see §4).
Let {I, J, K} be the canonical basis of A’ on P defined in §. We identify
§ with T, P.(H) as in §4. Moreover we identify ¥ with adz(¥). Then ¥
is given by

f = {Tegl(p); T is skew-symmetric with respect to < , >
and TA'CA’},

where < , > denotes the standard real scalar product on .

We may assume without loss of generality that f(0)=7g(e,) and that f.I=
Ife, JfsT M1 fuT,M, Kf T,M| foT,M, where I denotes the complex
structure on T,M. We shall construct a Lie algebra homomorphism p: g—§
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in the same way as in Naitoh [12]. Noticing =T, P.(H)=fT,M+N(M),
we define linear mappings s: p—p, u: p—gl(P), and 7: t—>gl(H) as follows:
S(X) = fxX
#(X) (s(Y)+£) = —s(A(X))+MX, Y)
(T) (\X)+ MY, Z)) = (TX)+KTY, Z)+h(Y, TZ)
for X,Y,Zep, EeNyM),
where A; denotes the shape operator of f.
We remark that 7(T) is well-defined for T€t. In fact,
if T=3RU,V) and 3 WY, Z;)=0, we have
(1) (X MY, Z) = ZAWTY ), Z;)+KY ), TZ))}
=2 WRU, V) Y5, Z)+KY 5, R(U, V) Z))}
=2 RAU, V) WY}, Z))
=3 RAU, Vi) Y, Z))
=0.
We shall show that u(p)C¥ and ~(£)CE. For this we need the following

Lemma 7.4. Let f: M—M(C) be a totally complex immersion of M into
a quaternionic space form M(Z), €+0. We assume that dimgM=(1/2)dimgzM(Z)
=4. Let {I, J, K} be a canonical basis of A}y at pEM such that If,T,M=
f«T,M, JfoT,M | f T ,M, KfyT,M_| foT,M. Then we have

(1) Ay,(x) = —Jh(x, y), Ax,(x) = —Kh(x, 3) ,
(2) R*(x, ) (Jo) = —2Q(x, y) Rz-+J(R(x, y) ),
R*(%, y) (K=) = 2Q(x, y) Ja+K(R(x, ) 2)

for x, y, & T, M, where Q is defined by Q(x, y)=g(Ix, y).

Proof. Let {I, J, K} be a local canonical basis of f¥*4’ over some neighbor-
hood U around p taken in Lemma 2.10. Then we have

Vx(JY) = a(X) KY+](VY)
= a(X) KY+](VY+h(X, V),

for vector fields X, Y over U.

On the other hand we have Vy(JY)=V%(JY)—A47y(X). Comparing the tan-
gential components and the normal components of two equations, we get A7y (X)
=—Jh(X, Y)and V¥(JY)=a(X) KY+J(VY) respectively. Similarly we get
Azy(X)=—KWX, Y) and Vx(KY)=—a(X) JY+K(VyY). Using these, we
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obtain
R*(X, Y) (JZ) = 2da(X, Y) RZ+J(R(X, Y) Z) .

By Lemma 2.6, we have R*(X, Y) (JZ)=—2Q(X, Y)KZ+J(R(X, Y) Z).
We have a similar expression for R*(X, Y) (KZ). q.e.d.

We shall show that u(X)et for Xep. First w(X) is a skew-symmetric
linear endomorphism of . In fact, we have

CalX) ((V)+E), s(Z)+rd>+<S(V)+E, w(X) ((Z) 4
= {—S(ALX))+MX, V), (Z)+n-+<s(V)+E, —5(A(X))
(X, Z)> = —<A(X), Z>+MX, V), 75— A(X), ¥>
(X, Z), B> = —H(X, Z), E>+<HX, V), n>
—CH(X, Y), p>+<HX, Z), E> = 0.

Note that JT,M=N}(M). Using Lemma 7.4, we get

(X)) (s(Y)+]Z)
= p(X) I((Y)+J2))—I(u(X) ((Y)+]Z))
= w(X) ((UY)+RZ)—I(—s(A7:(X))+HX, Y))
= —5(A z2(X))+HX, IV)—T(Jr(X, Z))—In(X, Y)
= RWX, Z)+hX, IY)—RWX, Z)—h(X, IY)
=0.

Similarly we obtain u(X) J=u(X) K=0. Consequently u(X) is contained in
¥ and has the following form:

l:o OJ Y eSp(n)
0 v/ P

We shall show that #(T)f for T . It is sufficient to prove this when
T=R(U, V). Note that ~(R(U, V))E=R*(U, V) for £ N;(M). Since
R(U, V) and R*(U, V) are skew-symmetric linear endomorphisms of 7,M
and N ,(M) respectively, it is evident that 7(R(U, V)) is skew-symmetric on §.
We prove (R(U, V))I=0, +(R(U, V))J=—eQ(U, V)K=—eQ(U, V)], and
(R(U, V)K=eQ(U, V)J=—eQ(U, V)IK. Using Lemma 7.4 (2), we get

(+(R(U, VYD (X)+TY)
= =(R(U, V)T(X)+TV)~I((RU, V)(S(X)+T)
— (R(U, V)s(IX)+RY)~I(s(R(U, V)X)+R*(U, V)(JY)
— S(R(U, VYIX)+R~(U, V)R Y)—sU(R(U, V)X))
—IR~U, V()
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= U, NJY+K(R(U, NY)—eU, V)JY—KR(U, 1Y)
=0

and get

(«(R(U, V) T)(X)+TY)
= ~(R(U, V) —(V)+JX)—J(RU, V)X)+R~U, V)(JY)
— —s(R(U, V)V)+RU, V)(JX)—J(R(U, V)X)
—J(—eQ(U, MRY+J(R(U, V)Y))

= —eU, V)KX+J(R(U, )X)—J(R(U, )X)+eQ(U, V)JKY

= — YU, V)R($(X)+]Y).
We get a similar expression for 7(R(U, V))K. Consequently 7(R(U, V)) is
contained in . Moreover 7(R(U, V)) has the form:

«R(U, V»=[? 0] Y € Sp(n), NER.

Now define a linear mapping p: g—§ by the equation p(X-+T)=s(X)
+uw(X)+7(T), Xep, T€l. Then we have

Proposition 7.5. The linear mapping p is a Lie algebra homomorphism.
Proof. The proof depends on the following three equations:

(7.1)  R(X, V)Z = R(X, V)Z+ Az, »(Y)—Asr, »(X)
(72)  R(X, V) = RNX, VJE+HAx(X), V)—h(A(Y), X)
(73)  T(AX) = Aon(X)+A4TX)
for X, Y,Z €p E&Ny(M) and T <t

Here the equations (7.1) and (7.2) are the ones of Gauss and Ricci respectively.
For T' %, we have

{T(Ag(X)), Vo = —<AgX), TV = <& kX, TV))>
= —<&, (DX, V)—hTX, V)>
= <7(T)E, WX, V)>+<&, WTX, V)>
= {A:pe(X)+A(TX), V>

and hence we obtain (7.3).

We prove the following three formulas, which imply immediately that p
is a Lie algebra homomorphism.

74 ~(T, S]) = [7(T), =(S)]
(7.5)  p(IT, X]) = [p(T), p(X)]
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(7.6)  p([X, Y]) =[p(X), p(Y)] forT,Sctand X, YEP.

By the definition of 7, we have

[7(T), 7(S((X)+HY, Z))
=7(T)7(S) ((X)+A(Y, Z))—(S)r(T)«(X)+MY, Z))
= =(T)S(SX)+1(SY, Z)+h(Y, SZ)}
—(SH{(TX)+KTY, Z)+h(Y, TZ)}
= (TSX)+h(TSY, Z)+h(SY, TZ)+kTY, SZ)+h(Y, TSZ)
— {(STX)+(STY, Z)+hTY, SZ)+h(SY, TZ)+h Y, STZ)}
= s([T, SIX)+A(T, SI(Y), Z)+WY, [T, S](Z))
= 7([T, S)(s(X)+1(Y, Z))

and hence (7.4) is proved.
Next we have

p(IT, X]) = p(TX) = S(TX)+u(TX)
and

[o(T), p(X)] = [+(T), s(X)+u(X)] = T(T)(X)+[r(T), ()]
= S(TX)+[+(T), w(X)].

Therefore we need only to prove u(TX)=[r(T), u(X)]. Using (7.3), we have

[7(T), w(X)](s(Y)+8)
= 7(T)u(X) ((Y)+E)— w(X)7(T) (s(Y)+E)
= (T {K(X, V)—s(AeX)} — p(X)(TY)+7(T)E}
= WTX, Y)+h(X, TY)—s(T(Ae(X)))— {h(X, TY)—5(Arpre(X))}
= WTX, Y)—s(A«(TX))
= w(TX)(s(V)+E).

Consequently the equation (7.5) follows.
For X, Y b, we have

p([X, Y]) = p(—R(X, V)) = —7(R(X, Y))
and

[p(X), p(Y)] = [{(X)+u(X), s(Y)+u(Y)]
= [5(X), s(V)]+[(X), w(V)]+[m(X), s(Y)]

+[1(X), (V)]
= —R(X, Y)—IX, Y)+h(X, V)+[u(X), ()]
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= —R(X, V)+[u(X), w(V)].

By (7.1) and the definition of x, we have
R(X, Y)Z = R(X, V)Z—[u(X), s(V)] (2).

By (7.2) and the definition of u, we have

R(X, Y)E = R(X, V)E—[u(X), s(Y)](E).

Thus we obtain 7(R(X, Y))=R(X, ¥)—[u(X), u(Y)] and hence we get the
formula (7.6). q.e.d.

We extend the Lie algebra homomorphism p to the Lie group homomor-
phism p: G—>G=S8p(n+1). Since p(f)Ct and K is connected, p(K) is con-
tained in K=Sp(1)x Sp(n). Therefore we can define a G-equivariant C*-
mapping f of M into P,(H) by f(xK)=mg{p(*)e,)-.

Proposition 7.6. The mapping f is a totally complex parallel immersion
of M into P(H). Let k be a second fundamental form of f. Then we have
fl)=fo)=nwles), (fi)e=(fx)s and h(X, V)=h(X, Y), X, Y €T, M.

Proof. By the construction of f, it is obvious that ( fy),=s=(fs),- Since
f« is an isometry and fo I=1If, Jf+T,M | foT,M, Kf T,M | f:T,M and since
f is G-equivariant, f is a totally complex immersion of M into P,(H).

The second fundamental form % and its covariant differentiation T% at
oEM are given by the following formulas (see Naitoh [11] Proposition 5.1
and Proposition 5.2):

K(Y, X) = [p(X), p(¥)5]
VA(Z, Y, X) = [p0(X), [o(Y)5> (Z)5]1+ felArz.n(X))
for X, Y, Zep, where p(X); and p(X)5 denote the f-component and the P-

component of p(X) with respect to the decomposition §=E+p respectively.
Therefore by the definition of p we have

WY, X) = [p(X)g, p(¥)5] = [w(X), (V)] = u(X)s(Y) = KX, V)
and
VA(Z, Y, X) = [p(X)y, [(V)y, p( 2511+ Az, n(X))
= [w(X), [(Y), S(Z)]]+s(Anz, (X))
= —8(Awr (X)) +5(Asr, (X))
=0.

Thus we see that (X, Y)=h(X, Y) and Vh=0 at oM. By the G-equivari-
ance, the second fundamental form of f is parallel over M. q.e.d.
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By the following Lemma and Proposition 7.6 it is obvious that f and f
coincide on M and hence we can reconstruct f as a G-equivariant immersion.

Lemma 7.7 (Naitoh [12] Lemma 3.2). Let f and f be parallel immersions
of a complete connected Riemannian manifold M into another Riemannian mamni-
fold M, and h and h be their second fundamental forms respectively. If there
exists a point oM such that f(0)=£(0)=0, (fy)o=fx)e: T,.M—>T:M, k,=h,,
then f and f coincide on M.

Next we shall construct a Kaehler immersion f of M into P,,.,(C) making
use of the Lie algebra homomorphism p. At first we introduce the structure
of a complex Hermitian vector space on H"*'. Let I, J, and K be the real
linear endomorphisms of H**! defined in Lemma 2.1 and (, )5 be the quater-
nion Hermitian inner product of H"*'. Define a right complex scalar product
by v(a+bv/—1)=(a+bI)v for v€ H**! and a complex Hermitian inner product
(» )¢ by (#, v)¢= the complex conjugate of the complex part of (u, v)y for
u, vE H*'. Let {e, -, e,} be the canonical basis of H"*'. Then {e, Je, -+
e, Je,} is a unitary basis with respect to this complex Hermitian inner product.
Thus we may view H"**! as C**"*V.  Define a complex skew-symmetric bilinear
form Q on C?***V by Q(u, v)=(Ju, v)¢ u, vEC***D, Then, for T €Sp(n+1),
T is a complex linear endomorphism of C***V and T leaves the complex Her-
mitian inner product ( , )¢ and the bilinear form Q invariant. That is, we
have (Tu, v)¢+(u, Tv)¢=0 and Q(Tu, v)+Qu, Tv)=0. Therefore the Lie
algebra homomorphism p: g—>Sg(n+-1) induces the Lie algebra homomorphism
p: §—>84(2(n+1)) and the complexification p: g¢—gl(2(n+1), C) is a symplectic
representation.

Let 5u(2(n+1)):f+ﬁ) be the canonical decomposition of S«(2(n+1))
which corresponds to P,,.,(C). Since p(T)=7(T) for T &% has the form:

oo AER, YES
0 Y ’ ’ p(n),

p(f) is contained in f. Extend the Lie algebra homomorphism p: §—>S«(2(n4-1))
to a Lie group homomorphism p: G—=SU(2(n+1)). Then p(K) is contained
in S(U(1)x U(2n-+1)) and we obtain a G-equivariant C “-mapping f of M into
P,,.,(C) defined by f(xK)znc(p(x)eo), where 7z, denotes the Hopf fibration
et SC*"Y =P, (C).

Proposition 7.8. The mapping f is a full Kaehler immersion of M into
P,,1(C). Moreover we have f=mno f, where 7w denotes the Riemannian submersion
w: Py, (C)—P,(H).

Proof. Let jo and jg be the projections of S«(2(n+-1)) and Se(n+1) onto
f and P with respect to the decompositions Su(2(n+1))=¥+$ and Sp(n-1)
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=T4p respectively. Let H, SC***V and H, SH"*' be the horizontal sub-
spaces with respect to the fibrations z¢: SC***V—P,, . ,(C) and ngz: SH""'—
P,(H) respectively (see §4). We note that H, SC***V={Je}+H, SH"",
where {Je}c denotes a complex subspace of C***V spanned by Je,. Let g¢
and gy be the identification mappings of § and p with H, SC*"*V and H, SH"*
respectively (also see §4). By the form of w(X), we have p(X)e,=(u(X)+
s(X))ey=s(X)e,eH, SH"*' for X €p and hence g¢jcp(X)=¢gjap(X)=p(X)e,
for X €p. The real linear mapping ggojgop: p—H, SH**' is complex linear,
i.e., ¢uinp(IX)=Iq4jap(X) and leaves the real scalar product. So the real linear
mapping ¢c¢ojcop: P—H, SC***V has the same properties. Therefore the
mapping jeop: P—P is a complex linear and preserves the Hermitian inner
product. This, together with the G-equivariance of f, implies that f is a Kaehler
immersion of M into P,,,,(C). By construction, it is obvious that =7t°f.

Next we shall prove that f is full. Let TP,,(C)=H+C<V be the decompo-
sition with respect to the Riemannian submersion z: P,,.,(C)—P,(H) (cf. the
proof of Theorem 6.8). At the point 7z¢(ey) EPyyia(C), H and CV are given
by H=H,SH"" and <V ={Je} under the identification of T e ptep) Ponn(C)
with H, SC***V, Let X and Y be local horizontal vector fields of P,,.,(C)
around z¢(e,). By a computation similar to the example in [15], we get

(1.7)  W(VeY) = —(Je)XJX, Y >—(Re)XRX, Y,

where CV(éxY) denotes the vertical component of VY at z4(e) and <X, V>
denotes the real part of the complex Hermitian inner product (X, Y)¢. Let
# and & be the second fundamental forms of f and f respectively. Since f is
a totally complex immersion, by (7.7), we have (X, Y) is horizontal for X, Y&
T,M and zh(X, Y)=H(X, Y). Therefore we have 4/, C(eo)zf*T,,M +h(QT,M).
Calculating as in the proof of Corollary 6.11, we get <VA(X, Y, Z), i(U, V)>=0
for X, Y,Z, U, VeT,M and by (7.7) we have CV,,C(,,O):V}}(®3T,M). Con-
sequently f is full.

Proof of Theorem 7.3. By Theorem 2.1 and Theorem 2.2 in Takeuchi
[17] we see that the Kaehler immersion fin Proposition 7.8 is obtained by the
way described in §5. Especially the representation p: g—S«(2(n+1)) is
irreducible. We showed that the complexification p: g¢—gl(2(n+1), C) is
a symplectic representation. Therefore the totally complex immersion f is

obtained by the same way as in the proof of Theorem 6.5. Then by Theorem
6.8 and Table 2, Theorem 7.3 follows.

By the arguments in the proof of Theorem 7.3, the following is easily seen.

Corollary 7.9. The local wversion of Theorem 7.3 holds. Namely if
f: M—P,(H) is a totally complex parallel immersion of a connected Riemannian
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manifold M with dimg M =4 into P,(H) such that Oy(M)="T ;,,P,(H) for some
point pE M, then M is locally isometric to one of the Hermitian symmetric spaces
given in Corollary 6.11 and f is locally equivalent to its totally complex immersion
given in Corollary 6.11.
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