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In the paper dedicated to Professor Kiyoshi Noshiro ([2]), we studied on

the balayage for logarithmic potentials. On the plane, consider the logarithmic

potential

μ being a positive measure, P and Q any points and PQ the distance between

P and Q. The measure μ is not always assumed with compact support, but

will be bounded to positive measures whose logarithmic potentials are never

— oo. The total mass of such measures is naturally finite, and the logarithmic

potential of such measures is superharmonic in the whole plane and harmonic

outside the support of the measure. Remember the definition of the logarith-

mic capacity of a compact set F. Putting

V = inf sup Uμ(P) and W - inf ((log — dμ(O)dμ(P)
μ P μ JJ PQ ~

for any positive measure μ supported by F with total mass 1, we have always

V— W. The logarithmic capacity is given by

C(F) = e~v = e~w

if V=W<oo and by C(F)=0 if V=W=oo. A Borelian set E is said of loga-

rithmic capacity positive when it contains a compact set of logarithmic capacity

positive. The results published in the paper ([2]):

Theorem. Let F be any closed set {compact or noή) of logarithmic capacity

positive and μ be any positive measure with total mass 1. There exist a positive

measure μ' supported by F with total mass 1 and a non-negative constant γ μ such

that

(1) Uμ'(P)=Uμ(P)Jr7μ. on F with a possible exception of a set of logarithmic

capacity zero, and

(2) Uμ'(P)£Uμ(P)+yμ everywhere.
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We shall call μ a balayaged measure of μ onto F and γ μ a balayage constant.

We can construct a balayaged measure such that the reciprocal relation always

holds:

(3) \(Uμ/—Ίv)dv = \(Uv—yv)dμ for any positive measure μ with total mass

1, any positive measure v of finite logarithmic energy with total mass 1, their

balayaged measures μ and v' and their balayage constants y μ and yv.

When the balayage is done so as io hold the reciprocal relation, a balayaged

measure is always unique.

DEFINITION. Let F be any closed set. A point P is called a regular point

of F if the balayaged measure £' of the Dirac measure £ at P onto F (keeping

the reciprocal relation) coincides with £ and the balayage constant γ ε reduces to

zero.

Theorem. Two following expressions are equivalant.

[A] A point P is a regular point of F.

[B] Let μ be any positive measure with total mass 1, μ the balayaged measure

of μ onto F and γ μ the balayage constant. Then, it holds that

Uμ'(P) = C/ μ(P)+7 μ .

The paper is devoted itself to answer to the question:

"Is there a case when the balayage constant γ μ always vanishes ?" It is

easily seen that, if the complement of F is a bounded open set, the balayage

constant y μ always reduces to zero. The problem consists in the case F is not

so. We shall insist that the balayage constant y μ vanishes whenever F has a

little expanse at the infinity.

DEFINITION. Let £ b e a set and Po any point. E is said thin at a point

PQ if P o is an outer point of E or if there exists a positive measure μ such that

C/μ(P0)<lim U\P) (PGE) .
P+Po

Theorem 1. Let E be a closed set and Po any point. Two following state-

ments are equivalent:

[1] P o is a regular point of F.

[2] F is not thin at P o .

Proof. First, let us prove that P o is a regular point of F if F is not thin

a t P 0 .

Lemma. Let E be any set not thin at a point P o and μ any positive measure.

When e is a countable union of compact sets of logarithmic capacity zero, we have

f/μ(P0) - Urn Uμ(P)
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= Hm Uμ(P) (PϊΞE-e).
P+PO

The result is obvious when Uμ(P0) = ©o. Suppose that £/μ(P0)<oo. Let

and vn a positive measure supported by en such that UV"(P) = °o on eM and
UV"(PO) <oo. Taking the total mass of z>w sufficiently small beforehand, we can
find a positive measure z> supported by e—{Po} such that U\P)= °o on e and
£/v(P0) < °° A s t n e equality

ί/v(P0) = lim U\P)
P+Po

holds for points P of Z?, we have the same for points P of E—e also. Then, we
have

= lim Uμ+\P) (Pξ=E)
P-» P 0

= lim Uμ+\P) (PeE-e)
P+Po

^ lim Uμ(P)+ljm U\P) (PeE-e)
P*P P*P

thus the result.

Thereupon, let λ' be the balayaged measure of any circular measure λ (with
total mass 1) onto F and γ λ the balayage constant. As the equality

Uλ'(P) = U\P)+yλ

holds on F with a possible exception of a set e (a Fσ) of logarithmic capacity
zero, we have

Uλ'(P0) = lim Uλ'(P) ( P E F , therefore e F -

Hence, λx and λ2 being any concentric circular measure (with total mass 1), λί,
λ2, 6' the balayaged measures of λ1( λ2 and the Dirac measure 6 at P o onto F
respectively and yλ, y^, 7 ε their balayage constants respectively, we have
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= jc/ 'έίλi- \u*'dx2 = \uλi-λ*dε',

which induces the equality

for any non-negative continuous function / with compact support. Accordingly,
we have £ = £ ' and 7 8 =0, thus the result.

Next, let us prove that P o is an irregular point of F if F is thin at Po.

Lemma 1. Let both μx and μ2 be positive measures with compact support
and with total mass 1. For any positive number δ, the function

H(P) = inf {U*i(P), Uμ*(P)+δ}

is the logarithmic potential of a positive measure with compact support and with
total mass 1.

In fact, as there holds

lim {Uμ2(P)

= log 1—log 1 = 0,

we have

H(P) = Uμi(P)

outside an enough large disc Do centered at the origine. D1 and D2 being enough
large concentric discs and D0dD1ClD2y take the Riesz decompositions

H(P) = C/vi(P)+A1(P) in D1

and

H(P) = U\P)+h2{P) in A -

both vx and v2 are positive measures with compact support (czD0) and with total
mass 1, and hx(P) and h2(P) are harmonic in Dx and D2 respectively. Suppose
that a disc centered at a point Po contains Do and is contained in Dx. At such
points P o we have h1(P0)=h2(P0) as is easily seen. Hence, hλ{P) is able to provide
the harmonic continuation outward Dλ. Therefore, hx{P) (naturally vx also) is
independent upon Dλ. Accordingly, we have

H(P) = U\P)+h(P)

in the whole plane, where v is a positive measure with compact support and
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with total mass 1 and h(P) is harmonic in the whole plane. Then, we have

lim {H(P)-U\P)} = lim {U\P)-IP(P)} = 0,

so A(P) = 0 in the whole plane.

L e m m a 2. Let F be any closed set of logarithmic capacity positive, μn and

μ positive measures with total mass 1, μ'n and μ their balayaged measures onto F

and 7μn and 7μ(^0) their balayage constants. If

Uμ»(P) f U\P)

everywhere, there holds

U<(P)-7,m ί U"(F)-Ύ*

everywhere.

It is since, for any circular measure λ with total mass 1, its balayaged
measure X' onto F and its balayage constant 7 λ(^0), we have

L e m m a 3. Let F be any closed set of logarithmic capacity positive, Po a

regular point of F, £ the Dirac measure at PQJ \ n the circular measure with total

mass 1 centered at Po with radius 1/τz, λ£ the balayaged measure of \ n onto F and

γλw( ̂  0) the balayage constant. When n—> °o, we have λ»—>£ and Ύχn~^ 0.

In fact, as

t/λ»(P)t log ~p

everywhere, we have

everywhere. For any concentric circular measures \1 and λ2 with total mass 1,

we have

and



210 N. NlNOMIYA

hence we have

\fd\>n-*f{P0)

for any non-negative continuous function / with compact support. So, we
have λ«->£ and for a point P(4=P0)

 o f F

Ύλn = U^P)- U^(P) -* log A.- log J L = 0 .

Now, let F be a closed set thin at a point Po. We are going to prove that
Po is an irregular point of F. Unless it is an outer point of F, there exists a
positive measure μ such that

lim £/%P) ( P G F ) .

We may suppose that μ is with compact support and with total mass 1, Uμ(PΌ)
< a and Uμ(P)^a at each point P of the set {P; P e J F , P P 0 < r , P Φ P 0 } . Take

a positive number δ such that

in the set {P P^F, PP0^r}. That is possible since the support of μ is com-
pact, Uμ(P) is lower semi-continuous and

The function

inf (α+δ, log )

is the logarithmic potential of a circular measure vλ with total mass 1 centered at
Po, and the function

inf (log ^ L , t/<χP)+δ)

is the logarithmic potential of a positive measure v2 with compact support
and with total mass 1. Let us turn attention to

U\P) ^ U\P) in F- {Po}

including

We insist that
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at all regular point P of F, therefore P o is an irregular point of F. On the con-
trary, suppose that PQ is a regular point of F. Xn being a circular measure with
total mass 1 centered at PΌ with radius 1/τz, λ£ the balayaged measure of λw

onto F and γλj|( ^ 0) the balayage constant, there holds

U\P0) = (log - L dVl(Q) = lim f ( l ^ - yj^x

= lim ((£rirfλί-y

= Jim (j E ^ - T Λ . ) ^ = Jlog ̂  Λ 2

which is a contradiction.

DEFINITION. A set E is said thin at the infinity when E is bounded or
when there exists a positive measure μ with total mass 1 such that for a point Po

In this time, we have

lim( Uμ(P)—log—>)>0 (P^E)

for any point P', since

i i m l o g ^ - I o g ™ ) = °

Theorem 2. Let E be any set, Po any point and E' the inversion of E with
respect to the circle centered at Po with radius R. E is thin at the infinity, which
is the same to say that E' is thin at Po.

Proof. We have

E' = {P' P0P-P0P' = R\ arg Pf = arg Pf',

and

poQl = ^P^ = ^Q^ (P, Q<=EznaP', Q'(=E').
P0P P0Q PQ K L V '

Let μ be any positive measure with total mass 1 which charges no positive mass
at Po and μ the positive measure (with total mass 1) defined by dμ'(Q')=dμ(Q).
Then, there holds
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£/μ(P)-log — = Uμ'{P')- E7μ/(P0) ( P e £ and i

which naturally induces the result.

Theorem 3. Whenever a closed set F is not thin at the infinity, the balayage

constant of the Dirac measure at any point onto F always reduces to zero.

Proof. Let £ be the Dirac measure at a point Po, £' the balayaged meas-
ure of £ onto F and γ ε (^0) the balayage constant. If P o is a regular point of
P, we have £ '=£ and 7 ε =0. If P o is an irregular point of F, £' is a positive
measure supported by F— {Po} with total mass 1 and there holds

t / ( P ) iog

on F with a possible exception of the countable union e of compact sets of log-
arithmic capacity zero. We are going to prove 7 ε =0. Let F' and e' be the
inversion of F and e with respect to the circle centered at P o with radius R re-
spectively. We have

^ PV^ rp QEΞF, e and P', Q'tΞF', e')
P0P P0Q PQ

and e' is the countable union of compact sets of logarithmic capacity zero. De-
noting by £* the positive measure defined by dS*(Qf)=d8'{Q) supported by
Fr with total mass 1, we have

Um (U*'(P)-log jip-Ύ*) (PeF)

= Ian (U**(P')-U'*(PO)-7Z) ( P ' e f ) ,

F' being not thin at Po,

while

U**(P0) = lim Uz\Pf) (P'SΞF' or P'είF'-e').

Thus, we have —7 ε =0.

Corollary. Let F be a closed set not thin at the infinity. Suppose that μ

is a positive measure with total mass 1 whose logarithmic potential is finite and

continuous on F, or is the increasing limit of its restrictions μn whose logarithmic

potentials are finite and continuous on F. Then, the balayage constant of such
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measures μ onto F is always equal to zero.

For instance, suppose that C7μ(P) is finite and continuous on F. Take a
point Po where μ charges no positive mass. Denote by μ the balayaged meas-
ure of μ onto JF, by Jμ. the balayage constant and by Ff the inversion of F with
respect to the circle centered at Po with R. Then, we have

where μ*' and μ* are the measures defined by the inversion of μ and μ respec-
tively, and their total mass both are equal to 1. Observing that Uμ(P) on F9

Uμ*(P') on F', both are finite and continuous, the proof is gone forward alike
to the theorem.

REMARK. The condition of Corollary is satisfied in case a positive measure
μ with total mass 1 is such that
(1) μ is of finite energy:

more generally,
(2) μ charges no positive mass on the set {P; £/μ(P)— <χ>}.

Finally, we should like to terminate the paper by giving a few words on
closed sets that support the equilibrium measure.

DEFINITION. Let F be a closed set. A positive measure λ supported by
F with total mass 1 is called the equilibrium measure on F when Uλ(P)=V (a
constant) on F with a possible exception of a set of logarithmic capacity zero
and ^V in the whole plane. As is well-known, every compact set F of log-
arithmic capacity positive supports the equilibrium measure, which is unique.
In that case, the constant value V of the equilibrium potential is equal to

and

sup taken in the whole plane and inf taken with respect to positive measures
μ supported by F with total mass 1.

DEFINITION. A Borelian set E is said of logarithmic capacity positive when
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it contains a compact set of logarithmic capacity positive, otherwise is said of
logarithmic capacity zero. Further, E is said of logarithmic capacity finite when
the logarithmic capacity of all the compact sets contained in E is bounded from
above.

Then, we have

Theorem 4. Any closed set F which supports the equilibrium measure is
thin at the infinity.

Proof. Let λ be any positive measure with total mass 1, P o a point where
λ charges no positive mass and F' the inversion of F with respect to a circle
centered at Po with radius R. Taking a positive measure λ ; defined by d\\Q')
=dX(O), we have

U\P) = ί/λ'(P')-log - ± ; - - [/λ'(P0)-2 log R

for P of F and P' of F'. Here, Uλ'(P0) is necessarily finite since [7 λ(P)ί oo
and > — oo. Now, for the equilibrium measure X on F and the constant value
V of the equilibrium potential, λ' is a positive measure supported by F'— {Po}
with total mass 1. We have

U\P)-V=0

on F with a possible exception of a set of logarithmic capacity zero, which in-
duces

U*'(P')-hg J__(£Λ'(P0)+ V+2 log R) = 0

on Fr with a possible exception of a set of logarithmic capacity zero. There-
fore, λ' is the balayaged measure of the Dirac measure £ at P o onto F'. As
λ'Φ£, Po is an irregular point of F' and the balayage constant is given by

7 = U*\P0)+V+2\ogR.

Theorem 5. A necessary and sufficient condition in order that a closed set
F supports the equilibrium measure is that F is of logarithmic capacity finite.

Proof. Let λ be the equilibrium measure on F. Take any compact set
Fγ contained in Fy the balayaged measure λ{ of λ onto F1 and the balayage
constant 7χ(^0). Then, λί is the equilibrium measure on F1 and there holds

Uλί(P)= Uλ(P)+7ι^ Uλ(P)

on F1 with a possible exception of a set of logarithmic capacity zero. So, de-
noting by VF the constant value of U\P), we have



BALAYAGE CONSTANT FOR LOGARITHMIC POTENTIALS 215

VFχ = J Uλld\ί^ j Uλdx{ = VF ,

hence

Conversely, suppose that F is a closed set of logarithmic capacity finite. We
are going to construct the equilibrium measure λ on F. Let Fn (n=l, 2, 3, •••)
be compact sets monotone increasing toward F, Po an outer point of F, S a
circle centered at Po with radius R which contains no point of F, Ff

n and F'
compact sets which are the inversion of Fn and F with respect to S. Xn being
the equilibrium measure on Fn, denote by X'n the inverse measure of Xn with
respect to S:

dX'n{Q') = d\n(Q) for Q of Fn and Qr of Fί.

Then, we have

U\P) = U*»(P')-\og JLΓ-U>\P9)-2 log R ,

P and Po being inverse each other with respect to S. The constant values Vn

of the equilibrium potential on Fn produce a monotone decreasing sequence
bounded from below. Let V be the limiting number. V is finite. Put

Ύn=Vn+U^(P0)+2logR.

Then, the measure λ« supported by F'n with total mass 1 is the balayaged
measure of the Dirac measure at P o onto Fn and γM is the balayage constant.
The functions

Uλ»(P')-Ύn (11=1,2,3,...)

produce a monotone increasing sequence at each point P' and the non-negative
numbers yn a monotone decreasing sequence, therefore the sequence

{U^(P')} (n = 1 , 2 , 3, . .)

converges at each point P' ([2], see p. 236). We may suppose that the sequen-
ce of positive measures X'n with total mass 1 supported by the compact sets
F'n ( c F ) converges vaguely. Then, the limiting measure λ' is a positive measure
supported by Ff with total mass 1, and there holds the ineguality

Uλ'(P') ^ l im £/λ«(P')

at each point P' and the equality with a possible exception of a set of logarith-
mic capacity zero. Let us remark that Uλ\P0) is finite. It is since we have
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Uλ'(P0) ^ lim C/λ»(P0)

^ lim {Uλ»(P')—log— 21ogi?— Vn}

P'Po

for any point P\ therefore

f/λ'(P0) ^ ^λ'(P')-log J B — 2 log Λ- F

for a point P ' which does not belong to the exceptional set and such that
C/λ'(P')<oo. Making γΛ I 7(^0) and putting

V= 7-2 log R-Uλ\P0),

we have

tΛ'(P')-log - I j — «7λ'(P0)-2 log Λ = F

on Fr with a possible exception of a set of logarithmic capacity zero and 5*F
everywhere. Then, the inverse measure λ of λ.' with respect to S is a positive
measure supported by F with total mass 1, and we have

ZJ\P) = F

on ί1 with a possible exception of a set of logarithmic capacity zero and ^ F

everywhere. Thus, λ is the equilibrium measure on F.

QUESTION. IS the converse of Theorem 4 correct? That is, does any
closed set F thin at the infinity always support the equilibrium measure? If
the question should be affirmative, for any closed set, three expressions — the
existence of the equilibrium measure, the finiteness of the logarithmic capacity
and the thinness at the infinity — are all equivalent. In the Newtonian case,
these expressions are equivalent ([1], see n°14 and n°29), but how about the
case of the logarithmic potential ?
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