BP OPERATIONS AND HOMOLOGICAL PROPERTIES OF BP ${ }_{*}$ BP-COMODULES

Zen-Ichi YOSIMURA

(Received April 22, 1981)
$B P$ is the Brown-Peterson spectrum for a fixed prime p and $B P_{*} X$ is the Brown-Peterson homology of the $C W$-spectrum X. The left $B P_{*}$-module $B P_{*} X$ is an associative comodule over the coalgebra $B P_{*} B P$. In [2] we have studied some torsion properties of (associative) $B P_{*} B P$-comodules, by paying attension to the behaviors of $B P$ operations. It seems that the following result is fundamental.

Theorem 0.1. Let M be a $B P_{*} B P$-comodule. If an element $x \in M$ is v_{n}-torsion, then it is v_{n-1}-torsion. ([2, Theorem 0.1]).

After a little while Landweber [8] has obtained several results about torsion properties of associative $B P_{*} B P$-comodules in an awfully algebraic manner, as new applications of commutative algebra to the Brown-Peterson homology. In this note we will give directly new proofs of Landweber's principal results [8, Theorems 1 and 2], by making use of two basic tools (Lemmas 1.1 and 1.2) looked upon as generalizations of Johnson-Wilson results [1, Lemmas 1.7 and 1.9] handling BP operations:

Theorem 0.2. Let M be a $B P_{*} B P$-comodule and $x \neq 0$ be an element of M. Then the radical of the annihilator ideal of x

$$
\sqrt{\operatorname{Ann}(x)}=\left\{\lambda \in B P_{*} ; \lambda^{k} x=0 \text { for some } k>0\right\}
$$

is one of the invariant prime ideals $I_{n}=\left(p, v_{1}, \cdots, v_{n-1}\right)$ in $B P_{*}, 1 \leqq n \leqq \infty$. (Theorem 1.3).

Theorem 0.3. Let M be an associative $B P_{*} B P$-comodule and $1 \leqq n<\infty$. If M contains an element x satisfying $\sqrt{\operatorname{Ann}(x)}=I_{n}$, then there is a primitive element y in M such that the annihilator ideal of y

$$
\operatorname{Ann}(y)=\left\{\lambda \in B P_{*} ; \lambda y=0\right\}
$$

is just I_{n}. (Theorem 2.2).

As an immediate consequence Theorem 0.2 implies Landweber's invariant prime ideal theorem [4] that the invariant prime ideals in $B P_{*}$ are I_{n} for $1 \leqq n \leqq \infty$ (Corollary 1.4). Our technique adopted in the proof of Theorem 0.3 allows us to give a new proof of Landweber's prime filtration theorem [5] (Theorem 2.3).

We prove Theorem 0.2 and hence Invariant prime ideal theorem in $\S 1$ and Theorem 0.3 and Prime filtration theorem in $\S 2$, although Landweber has shown Theorems 0.2 and 0.3 after having known Invariant prime ideal theorem and Prime filtration theorem.

Let $\mathscr{B P}$ be the category of all associative $B P_{*} B P$-comodules and comodule maps. An associative $B P_{*} B P$-comodule has a $B P_{*}$-projective resolution in $\mathscr{B P}$. In [3] we introduced the concept of $\mathscr{B P} \mathscr{P}$-injective weaker slightly than that of $B P_{*}$-injective. In $\S 3$ we prove

Theorem 0.4. Let M be an associative $B P_{*} B P$-comodule with $\mathrm{w} \operatorname{dim}_{B P_{*}} M<$ ∞. Then M has a $\mathscr{B P} \mathcal{P}$-injective resolution in $\mathscr{B P}$ (Corollary 3.12).

Let J be an invariant regular ideal in $B P_{*}$ of finite length. There is a left $B P$-module spectrum $B P J$ whose homotopy is $B P_{*} / J$. When J is trivial, $B P J$ is just $B P$. we do prove our results for (associative) $B P J_{*} B P J$-comodules. A reader who is interested only in associative $B P_{*} B P$-comodules may neglect the " J " in the BPJ notation.

1. The radicals of annihilator ideals

Let us fix an invariant regular ideal $J=\left(\alpha_{0}, \cdots, \alpha_{q-1}\right)$ in $B P_{*} \simeq Z_{(p)}\left[v_{1}, v_{2}, \cdots\right]$. There is an associative left $B P$-module spectrum whose coefficient is $B P J_{*} \cong$ $B P_{*} /\left(\alpha_{0}, \cdots, \alpha_{q-1}\right) . \quad B P J$ becomes a quasi-associative ring spectrum [2].

Let $E=\left(e_{1}, e_{2}, \cdots\right)$ be a finitely non-zero sequence of non-negative integers and $A=\left(a_{0}, \cdots, a_{q-1}\right)$ be a q-tuple consisting of zeros and ones. We put $|E|=$ $\sum_{i} 2\left(p^{i}-1\right) e_{i}$ and $|A|=\sum_{j}\left(\left|\alpha_{j}\right|+1\right) a_{j}$ where $\left|\alpha_{j}\right|$ represents dimension of $\alpha_{j} \in$ $B P_{*} . B P J^{*} B P J$ is the free left $B P J_{*}$-module whose free basis is formed by elements $z^{E, A}$ with dimension $|E|+|A|$. When $B P J_{*} B P J$ is viewed as a right $B P J^{*}$-module, its free basis is given by the elements $c\left(z^{E, A}\right)$ where c denotes the canonical conjugation of $B P J_{*} B P J$.
$B P J^{*} B P J$ is the direct product of copies of $B P J_{*}$ indexed by all $B P J$ operations $S_{E, A}: B P J \rightarrow \Sigma^{|E|+|A|} B P J$. When J is trivial, operations $S_{E, 0}$ coincide with the $B P$ operations $r_{E} . \quad B P J$ operations $S_{E, A}$ satisfy the Cartan formula, i.e., for the $B P$-module structure map $\phi: B P_{\wedge} B P J \rightarrow B P J$ we have

$$
\begin{equation*}
S_{E, A} \phi=\sum_{F+G=B} \phi\left(r_{F} \wedge S_{G, A}\right): B P \wedge B P J \rightarrow \Sigma^{|E|+|A|} B P J . \tag{1.1}
\end{equation*}
$$

The operation $S_{0,0}: B P J \rightarrow B P J$ is a homotopy equivalence, which is uniquely written in the form of

$$
\begin{equation*}
S_{0,0}=1+\sum_{A \neq 0} q_{A} S_{0, A} \tag{1.2}
\end{equation*}
$$

with certain coefficients $q_{A} \in B P J_{*}$. The composition $S_{E, A} S_{F, B}$ has a unique representation as a formal sum

$$
\begin{equation*}
S_{E, A} S_{F, B}=\sum_{(F, C)} q_{G, C} S_{G, C} \tag{1.3}
\end{equation*}
$$

for certain coefficients $q_{G, c}=q_{G, C}(E, A ; F, B) \in B P J_{*}$.
A left $B P J_{*}$-module M is called a $B P J_{*} B P J$-comodule [2] if it admits a coaction map $\psi_{M}: M \rightarrow B P J_{*} B P J_{B P J_{*}}^{\otimes} M$ represented as

$$
\psi_{M}(x)=\sum_{(B, A)} c\left(z^{E, A}\right) \otimes s_{E, A}(x),
$$

which satisfies two conditions:
(i) ψ_{M} is a left $B P J_{*}$-module map, i.e.,
"Cartan formula"

$$
s_{E, A}(\lambda x)=\sum_{F+\theta=H} r_{F}(\lambda) s_{G, A}(x)
$$

for each $\lambda \in B P J_{*}$ and $x \in M$.

$$
\begin{equation*}
s_{0,0}(x)=x+\sum_{A \neq 0} q_{A} s_{0, A}(x) \tag{ii}
\end{equation*}
$$

for each $x \in M$, where the coefficients $q_{A} \in B P J_{*}$ are those given in (1.2).
Note that ψ_{M} is a split monomorphism of left $B P J_{*}$-modules when M is a $B P J_{*} B P J$-comodule.

A $B P J_{*} B P J$-comodule M is said to be associative if it satisfies an additional condition:
(iii) ψ_{M} is associative, i.e.,

$$
s_{E, A}\left(s_{F, B}(x)\right)=\sum_{(F, C)} q_{G, c} s_{G, C}(x)
$$

for each $x \in M$, where the coefficients $q_{G, c} \in B P J_{*}$ are those given in (1.3).
Let M be a left $B P J_{*}$-module which admits a structure of (associative) $B P_{*} B P$-comodule. Taking $s_{E, 0}(x)=r_{E}(x)$ and $s_{E, A}(x)=0$ if $A \neq 0$, we can regard M as an (associative) $B P J_{*} B P J$-comodule.

Recall that for $1 \leqq m \leqq \infty, I_{m}=\left(p, v_{1}, \cdots, v_{m-1}\right)$ are invariant prime ideals in $B P_{*}$. Johnson-Wilson have observed nice behaviors of $B P$ operations r_{E} modulo I_{m} [1, Lemmas 1.7 and 1.9]. We first give two useful lemmas, which descend directly from the so-called "Ballentine Lemma". The first lemma has already appeared with a short proof in [2].

Lemma 1.1. Let E be an exponent sequence with $|E| \geqq 2 k p^{s}\left(p^{n}-p^{m}\right), n \geqq$ $m \geqq 1, s \geqq 0$ and $k \geqq 1$. Then

$$
r_{E}\left(v_{n}^{k p^{s}}\right) \equiv \begin{cases}v_{m}^{k p^{s}} & \text { modulo } I_{m}^{s+1} \text { if } E=k p^{s+m} \Delta_{n-m} \\ 0 & \text { modulo } I_{m}^{s+1} \text { if otherwise }\end{cases}
$$

where $\Delta_{n-m}=(0, \cdots, 0,1,0, \cdots)$ with the single " 1 " with $(n-m)$-th position. (Cf., [1, Lemma 1.7]).

Proof. Using the Cartan formula and the fact that $p \in I_{m}$ we can easily see that

$$
r_{E}\left(v_{n}^{k p^{s}}\right) \equiv \sum r_{E_{1}}\left(v_{n}\right) \cdots r_{E_{k p} s}\left(v_{n}\right) \text { modulo } I_{m}^{s+1}
$$

where the summation \sum runs over all $k p^{s}$-tuples ($E_{1}, \cdots, E_{k p^{s}}$) of exponent sequences such that $E=E_{1}+\cdots+E_{k p^{s}}$ and $r_{E_{i}}\left(v_{n}\right) \equiv 0$ modulo I_{m} for all $i, 1 \leqq i \leqq k p^{s}$. The result now follows immediately from [1, Lemma 1.7].

Define an ordering on exponent sequences as follows: $E=\left(e_{1}, e_{2}, \cdots\right)<F=$ $\left(f_{1}, f_{2}, \cdots\right)$ if $|E|<|F|$ or if $|E|=|F|$ and $e_{1}=f_{1}, \cdots, e_{i-1}=f_{i-1}$ but $e_{i}>f_{i}$.

Lemma 1.2. Let $m \geqq 1, s \geqq 0$ and $\lambda \in B P_{*}$. If λ is not contained in I_{m}, then there is an exponent sequence E and a unit $u \in Z_{(p)}$ such that

$$
r_{F}\left(\lambda^{p^{s}}\right) \equiv \begin{cases}u v_{m}^{k p^{s}} & \text { modulo } I_{m}^{s+1} \text { if } F=p^{s} \sigma_{m} E \\ 0 & \text { modulo } I_{m}^{s+1} \text { if } F>p^{s} \sigma_{m} E\end{cases}
$$

where $\sigma_{m} E=\left(p^{m} e_{m+1}, p^{m} e_{m+2}, \cdots\right)$ and $k=e_{m}+e_{m+1}+\cdots$ for $E=\left(e_{1}, \cdots, e_{m}, \cdots\right)$. (Cf., [1, Lemma 1.9]).

Proof. Put $\lambda=\sum_{\xi} a_{G} v^{G} \notin I_{m}, a_{G} \in Z_{(p)}$, by defining $v^{G}=v_{1}^{g_{1} \cdots v_{n}^{g_{n}}}$ for $G=$ $\left(g_{1}, \cdots, g_{n}, 0, \cdots\right)$. We may assume that $G=\left(0, \cdots, 0, g_{m}, g_{m+1}, \cdots\right)$ and a_{G} is a unit of $Z_{(p)}$. Pick up the exponent sequence E so that $\sigma_{m} E$ is maximal among $\sigma_{m} G$. By [1, Corollary 1.8] we have

$$
r_{H}(\lambda)=\sum_{G} a_{G} r_{H}\left(v^{G}\right) \equiv \begin{cases}a_{E} v_{m}^{k(E)} & \text { modulo } I_{m} \text { if } H=\sigma_{m} E \\ 0 & \text { modulo } I_{m} \text { if } H>\sigma_{m} E\end{cases}
$$

where $k(G)=g_{m}+g_{m+1}+\cdots$. By a similar argument to the proof of Lemma 1.1 we can compute $r_{F}\left(\lambda^{p^{s}}\right)$ modulo I_{m}^{s+1} to obtain the required result.

Let $J=\left(\alpha_{0}, \cdots, \alpha_{q-1}\right)$ be an invariant regular ideal in $B P_{*}$ of length q, and M be a left $B P J_{*}$-module. Recall that the annihilator ideal $\operatorname{Ann}(x)$ of $x \in M$ in $B P_{*}$ is defined by

$$
\operatorname{Ann}(x)=\left\{\lambda \in B P_{*} ; \lambda x=0\right\}
$$

and that the radical $\sqrt{\operatorname{Ann}(x)}$ of the annihilator ideal $\operatorname{Ann}(x)$ is done by

$$
\sqrt{\operatorname{Ann}(x)}=\left\{\lambda \in B P_{*} ; \lambda^{k} x=0 \text { for some } k\right\}
$$

For the element v_{n} of $B P_{*}$ (by convention $v_{0}=p$) we say that an element $x \in M$
is v_{n}-torsion if $v_{n}^{k} x=0$ for some k and that $x \in M$ is v_{n}-torsion free if not so. Since the radical \sqrt{J} of J is just I_{q} [6, Proposition 2.5], we note that
(1.4) every left $B P J_{*}$-module M is at least v_{n}-torsion for each $n, 0 \leqq n<q$, i.e., $v_{n}^{-1} M=0$ for $0 \leqq n<q$.

Making use of Lemma 1.1 we have obtained the following result in [2, Lemma 2.3 and Corollary 2.4].
(1.5) Let M be a $B P J_{*} B P J$-comodule and assume that $x \in M$ is v_{n}-torsion. Then $x \in M$ is v_{m}-torsion for all $m, 0 \leqq m \leqq n$. More generally, $s_{E, A}(x)$ is v_{m}-torsion for all $m, 0 \leqq m \leqq n$ and for all elementary BPJ operations $s_{E, A}$.

Given exponent sequences $E=\left(e_{1}, e_{2}, \cdots\right), F=\left(f_{1}, f_{2}, \cdots\right), A=\left(a_{0}, \cdots, a_{q-1}\right)$ and $B=\left(b_{0}, \cdots, b_{q-1}\right)$ we define an ordering between pairs (E, A) and (F, B) as follows: $(E, A)<(F, B)$ if i) $|E|+|A|<|F|+|B|$, or if ii) $|E|+|A|=$ $|F|+|B|$ and $E<F$, or if iii) $E=F,|A|=|B|$ and $a_{0}=b_{0}, \cdots, a_{j-1}=b_{j-1}$ but $1=a_{j}>b_{j}=0$.

As a principal result in [8] Landweber has determined the radical $\sqrt{\operatorname{Ann}(x)}$ of $x \in M$ for an associative $B P_{*} B P$-comodule M. Using Lemma 1.2 we give a new proof without the restriction of associativity on M.

Theorem 1.3 (Landweber [8, Theorem 1]). Let J be an invariant regular ideal in $B P_{*}$ of length q, M be a $B P J_{*} B P J$-comodule and $n \geqq q$. An element $x \in M$ is v_{n-1}-torsion and v_{n}-torsion free if and only if $\sqrt{\operatorname{Ann}(x)}=I_{n}$.

Proof. Assume that $x \in M$ is v_{n-1}-torsion and v_{n}-torsion free when $n \geqq 1$. Obviously $I_{n} \subset \sqrt{\operatorname{Ann}(x)}$. If $0 \neq \lambda \in \sqrt{\operatorname{Ann}(x)}-I_{n}$, then we may choose an integer $s \geqq 0$ such that $\lambda^{p^{s}} x=0$ and $I_{n}^{s+1} s_{E, A}(x)=0$ for all (E, A). By Lemma 1.2 there is an exponent sequence F so that

$$
r_{H}\left(\lambda^{p^{s}}\right) \equiv\left\{\begin{array}{l}
u v_{n}^{k p^{s}} \text { modulo } I_{n}^{s+1} \text { if } H=p^{s} \sigma_{m} F \\
0 \quad \text { modulo } I_{n}^{s+1} \text { if } H>p^{s} \sigma_{m} F
\end{array}\right.
$$

for some $k>0$ and some unit $u \in Z_{(p)}$. There exists a pair (G^{\prime}, B^{\prime}) such that $s_{G^{\prime}, B^{\prime}}(x)$ is v_{n}-torsion free because $x \in M$ is so. Pick up the maximal (G, B) of such pairs, and choose an integer $t \geqq 0$ such that $v_{n}^{t} s_{E, A}(x)=0$ whenever $(E, A)>$ (G, B). Using the Cartan formula we compute

$$
\begin{aligned}
0 & =v_{n}^{t} s_{G+p^{s} \sigma_{m} F, B}\left(\lambda^{p^{s}} x\right)=v_{n}^{t} r_{p^{s} \sigma_{m} F}\left(\lambda^{p^{s}}\right) s_{G, B}(x) \\
& =u v_{n}^{t+h p^{s}} s_{G, B}(x) .
\end{aligned}
$$

Thus $s_{G, B}(x)$ is v_{n}-torsion. This is a contradiction. The "if" part is evident.
In the $n=0$ case the above proof works well if we apply [1, Lemma 1.9 (b)] in place of Lemma 1.2.

Corollary 1.4. If I is an invariant ideal in $B P_{*}$, then the radical \sqrt{I} of I is I_{n} for some $n, 1 \leqq n \leqq \infty$. In particular, the invariant prime ideals in $B P_{*}$ are I_{n} for $1 \leqq n \leqq \infty$. (Cf., [1, Corollary 1.10] or [4]).

2. Prime filtration theorem

Let M be a $B P J_{*} B P J$-comodule. An element $x \in M$ is said to be primitive if $s_{E, A}(x)=0$ for all $(E, A) \neq(0,0)$.

Lemma 2.1. Let M be a $B P J_{*} B P J$-comodule and $q \leqq n<\infty$ where $\sqrt{J}=I_{q}$. If a primitive element $x \in M$ is v_{n-1}-torsion and v_{n}-torsion free, then there is a primitive element given in the form of $v^{K} x$ such that $A n n\left(v^{K} x\right)=I_{n}$, where we put
 In particular, we may take $k_{n}=0$ when M is v_{n}-torsion free.

Proof. Inductively we construct a primitive element $y_{m}=v^{K_{m}} x \in M$ so that $I_{m} y_{m}=0$ and y_{m} is again v_{n}-torsion free, where $K_{m}=\left(k_{0}, \cdots, k_{m-1}, 0, \cdots, 0, k_{n, m}\right)$ is a certain $(n+1)$-tuple with " 0 " in the positions of $(m+1)$-th through n-th. Beginning with $y_{0}=x$ we inductively assume the existence of $y_{m}=v^{K_{m}} x, m<n$. Choose an integer $k_{m} \geqq 0$ such that $v_{m}^{k_{m}} y_{m}$ is v_{n}-torsion free but $v_{m}^{k_{m}+1} y_{m}$ is v_{n} -
 Taking $y_{m+1}=v_{m}^{k_{m}} v_{n}^{p^{s}} y_{m}$, it is v_{n}-torsion free and $v_{m} y_{m+1}=0$. Applying the induction hypothesis that y_{m} is primitive and $I_{m} y_{m}=0$, we have

$$
\begin{aligned}
s_{E, A}\left(y_{m+1}\right) & =r_{E}\left(v_{m}^{k_{m}} v_{n}^{p^{s}}\right) s_{0, A}\left(y_{m}\right) \\
& = \begin{cases}v_{m}^{k_{m}^{m}} r_{E}\left(v_{n}^{p^{s}}\right) y_{m} & \text { if } A=0 \\
0 & \text { if } A \neq 0\end{cases}
\end{aligned}
$$

By use of Lemma 1.1 we verify that $y_{m+1}=v^{K_{m+1}} x$ is primitive, where $K_{m+1}=$ $\left(k_{0}, \cdots, k_{m}, 0, \cdots, 0, k_{n, m}+p^{s}\right)$.

We next give a new proof of another principal result in [8], treated of the annihilator ideal $\operatorname{Ann}(x)$ of $x \in M$ for an associative $B P_{*} B P$-comodule M.

Theorem 2.2 (Landweber [8, Theorem 2]). Let J be an invariant regular ideal in $B P_{*}$ of length q, M be an associative (or connective) $B P J_{*} B P J$-comodule and $q \leqq n<\infty$. If M contains an element x which is v_{n-1}-torsion and v_{n}-torsion free, then there exists a primitive element y in M satisfying $\operatorname{Ann}(y)=I_{n}$.

Proof. Pick up the maximal pair (G, B) such that $s_{G, B}(x)$ is v_{n}-torsion free, and then choose an integer $s \geqq 0$ for which $I_{n}^{s+1} s_{E, A}(x)=0$ for all (E, A) and $v_{n}^{p^{s}} s_{F, C}(x)=0$ for any $(F, C)>(G, B)$. In the case when M is associative we have

$$
\begin{aligned}
s_{E, A}\left(v_{n}^{p^{s}} s_{G, B}(x)\right) & =s_{E, A}\left(s_{G, B}\left(v_{n}^{p^{s}} x\right)\right) \\
& =\sum q_{F, C} s_{F, C}\left(v_{n}^{p^{s}} x\right)=\sum q_{F, C} v_{n}^{p s} s_{F, C}(x)=0
\end{aligned}
$$

if $(E, A) \neq(0,0)$. Hence $z=v_{n}^{p^{s}} s_{G, B}(x)$ is primitive. So we apply Lemma 2.1 to find out a desirable element y in M.

In the connective case we use induction on dimension of x to show the existence of a primitive element $z \in M$ which is v_{n-1}-torsion and v_{n}-torsion free.

We are now in a position to prove directly Landweber's prime filtration theorem by repeated use of Lemma 2.1.

Theorem 2.3 (Prime filtration theorem [5]). Let J be an invariant regular ideal in $B P_{*}$ of length q and M be a $B P J_{*} B P J$-comodule which is finitely presented as a $B P J_{*-m o d u l e . ~ T h e n ~} M$ has a finite filtration

$$
M=M_{s} \supset M_{s-1} \supset \cdots \supset M_{1} \supset M_{0}=\{0\}
$$

consisting of subcomodules so that for $1 \leqq i \leqq s$ each subquotient M_{i} / M_{i-1} is stably isomorphic to $B P_{*} / I_{k}$ for some $k \geqq q$.

Proof. Notice that a $B P J_{*}$-module is finitely presented if and only if it is so as a $B P_{*}$-module. By virtue of [4, Lemma 3.3] we may take M to be a cyclic comodule $B P_{*} / I$ where I is an invariant finitely generated ideal including J. Since I is finitely generated, we can choose an integer $l \geqq 0$ to identify $M=B P_{*} / I$ with $B P_{*} \otimes_{R_{l}} R_{l} / I^{\prime}$ for some finitely generated ideal I^{\prime} in the ring $R_{l}=Z_{(p)}\left[v_{1}, \cdots, v_{l}\right]$. Note that any extended module from R_{l} to $B P_{*}$ is always v_{l+1} torsion free. On the other hand, by (1.4) we remark that the $B P J_{*}$-module M is v_{q-1}-torsion.

When the generator $g=[1] \in M=B P_{*} / I$ is v_{m-1}-torsion and v_{m}-torsion free for some $m, q \leqq m \leqq l+1$, it is sufficient to show that M has a finite filtration of comodules

$$
\{0\}=M^{0} \subset M^{1} \subset \cdots \subset M^{r+1} \subset M
$$

so that for each $k \leqq r+1, M^{k} / M^{k-1}$ is stably isomorphic to $B P_{*} / I_{m}$ and moreover that M / M^{r+1} is an extended module from R_{l}, whose generator $g_{r+1}=[1] \in M / M^{r+1}$ is v_{m}-torsion. Assume that the generator $g=[1] \in M=B P_{*} / I$ is v_{m-1}-torsion and v_{m}-torsion free, $m \leqq l+1$. By Lemma 2.1 there is a $(m+1)$-tuple $K=\left(k_{0}, \cdots, k_{m}\right)$ with $k_{l+1}=0$, for which $y=v^{K} g$ is a primitive element satisfying $\operatorname{Ann}(y)=I_{m}$. Take $M^{1}=B P_{*} \cdot y \subset M$ so that $N^{1}=M / M^{1}$ is a cyclic comodule which is an extended module from R_{l} since v^{K} belongs to R_{l}. Take $K^{\prime}=\left(k_{0}, \cdots, k_{i-1}, k_{i}-1\right.$, $\left.0, \cdots, 0, k_{m}^{\prime}\right)$ if $K=\left(k_{0}, \cdots, k_{i}, 0, \cdots, 0, k_{m}\right)$ with $k_{i} \geqq 1$. Then $v^{K^{\prime}} g$ is not contained in M^{1} for any $k_{m}^{\prime} \geqq 0$, as is easily checked. By construction of an improved primitive element developed in Lemma 2.1 we gain a primitive element $y_{1}=v^{K_{1}} g_{1}$ in $N^{1}=M / M^{1}$ satisfying $\operatorname{Ann}\left(y_{1}\right)=I_{m}$, where $K_{1}=\left(k_{0}, \cdots, k_{i-1}, k_{i}-1, k_{i+1}^{\prime}, \cdots, k_{m}^{\prime}\right)$ for some $k_{j}^{\prime} \geqq 0, i+1 \leqq j \leqq m$. Repeating this construction we get a primitive element $y_{q}=v^{K^{\prime}} g_{q} \in N^{q}=M / M^{q}$ with $\operatorname{Ann}\left(y_{q}\right)=I_{m}$ at a suitable stage $q \geqq 1$, where $K^{\prime}=\left(k_{0}, \cdots, k_{i-1}, k_{i}-1,0, \cdots, 0, k_{m, q}\right)$ for some $k_{m, q} \geqq 0$. Applying a downward
induction on i we lastly obtain a primitive element $y_{r}=v_{m}^{k} g_{r} \in N^{r}=M / M^{r}$ for some $k \geqq 0$ such that $\operatorname{Ann}\left(y_{r}\right)=I_{m}$. Take the subcomodule $M^{r+1} \subset M$ to be $M^{r+1} / M^{r} \cong B P_{*} \cdot y_{r}$, then the generator $g_{r+1}=[1] \in M / M^{r+1}$ is obviously v_{m}-torsion. Consequently we get a satisfactory filtration.

Let us denote by $\mathscr{B P} \mathscr{P}$ the category of all associative $B P J_{*} B P J$-comodules and comodule maps. Clearly $\mathscr{B P} \mathscr{P}$ is an abelian category. By employing (1.3) we can show the following result due to Landweber [7, Proposition 2.4].
(2.1) The category $\mathscr{B P} \mathcal{P}$ has enough projectives. That is, for each associative $B P J_{*} B P J$-comodule M there is an associative $B P J_{*} B P J$-comodule F which is $B P J_{*}-$ free and an epimorphism $f: F \rightarrow M$ of comodules. F may be taken to be finitely generated if so is M.

Using (2.1) and the exactness of direct limit we obtain
(2.2) every associative $B P J_{*} B P J$-comodule is a direct limit of finitely presented associative comodules.

Let G be a right $B P J_{*}$-module. We define the $\mathscr{B P} \mathcal{P}$-weak dimension of G, denoted by w $\operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G$, to be less than n if $\operatorname{Tor}_{i}^{B P J *}(G, M)=0$ for all $i \geqq n$ and all comodules M in $\mathscr{B P} \mathscr{G}$. Let N be a $B P J_{*} B P J$-comodule. We regard N as a right $B P J_{*} B P J$-comodule. Since the right comodule structure map ${ }_{N} \psi: N \rightarrow N_{B P J_{*}} B P J_{*} B P J$ is split monic, we can easily see that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} N$ is the same as the $B P J_{*}$-weak dimension of N.

For the fixed invariant regular ideal J of length q we consider the invariant ideals $J_{(m)}=J+I_{m}$ and $J_{(m)}^{\prime}=\left\{\lambda \in B P_{*} ; \lambda v_{m} \in J_{(m)}\right\}$ for any $m \geqq 0$. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow B P_{*} / J_{(m)}^{\prime} \xrightarrow{v_{m}} B P_{*} / J_{(m)} \rightarrow B P_{*} / J_{(m+1)} \rightarrow 0 \tag{2.3}
\end{equation*}
$$

of comodules. Note that $J_{(k)}=J_{(k)}^{\prime}=I_{k}$ for each $k \geqq q$. When J is just $I_{q}, J_{(i)}=I_{q}$ for any $i \leqq q$ and hence $J_{(i)}^{\prime}=B P_{*}, i<q$.

From Theorem 2.3, (2.1) and (2.2) we can immediately derive the $\mathscr{B P} \mathcal{P}$ version of Landweber's exact functor theorem (as extended) [7].

Theorem 2.4. Let J be an invariant regular ideal in $B P_{*}$ of length q, G be a right $B P J_{*}-$ module and $n \geqq 0$. Then the following conditions are equivalent:
(i) $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G \leqq n$,
(ii) $\operatorname{Tor}_{n+1}^{B P} I_{*}\left(G, B P_{*} / I_{k}\right)=0$ for all $k \geqq q$,
(iii) multiplication by v_{k} is monic on $\operatorname{Tor}_{n}^{B P J_{*}}\left(G, B P_{*} / I_{k}\right)$ for each $k \geqq q$ and in addition $\operatorname{Tor}_{n+1}^{B P I_{*}}\left(G, B P_{*} / I_{q}\right)=0$, and
(iv) the induced multiplication $v_{m}: \operatorname{Tor}_{n}^{B P J_{*}}\left(G, B P_{*} \mid J_{(m)}^{\prime}\right) \rightarrow \operatorname{Tor}_{n}^{B P J_{*}}\left(G, B P_{*} / J_{(m)}\right)$ is monic for all $m \geqq 0$.

We call a right $B P J_{*}$-module $G \mathscr{B} \mathscr{P} \mathcal{G}$-flat when $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G=0$.
Corollary 2.5. If a right $B P_{*-m o d u l e ~} G$ is $\mathscr{B P} \mathcal{P}_{-f l a t,}$ then the extended module $G \underset{B P *}{\otimes} B P J_{*} i s \in \mathcal{B C}$ - -flat.

Recall that for any $l, 0 \leqq l \leqq \infty, B P\langle l\rangle_{*} \cong Z_{(p)}\left[v_{1}, \cdots, v_{l}\right]$ is viewed as a quotient of $B P_{*}$. Setting $v_{m}^{-1} B P\langle l, J\rangle_{*}=v_{m}^{-1} B P\langle l\rangle_{*_{B P_{*}}}^{\otimes} B P J_{*}$ with $0 \leqq m \leqq l$, it is $\mathscr{B} \mathscr{P} \mathcal{G}$-flat.

Using the technique of Landweber [8, Theorem 3] by aid of Theorem 2.2 we can show

Proposition 2.6. Let M be an associative (or connective) $B P J_{*} B P J$-comodule, G be a right $B P J_{*}$-module and $m \geqq q$ where $\sqrt{J}=I_{q}$. Assume that G is $\mathscr{B P} \mathcal{P}$-flat with $G v_{m}^{-1} \otimes_{B P J_{*}} B P_{*} / I_{m} \neq 0$. Then M is v_{m}-torsion if and only if $G v_{m}^{-1} \bigotimes_{B P J_{*}}^{\otimes} M=0$.

Recall that $E(m)_{*}=v_{m}^{-1} B P\langle m\rangle_{*}$ and $E(m, J)_{*}=E(m)_{*_{B P_{*}}}^{\otimes} B P J_{*}$.
Corollary 2.7 ([8, Theorem 3]). Let M be an associative (or connective) $B P J_{*} B P J$-comodule. Then M is v_{m}-torsion if and only if $E(m)_{*} \otimes_{B P_{*}} M=0$.

This allows us to give a simple proof of the following result [2, Proposition 2.8].
(2.4) An associative $B P J_{*} B P J$-comodule M is v_{m}-torsion if M is v_{m+1}-divisible, i.e., if multiplication by v_{m+1} is epic on M.

3. $\mathscr{B} \mathscr{P} \mathcal{G}$-injective

Let $\mathscr{B P} \mathscr{P} \mathcal{g}_{0}$ be the full subcategory of $\mathscr{B P} \mathcal{G}$ consisting of all finitely presented associative comodules. For a left $B P J_{*}$-module G we define the
 $\operatorname{Ext}_{B P J_{*}}^{i}(M, G)=0$ for all $i \geqq n$ and all comodules M in $\mathscr{B P} \mathcal{I}$. The $\mathscr{B P} \mathcal{g}_{0^{-}}$ injective dimension of G is similarly defined.

As a dual of Theorem 2.4 we have
Lemma 3.1. Let G be a left $B P J_{*}$-module, $\sqrt{J}=I_{q}$ and $n \geqq 0$. Then the following conditions are equivalent:
(i) inj $\operatorname{dim}_{\mathscr{B} \mathcal{P} \mathscr{G}_{0}} G \leqq n$,
(ii) $\operatorname{Ext}_{B P J_{*}}^{n+1}\left(B P_{*} \mid I_{k}, G\right)=0$ for all $k \geqq q$,
(iii) multiplication by v_{k} is epic on $\operatorname{Ext}_{B P J_{*}}^{n}\left(B P_{*} / I_{k}, G\right)$ for each $k \geqq q$ and in addition $\operatorname{Ext}_{B P J_{*}}^{n+1}\left(B P_{*} / I_{q}, G\right)=0$, and
(iv) the induced multiplication $v_{m}: \operatorname{Ext}_{B P J_{*}}^{n}\left(B P_{*} \mid J_{(m)}, G\right) \rightarrow \operatorname{Ext}_{B P J_{*}}^{n}\left(B P_{*} \mid\right.$ $\left.J_{(m)}^{\prime}, G\right)$ is epic for all $m \geqq 0$.

Proposition 3.2. Let G be a left $B P J_{*}$-module and $n \geqq 0$. Then
inj $\operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G \leqq n$ if and only if inj $\operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{g}_{0}} G \leqq n$ and moreover $\operatorname{Ext}_{B P J *}^{n+1}\left(B P_{*}\right)$ $I, G)=0$ for any invariant ideal I including J with the radical $\sqrt{I}=I_{\infty}$.

Proof. The $n=0$ case is shown by using Theorems 1.3 and 2.2 and a Zorn's lemma argument (see [3, Lemma 3.13]) similar to the abelian group case. A general n case is done by induction.

As an immediate consequence we have (3.1) for any m, inj $\operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} v_{m}^{-1} G \leqq n$ if inj $\operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{g}_{0}} G \leqq n$.

We call a left $B P J_{*}$-module $G \mathscr{B} \mathscr{P} \mathcal{G}$-injective when $\operatorname{inj} \operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G=0$. Similarly for $\mathscr{B} \mathscr{P} g_{0}$-injective.

Corollary 3.3. If a left $B P_{*}$-module G is $\mathscr{B P}$-injective, then the coextended $B P J_{*}$-module $\operatorname{Hom}_{B P_{*}}\left(B P J_{*}, G\right)$ is $\mathscr{B} \mathscr{P} \mathcal{G}$-injective.

Consider the $B P_{*}$-modules $N_{\langle\langle \rangle}^{m}$ and $M_{\langle l\rangle}^{m}$ for every $m \geqq 0$ defined inductively by setting that $N_{\langle l\rangle}^{0}=B P\langle l\rangle_{*}, M_{\langle l\rangle}^{m}=v_{m}^{-1} N_{\langle l\rangle}^{m}$ and $N_{\langle\langle \rangle}^{m+1}$ is the cokernel of the localization homomorphism $N_{\langle l\rangle}^{m} \rightarrow M_{\langle l\rangle}^{m}$. The sequence $0 \rightarrow N_{\langle l\rangle}^{m} \rightarrow M_{\langle l\rangle}^{m} \rightarrow$ $N_{\langle l\rangle}^{m+1} \rightarrow 0$ is exact for each $m \leqq l$, and $N_{\langle l\rangle}^{n}=0$ for any $n \geqq l+2$.

We can easily verify that
(3.2) $\quad M_{\langle l\rangle}^{m}$ is $\mathscr{B} \mathcal{P}$-injective and hence $\operatorname{Hom}_{B P_{*}}\left(B P J_{*}, M_{\langle l\rangle}^{m}\right)$ is $\mathscr{B} \mathscr{P} \mathcal{G}$-injective.

As a dual of Proposition 2.6 we have
Proposition 3.4. Let M be an associative (or connective) $B P J_{*} B P J$-comodule, G be a left $B P J_{*}$-module and $m \geqq q$ where $\sqrt{J}=I_{q}$. Assume that G is $\mathscr{B P g}$ injective with $\operatorname{Hom}_{B P J_{*}}\left(B P_{*} \mid I_{m}, v_{m}^{-1} G\right) \neq 0$. Then M is v_{m}-torsion if and only if $\operatorname{Hom}_{B P J *}\left(M, v_{m}^{-1} G\right)=0$.

Putting $M(m)=M_{\langle m\rangle}^{m}$ and $M(m, J)=\operatorname{Hom}_{B P *}\left(B P J_{*}, M(m)\right)$ we obtain
Corollary 3.5. Let M be an associative (or connective) $B P J_{*} B P J$-comodule. Then M is v_{m}-torsion if and only if $\operatorname{Hom}_{B P_{*}}(M, M(m))=0$.

For the invariant regular ideal $J=\left(\alpha_{0}, \cdots, \alpha_{q-1}\right)$ we put $J_{k}=\left(\alpha_{0}, \cdots, \alpha_{k-1}\right)$ for each $k \leqq q$. The exact sequence $0 \rightarrow B P_{*} / J_{k} \xrightarrow{\alpha_{k}} B P_{*} / J_{k} \rightarrow B P_{*} / J_{k+1} \rightarrow 0$ induces isomorphisms $\operatorname{Ext}_{B P_{*}}^{k}\left(B P_{*} \mid J_{k}, B P_{*} / J\right) \cong \operatorname{Ext}_{B P_{*}}^{k+1}\left(B P_{*}\left|J_{k+1}, B P_{*}\right| J\right)$ and $\operatorname{Ext}_{B P_{*}}^{q}$ $\left(B P_{*} / J, B P_{*} / J_{k}\right) \cong \operatorname{Ext}_{B P_{*}}\left(B P_{*} / J, B P_{*} / J_{k+1}\right) . \quad$ So we observe that $B P_{*} / J \cong$ $\operatorname{Hom}_{B P_{*}}\left(B P_{*}, B P_{*} / J\right) \stackrel{\cong}{\leftrightarrows} \operatorname{Ext}_{B P_{*}}^{q}\left(B P_{*} \mid J, B P_{*} / J\right) \cong \operatorname{Ext}_{B P_{*}}^{q}\left(B P_{*} / J, B P_{*}\right)$.

Setting $N_{J}^{s}=\operatorname{Hom}_{B P_{*}}\left(B P J_{*}, N_{\langle\infty\rangle}^{q+s}\right)$ and $M_{J}^{s}=\operatorname{Hom}_{B P_{*}}\left(B P J_{*}, M_{\langle\infty\rangle}^{q+s}\right)$ we have
Lemma 3.6. N_{J}^{s} and M_{J}^{s} are associative $B P J_{*} B P J$-comodules such that $N_{J}^{0} \cong B P J_{*}, M_{J}^{s} \cong v_{q+s}^{-1} N_{J}^{s}$ and the sequence $0 \rightarrow N_{J}^{s} \rightarrow M_{J}^{s} \rightarrow N_{J}^{s+1} \rightarrow 0$ is an exact

sequence of comodules.

Proof. Since $M_{\langle\infty\rangle}^{m}$ is $\mathscr{B P} \mathcal{P}_{- \text {injective }}$ and $\operatorname{Hom}_{B P_{*}}\left(B P_{*} \mid J, M_{\langle\infty\rangle}^{q-1}\right)=0$ by (1.4) we see that $\operatorname{Hom}_{B P_{*}}\left(B P_{*} \mid J, N_{\langle\infty\rangle}^{q}\right) \cong \operatorname{Ext}_{B P_{*}}^{q}\left(B P_{*} \mid J, B P_{*}\right)$ and $\operatorname{Ext}_{B P_{*}}^{1}\left(B P_{*} \mid J, N_{\langle\infty\rangle}^{r}\right)$ $\cong \operatorname{Ext}_{B P_{*}}^{\tau+1}\left(B P_{*} \mid J, B P_{*}\right)=0$ for any $r \geqq q$. Hence $N_{J}^{0} \cong B P_{*} / J$ and the sequence $0 \rightarrow N_{J}^{s} \rightarrow M_{J}^{s} \rightarrow N_{J}^{s+1} \rightarrow 0$ is exact. Obviously $M_{J}^{s} \cong v_{q+s}^{-1} N_{J}^{s}$ and it is an associative comodule by [2, Proposition 2.9] (or see [9, Lemma 3.2]).

For a left $B P J_{*}$-module G we write w $\operatorname{dim}_{\mathscr{I}} G \leqq n$ if $\operatorname{Tor}_{i}^{B P J_{*}}\left(N_{J}^{s}, G\right)=0$ for all $i \geqq n+1$ and all $s \geqq 0$. When we regard a left $B P J_{*}$-module as a right one by mere necessity, it is evident that

$$
\begin{equation*}
\mathrm{w} \operatorname{dim}_{\mathscr{N} \mathcal{G}} G \leqq n \quad \text { if } \mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P} \mathcal{G}} G \leqq n \tag{3.3}
\end{equation*}
$$

Putting $N_{m}^{s}=\operatorname{Hom}_{B P_{*}}\left(B P_{*} \mid I_{m}, N_{\langle\infty\rangle}^{m+s}\right)$ we have a short exact sequence $0 \rightarrow N_{m+1}^{s-1} \rightarrow N_{m}^{s} \xrightarrow{v_{m}} N_{m}^{s} \rightarrow 0$ of comodules for any $s \geqq 1$. Using this exact sequence and Theorem 2.4 we can show that the converse of (3.3) is valid when J is just I_{q}. By induction on $s \geqq 0$ we can see that there is an isomorphism

$$
\begin{equation*}
N_{J_{B P J_{*}}^{s}}^{\otimes} B P_{*} / I_{q} \cong N_{q}^{s} \tag{3.4}
\end{equation*}
$$

where $\sqrt{ } \bar{J}=I_{q}$. This implies that $\operatorname{Tor}_{i}^{B P J_{*}}\left(N_{J}^{s}, B P_{*} \mid I_{q}\right)=0$ for all $i \geqq 1$ and $s \geqq 0$, i.e.,

$$
\begin{equation*}
\mathrm{w} \operatorname{dim}_{\mathfrak{I g}} B P_{*} / I_{q}=0 \tag{3.5}
\end{equation*}
$$

Moreover we notice that

$$
\begin{equation*}
\mathrm{w} \operatorname{dim}_{\mathfrak{M g}} v_{q_{+n}^{-1}}^{-1} G \leqq n \quad \text { and } \quad \mathrm{w} \operatorname{dim}_{\mathfrak{M g}} B P J_{*} B P J_{B P J_{*}}^{\bigotimes} v_{q+n}^{-1} G \leqq n, \tag{3.6}
\end{equation*}
$$

since $\mathrm{w} \operatorname{dim}_{B P J_{*}} N_{J}^{s} \leqq s$ and the right $B P J_{*}$-modules N_{J}^{s} and $N_{J_{B P J_{*}}^{s}}^{\otimes} B P J_{*} B P J$ are v_{q+s-1}-torsion.

Lemma 3.7. Let G be a left $B P J_{*}-$ module with $\mathrm{w}_{\operatorname{dim}}^{\operatorname{~g~}} G<\infty$. Assume that M is a left $B P J_{*}$-module which is v_{n}-torsion for every $n \geqq 0$. Then $\operatorname{Ext}_{B P_{J_{*}}}^{k}(M, G)=0$ for all $k \geqq 0$. (Cf., [3, Corollary 2.4]).

Proof. It is sufficient to prove the case that $\mathrm{w}_{\operatorname{dim}_{\mathfrak{N g}} G=0 \text {. The }}$ sequence $0 \rightarrow N_{J_{B P J_{*}}^{s}}^{\otimes} G \rightarrow M_{J_{B P J_{*}}^{s}}^{\otimes} G \rightarrow N_{J}^{s+1} \underset{B P J_{*}}{\otimes} G \rightarrow 0$ is exact. Using this exact sequence we get immediately that $\operatorname{Ext}_{B P J_{*}}^{k}(M, G) \cong \operatorname{Hom}_{B P J_{*}}\left(M, N_{J_{B P J^{*}}^{k}}^{*} G\right)=0$ for any $k \geqq 0$ since $\operatorname{Ext}_{B P J_{*}}^{i}\left(M, M_{J_{B P J_{*}}^{s}}^{\otimes} G\right)=0$ for all $i \geqq 0$ under our assumption on M.

Combining Proposition 3.2 with Lemma 3.7 we obtain

Theorem 3.8. Let G be a left $B P J_{*}$-module with $\mathrm{w} \operatorname{dim}_{\mathfrak{H g}} G<\infty$ and $n \geqq 0$. Then inj $\operatorname{dim}_{\mathcal{B} \mathscr{P} \mathcal{G}} G \leqq n$ if and only if inj $\operatorname{dim}_{\mathscr{G} \mathscr{P} \mathcal{G}_{0}} G \leqq n$.

Lemma 3.9. Let M be an associative (or connective) $B P J_{*} B P J$-comodule and $\sqrt{J}=I_{q}$. If $\mathrm{w} \operatorname{dim}_{\mathfrak{I g}} M \leqq n$, then M is v_{q+n}-torsion free. (Cf., [8, Lemma 3.4]).

Proof. Assume that M has a v_{q+n}-torsion element $x \neq 0$. If $x \in M$ is v_{m} torsion for all $m \geqq 0$, then we can find a primitive element $y \neq 0$ in M which is also v_{m}-torsion for all $m \geqq 0$ (cf., Theorem 2.2). Taking $L=B P_{*} \cdot y \subset M$, it is a non-zero subcomodule of M. However Lemma 3.7 shows that $\operatorname{Hom}_{B P J_{*}}(L, M)$ $=0$. This is a contradiction. So we may assume that $x \in M$ is v_{k-1} torsion and v_{k}-torsion free for some $k>q+n$. Then, by Theorem 2.2 there is a primitive element $y \in M$ satisfying $\operatorname{Ann}(y)=I_{k}$. Hence we have an exact sequence $0 \rightarrow B P_{*} / I_{k} \rightarrow M \rightarrow N \rightarrow 0$ of comodules. Applying this exact sequence we observe that $\operatorname{Tor}_{k-q}^{B P J^{\prime}}\left(N_{J}^{k-q}, B P_{*} / I_{k}\right)=0$ under the assumption that $\mathrm{w} \operatorname{dim}_{\mathfrak{N g}} M \leqq n$. This implies that multiplication by v_{k-1} is monic on $\operatorname{Tor}_{k-q-1}^{B P J_{*}}\left(N_{J}^{k-q}, B P_{*} / I_{k-1}\right)$ and hence that $\operatorname{Tor}_{k-q-1}^{B P J_{*}}\left(N_{J}^{k-q}, B P_{*} / I_{k-1}\right)=0$ since N_{J}^{k-q} is v_{k-1}-torsion. Repeating this argument we get that $N_{J}^{k-q} \underset{B P J_{*}}{\otimes} B P_{*} / I_{q}=0$, which is not true by (3.4).

Let I be an invariant ideal in $B P_{*}$ including J and G be a left $B P J_{*}$-module. Take a $B P J_{*}$-homomorphism $f: B P_{*} / I \rightarrow B P J_{*} B P J_{B P J_{*}}^{\otimes} G$, which is represented as $f(\lambda)=\sum_{(B, A)} c\left(z^{E, A}\right) \otimes f_{E, A}(\lambda) . \quad f_{E, A}$ satisfies the Cartan formula, i.e., $f_{E, A}(\lambda)=$ $\sum_{F+G=B} r_{F}(\lambda) f_{G, A}(1)$. Moreover we observe that $I \cdot f_{E, A}(1)=0$ and so $f_{E, A}(1) \in$ $\operatorname{Hom}_{B P J_{*}}\left(B P_{*} / I, G\right)$. Consider the group homomorphism

$$
T: \operatorname{Hom}_{B P J_{*}}\left(B P_{*} / I, B P J_{*} B P J \underset{B P J_{*}}{\otimes} G\right) \rightarrow \underset{(B, A)}{\oplus} \operatorname{Hom}_{B P J_{*}}\left(B P_{*} / I, G\right)
$$

defined to be $T(f)=\underset{(B, A)}{\bigoplus} f_{E, A}(1)$. As is easily checked, T is an isomorphism.
Lemma 3.10. Let G be a left $B P J_{*-m o d u l e ~ a n d ~} n \geqq 0$. Then inj $\operatorname{dim}_{\mathcal{B} \mathcal{P} \mathcal{G}_{0}} G \leqq n$ if and only if inj $\operatorname{dim}_{\mathcal{B} \mathcal{P} \mathscr{g}_{0}} B P J_{*} B P J_{B P J_{*}}^{\otimes} G \leqq n$.

Proof. It is sufficient to prove the $n=0$ case. Consider the exact sequence $0 \rightarrow B P_{*} / J_{(m)}^{\prime} \xrightarrow{v_{m}} B P_{*} / J_{(m)} \rightarrow B P_{*} / J_{(m+1)} \rightarrow 0$ of comodules given in (2.3). We have the following commutative square

$$
\begin{aligned}
& \operatorname{Hom}_{B P J_{*}}\left(B P_{*} \mid J_{(m)}, B P J_{*} B P J_{B P J_{*}}^{\otimes} G\right) \xrightarrow{T} \oplus \operatorname{Hom}_{B P J_{*}}\left(B P_{*} \mid J_{(m)}, G\right) \\
& \operatorname{Hom}_{B P J_{*}}\left(B P_{*} \mid J_{(m)}^{\prime}, B P J_{*} B P J_{B P J_{*}}^{\otimes} G\right) \xrightarrow{T} \oplus \operatorname{Hom}_{B P J_{*}(}\left(B P_{*} \mid J_{(m)}^{\prime}, G\right)
\end{aligned}
$$

because v_{m} is primitive in $B P_{*} / J_{(m)}$. Since T is an group isomorphism, Lemma

Let $\mathscr{B P} \mathscr{g}_{w}$ be the full subcategory of $\mathscr{B} \mathscr{P} \mathcal{G}$ consisting of all associative comodules M with w $\operatorname{dim}_{\mathfrak{I g} \mathcal{I}} M<\infty$. Finally we show that the category $\mathscr{B P} \mathscr{P}_{w}$ has enough $\mathscr{B P} \mathscr{P} \mathcal{G}$-injectives.

Theorem 3.11. Let J be an invariant regular ideal in $B P_{*}$ of length q and M be an associative $B P J_{*} B P J$-comodule with $\operatorname{wim}_{n g} M<\infty$. Then there is an associative $B P J_{*} B P J$-comodule Q with $\mathrm{w} \operatorname{dim}_{\mathfrak{n g}} Q<\infty$ which is $\mathscr{B P} \mathcal{P}$-injective, and a monomorphism $g: M \rightarrow Q$ of comodules.

Proof. Assume that $\mathrm{w} \operatorname{dim}_{\Re g} M \leqq n$ for some $n \geqq 0$. By Lemma 3.9 the localization homomorphism $M \rightarrow v_{q+n}^{-1} M$ is monic. Choose an injective left $B P J_{*}$-module D such that M is a submodule of D. Consider the composition map

$$
g: M \xrightarrow{\psi_{M}} B P J_{*} B P J_{B P J_{*}}^{\otimes} M \rightarrow B P J_{*} B P J_{B P J_{*}}^{\otimes} D \rightarrow B P J_{*} B P J_{B P J_{*}}^{\otimes} v_{q+n}^{-1} D
$$

involving the comodule structure map ψ_{M} of M. Obviously g is a comodule map and it is monic. Putting $Q=B P J_{*} B P J_{B P J_{*}}^{\otimes} v_{q+n}^{-1} D$, the extended comodule Q is $\mathscr{B P} \mathscr{P}_{0}$-injective by Lemma 3.10 and $\mathrm{w} \operatorname{dim}_{\mathfrak{N} \mathcal{G}} Q \leqq n$ by (3.6). From Theorem 3.8 it follows that Q is in fact $\mathscr{B P} \mathscr{P}$-injective.

Corollary 3.12. Let M be an associative $B P J_{*} B P J$-comodule with $\mathrm{w} \operatorname{dim}_{\mathfrak{n g}} M<\infty$. Then M has a $\mathscr{B P}$ g-injective resolution

$$
0 \rightarrow M \rightarrow Q_{0} \rightarrow Q_{1} \rightarrow \cdots
$$

of comodules.

References

[1] D.C. Johnson and W.S. Wilson: BP operations and Morava's extraordinary Ktheories, Math. Z. 144 (1975), 55-75.
[2] D.C. Johnson and Z. Yosimura: Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117-136.
[3] D.C. Johnson, P.S. Landweber and Z. Yosimura: Injective $\mathrm{BP}_{*} \mathrm{BP}$-comodules and localizations of Brown-Peterson homology, Illinois J. Math. 25 (1981), 599-609.
[4] P.S. Landweber: Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 273-284.
[5] P.S. Landweber: Associated prime ideals and Hopf algebras, J. Pure Appl. Algebra 3 (1973), 43-58.
[6] P.S. Landweber: Invariant ideals in Brown-Peterson homology, Duke Math. J. 42 (1975), 499-505.
[7] P.S. Landweber: Homological properties of comodules over $\mathrm{MU}_{*}(\mathrm{MU})$ and BP_{*} (BP), Amer. J. Math. 98 (1976), 591-610.
[8] P.S. Landweber: New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology, Waterloo 1978, Lecture Notes in Math. 741, Springer (1979), 449-460.
[9] H.R. Miller and D.C. Ravenel: Morava stabilizer algebras and the localization of Novikov's E_{2}-term, Duke Math. J. 44 (1977), 433-447.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

