ON PATHWISE UNIQUENESS AND COMPARISON OF SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

Shintaro NAKAO

(Received March 28, 1981)

1. Introduction

In this paper we shall discuss the pathwise uniqueness and comparison problems for solutions of one-dimensional stochastic differential equations. Let $a(t, x)$ and $b(t, x)$ be bounded Borel functions defined on $[0, \infty) \times R$ with values in R. Consider the following one-dimensional stochastic differential equation;

$$
\left\{\begin{array}{l}
d x(t)=a(t, x(t)) d B(t)+b(t, x(t)) d t \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

where $B(t)$ is a one-dimensional Brownian motion with $B(0)=0$ and $x_{0} \in R$ is a non-random initial value. In [3], I showed that $a(t, x)=a(x)$ is uniformly positive and of bounded variation on any compact interval and $b(t, x)$ is time independent, then the pathwise uniqueness holds for the equation (1). A. Yu. Veretennikov [5] extended the above result to the case that the coefficients are time dependent. The purpose of this paper is to obtain another extension of the result of [3] different from that of A. Yu. Veretennikov.
$\mathrm{VI}([0, \infty) \times R)$ denotes the space of all functions defined on $[0, \infty) \times R$ such that for $t \geqq 0 f(t, x)$ is nondecreasing in x and for $x \in R f(t, x)$ is of bounded variation in t on any compact interval. Throughout this paper we shall assume that $a(t, x)$ satisfies the following condition.

Condition A. $a(t, x)$ satisfies the following conditions;
(i) $a(t, x)$ is Borel measurable and there exist positive constants a_{1} and a_{2} such that $0<a_{1} \leqq a(t, x) \leqq a_{2}$ for $(t, x) \in[0, \infty) \times R$,
(ii) there exist $\alpha_{1}(t, x) \in \mathrm{VI}([0, \infty) \times R)$ and $\alpha_{2}(t, x) \in \mathrm{VI}([0, \infty) \times R)$ such that $\frac{1}{a(t, x)}=\alpha_{1}(t, x)-\alpha_{2}(t, x)$ for a.e. $(t, x) \in[0, \infty) \times R$,
(iii) for $t>0$ and $N>0$ there exists a positive constant $L(t, N)$ such that
$\left\|\left|\alpha_{i}(\cdot, x)\right|\right\|_{t}^{* 1)} \leqq L(t, N)$ for $x \in[-N, N]$ and $i=1,2$.
In this paper we adopt the definitions in [1] about the solution of (1) and the pathwise uniqueness of (1). We obtain the following theorem.

Theorem 1. Suppose that $a(t, x)$ satisfies Condition A and $b(t, x)$ is bounded Borel measurable. Then the pathwise uniqueness holds for the stochastic differential equation (1).

We now consider the following stochastic differential equations;

$$
\left\{\begin{array}{l}
d x(t)=a(t, x(t)) d B(t)+b_{1}(t, x(t)) d t \tag{2}\\
x(0)=x_{0} \in R
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
d y(t)=a(t, y(t)) d B(t)+b_{2}(t, y(t)) d t \tag{3}\\
y(0)=x_{0}
\end{array}\right.
$$

The following comparison theorem is a generalization of a result of [4].
Theorem 2. Suppose that $a(t, x), b_{1}(t, x)$ and $b_{2}(t, x)$ satisfy the following conditions;
(i) $a(t, x)$ satisfies Condition A,
(ii) $b_{1}(t, x)$ and $b_{2}(t, x)$ are bounded Borel functions such that $b_{1}(t, x) \leqq b_{2}(t, x)$ for $(t, x) \in[0, \infty) \times R$ a.e.
Let $(x(t), B(t))$ and $(y(t), B(t))$ be solutions of the stochastic differential equations (2) and (3) respectively defined on a same probability space (Ω, \mathcal{F}, P) with a referense family $\left(\mathscr{F}_{t}\right)_{t \geqq 0}$ such that $x(0)=y(0)=x_{0} \in R$. Then it holds that $x(t) \leqq y(t)$ a.s. for $t \geqq 0$.

In section 2 we prove Theorem 1 and give an example of $a(t, x)$ which satisfies Condition A. In section 3 we prove Theorem 2 by a new method.

2. Proof of pathwise uniqueness theorem

First we shall prepare two lemmas for the proof of Theorem 1. Let (Ω, \mathscr{F}, P) be a probability space with a reference family $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ and let $B(t)$ be a one-dimensional $\left(\mathscr{F}_{t}\right)$-Brownian motion defined on (Ω, \mathscr{F}, P) with $B(0)=0$. Consider the stochastic process defined by

$$
x(t)=x_{0}+\int_{0}^{t} \sigma(s) d B(s)+\int_{0}^{t} \gamma(s) d s
$$

where $\sigma(s)$ and $\gamma(s)$ are bounded measurable stochastic processes on (Ω, \mathcal{F}, P)

[^0]adapted to $\left(\mathscr{F}_{t}\right)$ and x_{0} is a real number. Set $\sigma=\sup _{(t, \omega)}|\sigma(t, \omega)|$ and $\gamma=$ $\sup _{(t, \omega)}|\gamma(t, \omega)|$. For $N>0, \tau_{N}=\inf \{t ;|x(t)| \geqq N\}$. Let $g(t, x)$ be a Lebesgue measurable function defined on $[0, \infty) \times R$. Setting
$$
G(t, x)=\int_{0}^{x} g(t, y) d y \quad \text { for } \quad(t, x) \in[0, \infty) \times R
$$
and
$$
V(t)=G(t, x(t))-G\left(0, x_{0}\right)-\int_{0}^{t} g(s, x(s)) \sigma(s) d B(s),
$$
we shall estimate the expectation of $\left|\left||V| \|_{t \wedge_{\tau_{N}}} * 2\right)\right.$.
Lemma 1. Suppose that $g(t, x)$ belongs to $\operatorname{VI}([0, \infty) \times R)$ and is continuously differentiable in (t, x). Then it holds that for $t>0$ and $N>0$
$$
E\left[\||V|\|_{t_{\tau_{N}}}\right] \leqq 2(N+t \gamma) M(t, N)+4 N K(t, N)
$$
where E denotes the expectation with respect to P,
$$
M(t, N)=\sup \{|g(s, y)| ;(s, y) \in[0, t] \times[-N, N]\}
$$
and
$$
K(t, N)=\sup \left\{\| \| g(\cdot, y) \|_{t} ; y \in[-N, N]\right\}
$$

Proof. Itô's formula implies that

$$
\begin{aligned}
V(t) & =\int_{0}^{t} g(s, x(s)) \gamma(s) d s+\int_{0}^{t} \frac{\partial}{\partial s} G(s, x(s)) d s+\frac{1}{2} \int_{0}^{t} \frac{\partial}{\partial x} g(s, x(s)) \sigma(s)^{2} d s \\
& =I_{1}(t)+I_{2}(t)+I_{3}(t)
\end{aligned}
$$

It is easy to see that $E\left[\left\|\left\|I_{1}\right\|\right\|_{t \wedge \tau_{N}}\right] \leqq t \gamma M(t, N)$ and $E\left[\left\|\left\|I_{2}\right\|\right\|_{t \wedge \tau_{N}}\right] \leqq 2 N K(t, N)$. Since $\left\|\left|\left|I_{3}\right| \|_{t_{\wedge \tau_{N}}}=V\left(t \wedge \tau_{N}\right)-I_{1}\left(t \wedge \tau_{N}\right)-I_{2}\left(t \wedge \tau_{N}\right)\right.\right.$, we have $E\left[\left\|\left|\left|I_{3}\right| \|_{t \wedge \tau_{N}}\right] \leqq\right.\right.$ $E\left[V\left(t \wedge \tau_{N}\right)\right]+t \gamma M(t, N)+2 N K(t, N)$. On the other hand it holds that $E\left[V\left(t \wedge \tau_{N}\right)\right]=E\left[G\left(t \wedge \tau_{N}, x\left(t \wedge \tau_{N}\right)\right)-G\left(0, x_{0}\right)\right] \leqq 2 N M(t, N)$. Combining the above estimates, we have $E\left[\left\|\|V\|_{t \wedge \tau_{N}}\right] \leqq 2(N+t \gamma) M(t, N)+4 N K(t, N)\right.$, which completes the proof.

Let $\rho(s, y)$ be a non-negative C^{∞}-function defined on R^{2} such that its support is contained in the closed unit ball and $\int_{R^{2}} \rho(s, y) d s d y=1$. For $\delta>0$ set

$$
\begin{equation*}
\rho_{\delta}(s, y)=\frac{1}{\delta^{2}} \rho\left(\frac{s}{\delta}, \frac{y}{\delta}\right) \tag{4}
\end{equation*}
$$

We now consider

$$
V_{\delta}(t)=G_{\delta}(t, x(t))-G_{\delta}\left(0, x_{0}\right)-\int_{0}^{t} g_{\delta}(s, x(s)) \sigma(s) d B(s)
$$

2) Let a and b be real numbers. $a \wedge b=\min \{a, b\}$.
where

$$
g_{\delta}=g * \rho_{\delta}^{* 3)} \quad \text { and } \quad G_{\delta}(t, x)=\int_{0}^{x} g_{\delta}(t, y) d y
$$

Lemma 2. Suppose that $g(t, x) \in V I([0, \infty) \times R)$ satisfies that for $t>0$ and $N>0$ there exists a positive constant $K(t, N)$ such that $\|\|g(\cdot, x)\|\|_{t} \leqq K(t, N)$ for $x \in[-N, N]$. Then it holds that for $0<\delta \leqq 1, t>0$ and $N>0$

$$
E\left[\||V|\|_{t \wedge \tau_{N}}\right] \leqq 2(N+t \gamma) M(t+1, N+1)+4 N K(t+1, N+1)
$$

where

$$
M(t, N)=\sup \{|g(s, y)| ;(s, y) \in[0, t] \times[-N, N]\}
$$

Proof. It is easy to see that $\left\|\left|g_{\delta}(\cdot, x)\right|\right\|_{t} \leqq K(t+\delta, N+\delta)$ for $x \in[-N, N]$ and $\sup \left\{\left|g_{\delta}(s, y)\right| ;(s, y) \in[0, t] \times[-N, N]\right\} \leqq M(t+\delta, N+\delta)$. Hence Lemma 2 is an easy consequence of Lemma 1.

Proof of Theorem 1. Let $a_{0}=1>a_{1}>a_{2}>\cdots>a_{k}>\cdots \rightarrow 0$ be a sequence such that $\int_{a_{k}}^{a_{k-1}} \frac{1}{u} d u=k$ for $k=1,2, \cdots$. Then there exists a twice continuously differentiable and odd function $\psi_{k}(u)$ on R such that $0 \leqq \psi_{k}(u) \leqq 1$ for $u \in[0, \infty)$,

$$
\psi_{k}(u)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leqq u \leqq a_{k} \\
1 & \text { for } & a_{k-1} \leqq u
\end{array}\right.
$$

and

$$
\begin{equation*}
0 \leqq \psi_{k}^{(1)}(u)^{* 4)} \leqq \frac{2}{k u} \quad \text { for } \quad a_{k}<u<a_{k-1} \tag{5}
\end{equation*}
$$

Set $\alpha(t, x)=\alpha_{1}(t, x)-\alpha_{2}(t, x), \alpha_{\delta}=\bar{\alpha} * \rho_{\delta}$ and $h_{\delta}(t, x)=\int_{0}^{x} \alpha_{\delta}(t, y) d y$, where ρ_{δ} is the function defined by (4).

Let $(x(t), B(t))$ and $(y(t), B(t))$ be solutions of (1) defined on a same quadruplet $\left(\Omega, \mathscr{F}, P,\left(\mathscr{F}_{t}\right)\right)$. Set $\eta_{N}=\{\mathrm{t} ;|x(t)| \geqq N$ or $|y(t)| \geqq N\}$. Theorem 2 of N. V. Krylov [2] assures that for $k=1,2, \cdots$ there exists a positive constant $\delta_{k}=\delta_{k}(t, N)$ $\leqq \frac{1}{k}$ such that
(6) $\max _{u \in \mathcal{R}}\left|\psi_{k}^{(i)}(u)\right| E\left[\int_{0}^{t \wedge \eta_{N}}\left|a \cdot \alpha_{\delta_{k}}(s, x(s))-1\right|^{i} d s\right] \leqq \frac{1}{k} \quad$ for $\quad i=1,2$.

Obviously the same estimates as (6) hold for $(y(t))$. For simplicity we set $h_{k}=h_{\delta_{k}}, \widetilde{\alpha}_{k}=\alpha_{\delta_{k}}, z_{k}(t)=h_{k}(t, x(t))-h_{k}(t, y(t))$ and $J(k, t)=(x(t)-y(t)) \psi_{k}\left(z_{k}(t)\right)$.

[^1]4) $f^{(i)}(u)$ denotes the i-th derivative of $f(u)$.

The martingale part $m_{k}(t)$ of $z_{k}(t)$ is $\int_{0}^{t}\left(a \cdot \widetilde{\alpha}_{k}(s, x(s))-a \cdot \widetilde{\alpha}_{k}(s, y(s))\right) d B(s)$. Setting $v_{k}(t)=z_{k}(t)-m_{k}(t)$, we have by Itô's formula

$$
\begin{aligned}
& J(k, t) \\
&= \int_{0}^{t} \psi_{k}\left(z_{k}(s)\right) d(x-y)(s)+\int_{0}^{t}(x(s)-y(s)) \psi_{k}^{(1)}\left(z_{k}(s)\right) d m_{k}(s) \\
&+\int_{0}^{t}(x(s)-y(s)) \psi_{k}^{(1)}\left(z_{k}(s)\right) d v_{k}(s) \\
&+\int_{0}^{t} \psi_{k}^{(1)}\left(z_{k}(s)\right)(a(s, x(s))-a(s, y(s)))\left(a \cdot \widetilde{\alpha}_{k}(s, x(s))-a \cdot \widetilde{\alpha}_{k}(s, y(s))\right) d s \\
&+\frac{1}{2} \int_{0}^{t}(x(s)-y(s)) \psi_{k}^{(2)}\left(z_{k}(s)\right)\left(a \cdot \widetilde{\alpha}_{k}(s, x(s))-a \cdot \tilde{\alpha}_{k}(s, y(s))\right)^{2} d s \\
&= J_{1}(k, t)+J_{2}(k, t)+J_{3}(k, t)+J_{4}(k, t)+J_{5}(k, t) .
\end{aligned}
$$

Using that
(7) $0<\frac{x-y}{h_{\delta}(t, x)-h_{\delta}(t, y)} \leqq a_{2}$ for $t \geqq 0, x \neq y$ and $\delta>0$
and

$$
\text { (8) } \lim _{k \rightarrow \infty} \psi_{k}(u)=\chi(u)=\left\{\begin{array}{rll}
-1 & \text { for } & u<0 \\
0 & \text { for } & u=0 \\
1 & \text { for } & u>0
\end{array}\right.
$$

it is easy to see that

$$
J\left(k, t \wedge \eta_{N}\right) \underset{k \rightarrow \infty}{\longrightarrow}\left|x\left(t \wedge \eta_{N}\right)-y\left(t \wedge \eta_{N}\right)\right| \quad \text { in } \quad L^{1}(P)
$$

and

$$
J_{1}\left(k, t \wedge \eta_{N}\right) \xrightarrow[k \rightarrow \infty]{ } \int_{0}^{t \wedge \eta} \chi(x(s)-y(s)) d(x-y)(s) \quad \text { in } \quad L^{1}(P) .
$$

By (5) and (7) we obtain

$$
E\left[J_{2}\left(k, t \wedge \eta_{N}\right)^{2}\right] \leqq\left(\frac{2 a_{2}}{k}\right)^{2} E\left[\int_{0}^{t \wedge \eta_{N}}\left(a \cdot \widetilde{\alpha}_{k}(s, x(s))-a \cdot \widetilde{\alpha}_{k}(s, y(s))\right)^{2} d s\right] \leqq 8\left(\frac{a_{2}}{a_{1} k}\right)^{2}
$$

and

$$
E\left[\left|J_{4}\left(k, t \wedge \eta_{K}\right)\right|\right] \leqq \frac{2 a_{2}}{k} E\left[\left\|\left|v_{k}\right|\right\|_{t \wedge \eta_{N}}\right] .
$$

Since $\sup _{k} E\left[\left|\left\|v_{k} \mid\right\|_{t \wedge \eta_{N}}\right]\right.$ is finite by Lemma 2, we have $\lim _{k \rightarrow \infty} E\left[\mid J_{2}\left(k, t \wedge \eta_{N}\right)+\right.$ $\left.J_{3}\left(k, t \wedge \eta_{N}\right) \mid\right]=0$. (6) implies that $\lim _{k \rightarrow \infty} E\left[\left|J_{4}\left(k, t \wedge \eta_{N}\right)+J_{5}\left(k, t \wedge \eta_{N}\right)\right|\right]=0$. Consequently we have

$$
\left|x\left(t \wedge \eta_{N}\right)-y\left(t \wedge \eta_{N}\right)\right|=\int_{0}^{t \wedge \eta_{N}} \chi(x(s)-y(s)) d(x-y)(s)
$$

Letting $N \rightarrow \infty$ it holds that
(9) $|x(t)-y(t)|=\int_{0}^{t} \chi(x(s)-y(s)) d(x-y)(s)$.
(9) implies that

$$
\begin{aligned}
& x(t) \wedge y(t) \\
&= \frac{1}{2}\{x(t)+y(t)-|x(t)-y(t)|\} \\
&=x_{0}+\int_{0}^{t} \frac{1}{2}\{a(s, x(s))+a(s, y(s))-\chi(x(s)-y(s))(a(s, x(s))-a(s, y(s)))\} d B(s) \\
&+\int_{0}^{t} \frac{1}{2}\{b(s, x(s))+b(s, y(s))-\chi(x(s)-y(s))(b(s, x(s))-b(s, y(s)))\} d s \\
&=x_{0}+\int_{0}^{t} a(s, x(s) \wedge y(s)) d B(s)+\int_{0}^{t} b(s, x(s) \wedge y(s)) d s .
\end{aligned}
$$

In the same way $\max \{x(t), y(t)\}$ is a solution of (1). Since the uniqueness in law holds for (1), we conclude $x(t)=y(t)$ a.s. The proof is completed.

Remark. Let $a(t, x)$ be a uniformly positive and bounded Borel function and let $b(t, x)$ be a bounded Borel function. Set $h(t, x)=\int_{0}^{x} \frac{1}{a(t, y)} d y$. Suppose that there exists a solution $(\tilde{x}(t), \widetilde{B}(t))$ with $\tilde{x}(t)=x_{0}+\int_{0}^{x} a(s, \tilde{x}(s)) d \tilde{B}(s)$ such that $h(t, \tilde{x}(t))-h\left(0, x_{0}\right)$ is a continuous quasimartingale and the martingale part of $h(t, \widetilde{x}(t))-h\left(0, x_{0}\right)$ is the one-dimensional Brownian motion $\widetilde{B}(t)$. Let $\left(x_{1}(t), B(t)\right)$ and $\left(x_{2}(t), B(t)\right)$ be solutions defined on a same quadruplet $\left(\Omega, \mathscr{F}, P,\left(\mathscr{F}_{t}\right)\right)$ such that

$$
x_{i}(t)=x_{0}+\int_{0}^{t} a\left(s, x_{i}(s)\right) d B(s)+\int_{0}^{t} b\left(s, x_{i}(s)\right) d s \quad i=1,2 .
$$

Then it holds that $x_{1}(t)=x_{2}(t)$ a.s. for $t \geqq 0$.
Proof. By the assumption the sample paths of $h\left(t, x_{1}(t)\right)-h\left(t, x_{2}(t)\right)$ are continuous and of bounded variation on any compact interval with probability one. Let $\psi_{k}(u)(k=1,2, \cdots)$ be the function defined in the proof of Theorem 1. Itô's formula implies

$$
\begin{aligned}
& \left(x_{1}(t)-x_{2}(t)\right) \psi_{k}\left(h\left(t, x_{1}(t)\right)-h\left(t, x_{2}(t)\right)\right) \\
& \quad=\int_{0}^{t} \psi_{k}\left(h\left(s, x_{1}(s)\right)-h\left(s, x_{2}(s)\right)\right) d\left(x_{1}-x_{2}\right)(s) \\
& \quad+\int_{0}^{t}\left(x_{1}(s)-x_{2}(s)\right) \psi_{k}^{(1)}\left(h\left(s, x_{1}(s)\right)-h\left(s, x_{2}(s)\right)\right) d\left(h\left(s, x_{1}(s)\right)-h\left(s, x_{2}(s)\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$ we have

$$
\left|x_{1}(t)-x_{2}(t)\right|=\int_{0}^{t} \chi\left(x_{1}(s)-x_{2}(s)\right) d\left(x_{1}-x_{2}\right)(s)
$$

which implies the conclusion of Remark.
Finally we state an example of $a(t, x)$ which satisfies Condition A.
Example. Let $f(t)$ be a continuous function defined on $[0, \infty)$. For $t>0$ and $c \in R, n(t, c)$ denotes the number of the connected components of $\{s \in(0, t) ; f(s)<c\}$. Define

$$
a(t, x)=\left\{\begin{array}{lll}
2 & \text { for } & x \leqq f(t) \\
1 & \text { for } & x>f(t)
\end{array}\right.
$$

If $\sup _{c \in[-N, N]} n(t, c)$ is finite for $t>0$ and $N>0$, then $a(t, x)$ satisfies Condition A. But this example does not satisfy those sufficient conditions in the preceding papers [1], [3], [5].

3. Proof of comparison theorem

Let W_{x} be the space of all continuous functions w defined on $[0, \infty)$ with values in R such that $w(0)=x \in R . \quad \mathcal{B}_{t}\left(W_{x}\right)$ denotes the σ-field generated by $w(s) 0 \leqq s \leqq t$ and P^{W} denotes the Wiener measure on W_{0}. Let $\overline{\mathcal{B}}_{t}\left(W_{0}\right)$ be the completion of $\mathscr{B}_{t}\left(W_{0}\right)$ with respect to P^{W}.

Proof of Theorem 2. Fix a initial value $x_{0} \in R$. If the pathwise uniqueness holds for the stochastic differential equation (1), then there exists a unique function $F(w)$ defined on W_{0} with values in $W_{x_{0}}$ such that
(i) $\quad F(w)$ is $\overline{\mathcal{B}}_{t}\left(W_{0}\right) / \mathcal{B}_{t}\left(W_{x_{0}}\right)$-measurable for each $t \geqq 0$,
(ii) any solution $(x(t), B(t))$ of (1) with $x(0)=x_{0}$ can be represented in the form $x(\cdot)=F(B(\cdot))$ a.s. (cf. [1]).

Let $F_{1}(w)$ and $F_{2}(w)$ be the above functions for the stochastic differential equations (2) and (3) respectively. It is sufficient to prove that $F_{1}(w)^{* 5)} \leqq F_{2}(w)$ a.s. $\left(P^{W}\right)$.

Set $a^{k}=\bar{a} * \rho_{1 / k}$ and $b_{i}^{k}=\bar{b}_{i} * \rho_{1 / k}(i=1,2)$, where ρ_{δ} is the mollifier defined by (4). Let (Ω, \mathscr{F}, P) be a probability space with a reference family $\left(\mathscr{F}_{t}\right)$ such that there exists a one-dimensional $\left(\mathscr{F}_{t}\right)$-Brownian motion $B(t)$ with $B(0)=0$. Obviously there exist solutions $\left(x_{k}(t), B(t)\right)$ and $\left(y_{k}(t), B(t)\right)$ defined on $\left(\Omega, \mathscr{F}, P,\left(\mathscr{F}_{t}\right)\right)$ such that for $k=1,2, \cdots$

$$
x_{k}(t)=x_{0}+\int_{0}^{t} a^{k}\left(s, x_{k}(s)\right) d B(s)+\int_{0}^{t} b_{1}^{k}\left(s, x_{k}(s)\right) d s
$$

and
5) For $w_{1}, w_{2} \in W, w_{1} \leqq w_{2}$ means that $w_{1}(t) \leqq w_{2}(t)$ for each $t \geqq 0$.

$$
y_{k}(t)=x_{0}+\int_{0}^{t} a^{k}\left(s, y_{k}(s)\right) d B(s)+\int_{0}^{t} b_{2}^{k}\left(s, y_{k}(s)\right) d s
$$

Since the family of the laws $P^{Z_{k}}$ of $Z_{k}(t)=\left(x_{k}(t), y_{k}(t), B(t)\right)(k=1,2, \cdots)$ is tight, there exist a subsequence $\left(k_{n}\right)$ and a sequence of stochastic process $\left(\bar{x}_{k_{n}}(t), \bar{y}_{k_{n}}(t)\right.$, $\bar{B}_{k_{n}}(t)$) defined on a probability space $(\bar{\Omega}, \overline{\mathcal{L}}, \bar{P})$ satisfying the following conditions;
(i) for each k_{n} the law of $\left(\bar{x}_{k_{n}}(t), \bar{y}_{k_{n}}(t), \bar{B}_{k_{n}}(t)\right)$ is $P^{Z_{k_{n}}}$,
(ii) there exists a stochastic process $(\bar{x}(t), \bar{y}(t), \bar{B}(t))$ defined on $(\bar{\Omega}, \overline{\mathcal{F}}, \bar{P})$ such that ($\left.\bar{x}_{k_{n}}(t), \bar{y}_{k_{n}}(t), \bar{B}_{k_{n}}(t)\right)$ converges to ($\left.\bar{x}(t), \bar{y}(t), \bar{B}(t)\right)$ uniformly on each compact interval a.s.

Since $b_{1}^{k}(t, x) \leqq b_{2}^{k}(t, x)$, it holds that $\bar{x}_{k}(t) \leqq \bar{y}_{k}(t)$ a.s. for $t \geqq 0$ and $k=k_{1}, k_{2}$, \cdots (cf. [1]). Noting that ($\bar{x}(t), \bar{B}(t))$ and ($\bar{y}(t), \bar{B}(t))$ are solutions of (2) and (3) respectively, we have $F_{1}(\bar{B}(\cdot))=\bar{x}(\cdot) \leqq \bar{y}(\cdot)=F_{2}(\bar{B}(\cdot))$ a.s. (\bar{P}). Therefore we conclude $F_{1}(w) \leqq F_{2}(w)$ a.s. $\quad\left(P^{W}\right)$. The proof is completed.

The above method can be applicable for the following general case.
Remark. Let $a(t, x)$ be a uniformly positive bounded Borel function on $[0, \cdot \infty) \times R$. Let $b_{1}(t, x)$ and $b_{2}(t, x)$ be bounded Borel functions such that $b_{1}(t, ' x) \leqq b_{2}(t, x)$ for $(t, x) \in[0, \infty) \times R$ a.e. If the pathwise uniqueness holds for the equations (2) and (3), then the conclusion of Theorem 2 holds.

References

[1] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes, Kodansha, 1981.
[2] N.V. Krylov: Some estimates of the distribution density of stochastic integral, Math. USSR Izv. 8 (1974), 233-254.
[3] S. Nakao: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math. 9 (1972), 513-518.
[4] S. Nakao: Remarks on one-dimensional stochastic differential equations, Lecture Notes in Math. 330 (Springer-Verlag) (1973), 310-315.
[5] A.Yu. Veretennikov: On the strong solutions of stochastic differential equations, Theory Probab. Appl. 14 (1979), 354-366.

[^0]: 1) Let $f(s)$ be a real function defined on $[0, \infty)$. $\left\|\|f\|_{t}\right.$ denotes the total variation of $f(s)$ on $[0, t]$.
[^1]: 3) For a function $g(t, x)$ defined on $[0, \infty) \times R, \bar{g}(t, x)$ denotes the function on $R \times R$ such that $\bar{g}(\mathrm{t}, \mathrm{x})=\left\{\begin{array}{l}\mathrm{g}(\mathrm{t}, \mathrm{x}) \mathrm{t} \geqq 0 \\ \mathrm{~g}(0, \mathrm{x}) \mathrm{t}<0 .\end{array} \quad \bar{g} * \rho_{\delta}\right.$ denotes the convolution of \bar{g} and ρ_{δ}.
