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1. Introduction

In this paper we shall discuss the pathwise uniqueness and comparison
problems for solutions of one-dimensional stochastic differential equations.
Let a(t, x) and b(¢, x) be bounded Borel functions defined on [0, o)X R with
values in R. Consider the following one-dimensional stochastic differential
equation;

0 { dx(t) = a(t, x(t))dB()+b(t, x(t))dt ,
%(0) = %,

where B(t) is a one-dimensional Brownian motion with B(0)=0 and x,&R is
a non-random initial value. In [3], I showed that a(f, x)=a(x) is uniformly
positive and of bounded variation on any compact interval and b(¢, x) is time
independent, then the pathwise uniqueness holds for the equation (1). A. Yu.
Veretennikov [5] extended the above result to the case that the coefficients are
time dependent. The purpose of this paper is to obtain another extension of
the result of [3] different from that of A. Yu. Veretennikov.

VI([0, o) X R) denotes the space of all functions defined on [0, o)X R
such that for =0 f(¢, x) is nondecreasing in x and for x€R f(t, x) is of bounded
variation in £ on any compact interval. Throughout this paper we shall assume
that a(¢, x) satisfies the following condition.

ConDITION A. a(?, x) satisfies the following conditions;

(1) a(t, x) is Borel measurable and there exist positive constants g, and a,
such that 0<a,=<a(t, x)<a, for (t, x)E[0, )X R,

(ii) there exist a,(¢, x) €VI([0, o)X R) and ay(t, x) €VI([0, o) X R) such

that =a1(t, x)—az(t: x) for a.e. (t’ x)E[O’ oo) XR’

1
a(t, x)

(ii) for >0 and N>0 there exists a positive constant L(z, N) such that
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MNet(+, )l ¥ < L(t, N) for x€[—N, N] and i=1, 2.

In this paper we adopt the definitions in [1] about the solution of (1) and
the pathwise uniqueness of (1). We obtain the following theorem.

Theorem 1. Suppose that a(t, x) satisfies Condition A and b(t, x) is bound-
ed Borel measurable. Then the pathwise uniqueness holds for the stochastic differ-
ential equation (1).

We now consider the following stochastic differential equations;

5 dx(t) = a(t, x(t))dB(t)+by(t, x(t))dt
@) x(0) = x,ER

and
@ | D0O=atyOBO+b(e YoM,

{ ¥(0) =, .
The following comparison theorem is a generalization of a result of [4].

Theorem 2. Suppose that a(t, x), by(t, x) and by, x) satisfy the following
conditions ;

(i) a(t, x) satisfies Condition A,

(i)  by(t, x) and by(t, x) are bounded Borel functions such that b(t, x) <by(t, x)
for (t,x)€[0, ©)XR a.e.
Let (x(t), B(t)) and (y(t), B(t)) be solutions of the stochastic differential equations
(2) and (3) respectively defined on a same probability space (Q,F, P) with a re-
ference family (F )5, such that x(0)=y(0)=x,&R. Then it holds that x(t)=<y(t)
a.s. for t=0.

In section 2 we prove Theorem 1 and give an example of a(t, x) which
satisfies Condition A. In section 3 we prove Theorem 2 by a new method.

2. Proof of pathwise uniqueness theorem

First we shall prepare two lemmas for the proof of Theorem 1. Let
(Q, &, P) be a probability space with a reference family (F,),», and let B(¢) be a
one-dimensional (&,)-Brownian motion defined on (Q, &, P) with B(0)=0. Con-
sider the stochastic process defined by

x(t) = x0+S: o(5)dB(s) +S: Y(s)ds,

where o(s) and (s) are bounded measurable stochastic processes on (Q, &, P)

1) Let f(s) be a real function defined on [0,0). |[f||; denotes the total variation of f(s) on [0,t].
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adapted to () and «x, is a real number. Set o= sup|o(t, w)| and y=
(t,w)

s(}lgl')/(t, w)|. For N>0, ry=inf {t; |x(t)| =N}. Let g(¢ x) be a Lebesgue

measurable function defined on [0, o) X R. Setting

Gt %)= gt 3)ay for (1 x)e0, =)xR

and
V(#) = Glt, 3()—G(0, 59— &6, #)o(s)dB(s),

we shall estimate the expectation of |||V]|[;a.,*?.

Lemma 1. Suppose that g(t, x) belongs to VI([0, co)X R) and is comtinu-
ously differentiable in (t,x). Then it holds that for t>0 and N>0

EQIIVIllinry) =2(N+27)M(2, N)+4NK(2, N),
where E denotes the expectation with respect to P,
M(t, N) = sup {lg(s, »)|; (s, »)€[0, ][N, NJ}

K(t’ N) = sup {I”g(" y)”l;;ye[_N, N]} .

Proof. Ito’s formula implies that

and

V) = | 65, #)vdst || 2G5 atost- || L gte, sto)atoyas
— L)+ L0+ I0)

It is easy to see that E[[lILlllons,]SvM(5, N) and E[ILln,,]S2NK(, N).
Since I”ISHIf/\TN: V(tATy)— L(tATy)— It ATy), we have E['Illsll,tA-rN]§
E[VtNATy)]+tvyM(t, N)+2NK(t, N). On the other hand it holds that
E[V({NATy)]=E[GEtNTy, ¥t ATy))— G(0, x)] =2NM(t, N). Combining the
above estimates, we have E[[|[V]ll;ary] = 2(N+27)M(t, N)+-4NK(t, N), which
completes the proof.

Let p(s, y) be a non-negative C~-function defined on R? such that its sup-

port is contained in the closed unit ball and S , P(s, y)dsdy=1. TFor 6>0 set
R

@ e =gl %)
We now consider
Vilt) = Gilt, #(0)—Gu(0, %) — | (s, 5()o(91dB(s),

2) Let a and b be real numbers. aAb=min{a,b}.
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where

g5 = B*p; *) and Ga(t, x) = SO ga(t, y)dy :

Lemma 2. Suppose that g(t, x)EVI([0, )X R) satisfies that for t>0
and N>O0 there exists a positive constant K(t, N) such that |||g(+, )|, =<K(¢, N)
for x&[—N, N]. Then it holds that for 0<<8<1, t>0 and N>0

E[1VIlinr gl S2AN+-27)M(2+1, N+1)+4NK(t+1, N+1),

where

M(z, N) = sup {lg(s, y)1; (s, y)€ [0, Jx [N, N]} .

Proof. It is easy to see that |||gs(+, x|/, <K(t+ 8, N+3) for x&[—N, N]
and sup {|gs(s, )| ; (s, »)€[0, § X [—N, N} <M(t+98, N+8). Hence Lemma 2
is an easy consequence of Lemma 1.

Proof of Theorem 1. Let a,=1>a,>a,>+:->a,>-:-—0 be a sequence such

that S - %du#k for k=1,2, ---. Then there exists a twice continuously dif-

ak

ferentiable and odd function (%) on R such that 0=+ (v) <1 for u€[0, o),

" { 0 for 0=Zu=a,
u) =
* 1 for a,-,=<u,
and
(5) Oéwgl)(u)*4)§£‘ for a,<u<Qp-;.
U

Set a(t, x)=o(t, ) —a,(t, x), as=ax*ps; and k(2 x):S as(t, y)dy, where pg is
0
the function defined by (4).
Let (x(2), B(¢)) and (y(¢), B(¢)) be solutions of (1) defined on a same quadru-
plet (Q, F, P, (Z,)). Setqy={t; [x(t)|=Nor |y(#)|=N}. Theorem2of N. V.
Krylov [2] assures that for k=1, 2, -+ there exists a positive constant 8,=38,(¢, V)

g% such that

tA 1
0

©6) %xw;,“(u)uz[g WNIa-ash(s,x(s))—l|‘ds]_§—l; for i=1,2.

Obviously the same estimates as (6) hold for (y(#)). For simplicity we set
hy=hs,, = ats,, 2()=hy(t, x(£))—hi(t, y(t)) and J(k, £) = ((t) = y())¥(24(2))-

3) For a function g(t,x) defined on [0,0) X R, Z(t,x) denotes the function on R X R such that
g(t,x) t=0

g (t,X) =
g(0,x) t<O0.
4) f4(u) denotes the i-th derivative of f(u).

Zxps denotes the convolution of F and ps.
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The martingale part m,(z) of z,(2) is g:(a-dk(s, 2(8)) — a-@(s, ¥(s)))dB(s). Sett-

ing v(t)==2,(¢)—m(t), we have by Itd’s formula
Jk, )
— ([ @ oME—6+ [ GO E)m )

+ [} 2o
+ [ HEONa 29)—als YO a-asls, ) —a-as(s, Y6

5 || G~y @-2uls, 3(5)—a-as, 3(5))ds
— Jiks 0Tl 0]k 0T Ol ).

Using that
7y 0< Xy <a, for t=0, x+y and &>0
@ hat, ®)—ho(t, 3) Y
and

—1 for u<O

(8)  lim yYr(u) = X(u) = 0 for u=0
kyoo
1 for u>0,

it is easy to see that
J(ky t Any) ——> |%(tAny)—Y(tAny)| in  LYP)
k— co

and
tA
0

T tAn) == [T X0 —y—)©) in L)
By (5) and (7) we obtain

E[Jy(k, t Aqn)]= (2—;:3>2E [S;MN (@-@u(s, x(s))—a-@(s, y(s)))’ds] <8 (ﬁ)z

and
BL1Jks tAna) 1= 222 E loullinny]

Since sup E[||lvglll;any] is finite by Lemma 2, we have }fg E[|Ja(k, t Aqu)+
Jo(k, t Any)|]1=0. (6) implies that £1r2 E[| Ju(k, t Aqx)+Ts(kt Any)|1=0. Con-
sequently we have ”

|t A =3t Ann) = |77 X0 30— .
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Letting N— oo it holds that

©) 130 —(0)] = || X —y6)da—9)(s)
(9) implies that

x(t) A\ y(t)
— % {x(8)+3(8)— | x(®)—»(2) 1}

= s 5 fats, () +a(s, () —X(x()—3(5) (als, () —a(s, YN} B()
[} 5 005, 59)+b(s, 2(9) ({6 =) 05, 5))—b(s, 3O} ds
_ xo—}—S: a(s,x(s) A y(s))dB(s)—i—S: b(s, () A 3(s))ds .

In the same way max {x(¢), y(¢)} is a solution of (1). Since the uniqueness in
law holds for (1), we conclude x(t)=y(t) a.s. The proof is completed.

ReEMARK. Let a(¢, x) be a uniformly positive and bounded Borel function

and let b(¢, x) be a bounded Borel function. Set Az, x) = Sx 1 dy.
s voaty)
Suppose that there exists a solution (%(¢), B(¢)) with .f(t)zxo—l-s a(s, %(s))dB(s)

0
such that A(z, X(¢))—A(0, x,) is a continuous quasimartingale and the martingale

part of h(t, %(t))—h(0, x,) is the one-dimensional Brownian motion B(f). Let
(x:(2), B(t)) and (x,(t), B(¢)) be solutions defined on a same quadruplet
(Q, &, P, (<)) such that

xi(t) = %+ S; als, %:(s))dB(s)+ S: B, x(s)ds  i—=1,2.

Then it holds that x,(f)=ux,(¢) a.s. for £=0.

Proof. By the assumption the sample paths of A(z, x,(2))—A(2, x,(2)) are
continuous and of bounded variation on any compact interval with probability
one. Let yr(u) (k=1, 2, :--) be the function defined in the proof of Theorem
1. Ito’s formula implies

(a(8) — %)) Wra(B(2, 2:(2)) — (2, %,(1)))
= S: Vri(A(s, x1(8))—h(s, x,(s)))d(x,—,)(s)

- [, )~ s, 106 s, 3N, 3(5)—his, 3(6)
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Letting k—co we have
|50 —0) | = | X)), — 2)(6),
which implies the conclusion of Remark.
Finally we state an example of a(t, x) which satisfies Condition A.

ExampLE. Let f(¢) be a continuous function defined on [0, o). For
t>0 and cER, n(¢,c) denotes the number of the connected components of

{s€(0, ?); f(s)<c}. Define
{ 2 for x=<f(2)
a(t, x) =
1 for x>f(z).
If sup ]n(t, ¢) is finite for £>>0 and N>0, then a(t, x) satisfies Condition A.
cel-N,N
But this example does not satisfy those sufficient conditions in the preceding

papers [1], [3], [5]-

3. Proof of comparison theorem

Let W, be the space of all continuous functions @ defined on [0, o) with
values in R such that w(0)=x&R. B,(W,) denotes the o-field generated by
w(s) 0=<s=<¢ and P” denotes the Wiener measure on W,. Let B,(W,) be the
completion of B,(W,) with respect to P”.

Proof of Theorem 2. Fix a initial value x,&R. If the pathwise unique-
ness holds for the stochastic differential equation (1), then there exists a unique
function F(w) defined on W, with values in W, such that

(i) F(w) is B(W,)|B(W,,)-measurable for each +=0,

(ii) any solution (x(z), B(t)) of (1) with x(0)=x, can be represented in the
form x(+)=F(B(+)) a.s. (cf. [1]).

Let Fy(w) and F,(w) be the above functions for the stochastic differential
equations (2) and (3) respectively. It is sufficient to prove that Fy(w)*®) < F,(w)
a.s. (P").

Set a*=ax*p,;, and b* =l—7,-=f<p1/,a (=1, 2), where p; is the mollifier defined by
(4). Let (Q, <, P) be a probability space with a reference family (&) such that
there exists a one-dimensional (<f,)-Brownian motion B(f) with B(0)=0. Ob-
viously there exist solutions (x,(z), B()) and (y,(t), B(t)) defined on (Q, Z, P, (Z))
such that for k=1, 2, ---

0) = %0+ | as, 3u()dBE)+ [ s, 30 (9)ds

and

5) For wy,w; €W, w;<w, means that w;(t)S<wy(t) for each t=0.
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(0 = at [ s noNBO+ [ s, 3ash)es.

Since the family of the laws PZk of Z,(2)=(xx(t), y:(t), B(?)) (k=1, 2, --+) is tight,
there exist a subsequence (k,) and a sequence of stochastic process (% (£), 74,(?),
B, (#)) defined on a probability space (2, &, P) satisfying the following conditions;

(i) for each k, the law of (%, (t), 7:,(t), Bi(t)) is P?,

(i) there exists a stochastic process (%(f), 7(t), B(t)) defined on (@, &, P)
such that (2, (2), 7 (%), B, (t)) converges to (%(t), 7(t), B(t)) uniformly on each
compact interval a.s.

Since bi(t, x) <bj(t, x), it holds that %,()< ¥,(¢) a.s. for =0 and k=Fky, k,,
«++ (cf. [1]). Noting that (%(¢), B(t)) and (j(2), B(¢)) are solutions of (2) and (3)
respectively, we have Fy(B(+))==%(-)<7(-)=Fy«(B(-)) as. (P). Therefore we
conclude Fy(w) < F,(w) a.s. (P"). The proof is completed.

The above method can be applicable for the following general case.

ReMARK. Let a(t, x) be a uniformly positive bounded Borel function on
[0,-00)x R. Let by(t, x) and by(¢, x) be bounded Borel functions such that
by(2, %) <by(t, x) for (¢, x)€[0, )X R a.e. If the pathwise uniqueness holds
for the equations (2) and (3), then the conclusion of Theorem 2 holds.
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