Yosimura, Z. Osaka J. Math. 20 (1983), 123-136

BP OPERATIONS AND HOMOLOGICAL PROPERTIES OF BP_BP-COMODULES

ZEN-ICHI YOSIMURA

(Received April 22, 1981)

BP is the Brown-Peterson spectrum for a fixed prime p and BP_*X is the Brown-Peterson homology of the CW-spectrum X. The left BP_* -module BP_*X is an associative comodule over the coalgebra BP_*BP . In [2] we have studied some torsion properties of (associative) BP_*BP -comodules, by paying attension to the behaviors of BP operations. It seems that the following result is fundamental.

Theorem 0.1. Let M be a BP_*BP -comodule. If an element $x \in M$ is v_n -torsion, then it is v_{n-1} -torsion. ([2, Theorem 0.1]).

After a little while Landweber [8] has obtained several results about torsion properties of associative BP_*BP -comodules in an awfully algebraic manner, as new applications of commutative algebra to the Brown-Peterson homology. In this note we will give directly new proofs of Landweber's principal results [8, Theorems 1 and 2], by making use of two basic tools (Lemmas 1.1 and 1.2) looked upon as generalizations of Johnson-Wilson results [1, Lemmas 1.7 and 1.9] handling BP operations:

Theorem 0.2. Let M be a BP_*BP -comodule and $x \neq 0$ be an element of M. Then the radical of the annihilator ideal of x

 $\sqrt{\operatorname{Ann}(x)} = \{\lambda \in BP_*; \lambda^k x = 0 \text{ for some } k > 0\}$

is one of the invariant prime ideals $I_n = (p, v_1, \dots, v_{n-1})$ in BP_* , $1 \le n \le \infty$. (Theorem 1.3).

Theorem 0.3. Let M be an associative BP_*BP -comodule and $1 \le n < \infty$. If M contains an element x satisfying $\sqrt{\operatorname{Ann}(x)} = I_n$, then there is a primitive element y in M such that the annihilator ideal of y

Ann
$$(y) = \{ \lambda \in BP_*; \lambda y = 0 \}$$

is just I_n . (Theorem 2.2).

As an immediate consequence Theorem 0.2 implies Landweber's invariant prime ideal theorem [4] that the invariant prime ideals in BP_* are I_n for $1 \le n \le \infty$ (Corollary 1.4). Our technique adopted in the proof of Theorem 0.3 allows us to give a new proof of Landweber's prime filtration theorem [5] (Theorem 2.3).

We prove Theorem 0.2 and hence Invariant prime ideal theorem in $\S1$ and Theorem 0.3 and Prime filtration theorem in $\S2$, although Landweber has shown Theorems 0.2 and 0.3 after having known Invariant prime ideal theorem and Prime filtration theorem.

Let \mathscr{BP} be the category of all associative BP_*BP -comodules and comodule maps. An associative BP_*BP -comodule has a BP_* -projective resolution in \mathscr{BP} . In [3] we introduced the concept of \mathscr{BP} -injective weaker slightly than that of BP_* -injective. In §3 we prove

Theorem 0.4. Let M be an associative BP_*BP -comodule with w dim_{BP*} $M < \infty$. Then M has a \mathcal{BP} -injective resolution in \mathcal{BP} (Corollary 3.12).

Let J be an invariant regular ideal in BP_* of finite length. There is a left BP-module spectrum BPJ whose homotopy is BP_*/J . When J is trivial, BPJ is just BP. we do prove our results for (associative) BPJ_*BPJ -comodules. A reader who is interested only in associative BP_*BP -comodules may neglect the "J" in the BPJ notation.

1. The radicals of annihilator ideals

Let us fix an invariant regular ideal $J=(\alpha_0, \dots, \alpha_{q-1})$ in $BP_* \cong Z_{(p)}[v_1, v_2, \dots]$. There is an associative left *BP*-module spectrum whose coefficient is $BPJ_* \cong BP_*/(\alpha_0, \dots, \alpha_{q-1})$. *BPJ* becomes a quasi-associative ring spectrum [2].

Let $E=(e_1, e_2, \cdots)$ be a finitely non-zero sequence of non-negative integers and $A=(a_0, \cdots, a_{q-1})$ be a q-tuple consisting of zeros and ones. We put $|E| = \sum_i 2(p^i-1)e_i$ and $|A| = \sum_j (|\alpha_j|+1)a_j$ where $|\alpha_j|$ represents dimension of $\alpha_j \in BP_*$. BPJ^*BPJ is the free left BPJ_* -module whose free basis is formed by elements $z^{E,A}$ with dimension |E| + |A|. When BPJ_*BPJ is viewed as a right BPJ^* -module, its free basis is given by the elements $c(z^{E,A})$ where c denotes the canonical conjugation of BPJ_*BPJ .

 BPJ^*BPJ is the direct product of copies of BPJ_* indexed by all BPJ operations $S_{E,A}$: $BPJ \rightarrow \Sigma^{|E|+|A|}BPJ$. When J is trivial, operations $S_{E,0}$ coincide with the BP operations r_E . BPJ operations $S_{E,A}$ satisfy the Cartan formula, i.e., for the BP-module structure map $\phi: BP \land BPJ \rightarrow BPJ$ we have

(1.1)
$$S_{E,A}\phi = \sum_{F+G=E} \phi(r_F \wedge S_{G,A}): BP \wedge BPJ \to \Sigma^{|E|+|A|}BPJ.$$

The operation $S_{0,0}$: $BPJ \rightarrow BPJ$ is a homotopy equivalence, which is uniquely written in the form of

124

BP OPERATIONS AND HOMOLOGICAL PROPERTIES OF BP*BP-COMODULES

(1.2)
$$S_{0,0} = 1 + \sum_{A \neq 0} q_A S_{0,A}$$

with certain coefficients $q_A \in BPJ_*$. The composition $S_{E,A}S_{F,B}$ has a unique representation as a formal sum

$$(1.3) S_{E,A}S_{F,B} = \sum_{(G,C)} q_{G,C}S_{G,C}$$

for certain coefficients $q_{G,c} = q_{G,c}(E, A; F, B) \in BPJ_*$.

A left BPJ_* -module M is called a BPJ_*BPJ -comodule [2] if it admits a coaction map $\psi_M: M \to BPJ_*BPJ \bigotimes_{BPJ_*} M$ represented as

$$\psi_M(x) = \sum_{(\mathcal{B},\mathcal{A})} c(z^{E,A}) \otimes s_{E,A}(x),$$

which satisfies two conditions:

(i) ψ_M is a left BPJ_* -module map, i.e.,

"Cartan formula"
$$s_{E,A}(\lambda x) = \sum_{F+G=B} r_F(\lambda) s_{G,A}(x)$$

for each $\lambda \in BPJ_*$ and $x \in M$.

(ii)
$$s_{0,0}(x) = x + \sum_{A \neq 0} q_A s_{0,A}(x)$$

for each $x \in M$, where the coefficients $q_A \in BPJ_*$ are those given in (1.2).

Note that ψ_M is a split monomorphism of left BPJ_* -modules when M is a BPJ_*BPJ -comodule.

A BPJ_*BPJ -comodule M is said to be *associative* if it satisfies an additional condition:

(iii) ψ_M is associative, i.e.,

$$s_{E,A}(s_{F,B}(x)) = \sum_{(G,G)} q_{G,C} s_{G,C}(x)$$

for each $x \in M$, where the coefficients $q_{G,C} \in BPJ_*$ are those given in (1.3).

Let *M* be a left BPJ_* -module which admits a structure of (associative) BP_*BP -comodule. Taking $s_{E,0}(x) = r_E(x)$ and $s_{E,A}(x) = 0$ if $A \neq 0$, we can regard *M* as an (associative) BPJ_*BPJ -comodule.

Recall that for $1 \le m \le \infty$, $I_m = (p, v_1, \dots, v_{m-1})$ are invariant prime ideals in BP_* . Johnson-Wilson have observed nice behaviors of BP operations r_E modulo I_m [1, Lemmas 1.7 and 1.9]. We first give two useful lemmas, which descend directly from the so-called "Ballentine Lemma". The first lemma has already appeared with a short proof in [2].

Lemma 1.1. Let E be an exponent sequence with $|E| \ge 2kp^{s}(p^{n}-p^{m})$, $n \ge m \ge 1$, $s \ge 0$ and $k \ge 1$. Then

$$r_{E}(v_{n}^{kp^{s}}) \equiv \begin{cases} v_{m}^{kp^{s}} \text{ modulo } I_{m}^{s+1} \text{ if } E = kp^{s+m} \Delta_{n-m} \\ 0 \text{ modulo } I_{m}^{s+1} \text{ if otherwise} \end{cases}$$

125

where $\Delta_{n-m} = (0, \dots, 0, 1, 0, \dots)$ with the single "1" with (n-m)-th position. (Cf., [1, Lemma 1.7]).

Proof. Using the Cartan formula and the fact that $p \in I_m$ we can easily see that

$$r_E(v_n^{kp^s}) \equiv \sum r_{E_1}(v_n) \cdots r_{E_{kn^s}}(v_n) \mod I_m^{s+1}$$

where the summation \sum runs over all kp^s -tuples (E_1, \dots, E_{kp^s}) of exponent sequences such that $E = E_1 + \dots + E_{kp^s}$ and $r_{E_i}(v_n) \equiv 0$ modulo I_m for all $i, 1 \leq i \leq kp^s$. The result now follows immediately from [1, Lemma 1.7].

Define an ordering on exponent sequences as follows: $E=(e_1, e_2, \cdots) < F=(f_1, f_2, \cdots)$ if |E| < |F| or if |E| = |F| and $e_1=f_1, \cdots, e_{i-1}=f_{i-1}$ but $e_i > f_i$.

Lemma 1.2. Let $m \ge 1$, $s \ge 0$ and $\lambda \in BP_*$. If λ is not contained in I_m , then there is an exponent sequence E and a unit $u \in Z_{(p)}$ such that

$$r_{F}(\lambda^{p^{s}}) \equiv \begin{cases} uv_{m}^{kp^{s}} modulo \ I_{m}^{s+1} \text{ if } F = p^{s}\sigma_{m}E \\ 0 modulo \ I_{m}^{s+1} \text{ if } F > p^{s}\sigma_{m}E \end{cases}$$

where $\sigma_m E = (p^m e_{m+1}, p^m e_{m+2}, \cdots)$ and $k = e_m + e_{m+1} + \cdots$ for $E = (e_1, \cdots, e_m, \cdots)$. (Cf., [1, Lemma 1.9]).

Proof. Put $\lambda = \sum_{G} a_G v^G \notin I_m$, $a_G \in Z_{(p)}$, by defining $v^G = v_1^{g_1} \cdots v_n^{g_n}$ for $G = (g_1, \dots, g_n, 0, \dots)$. We may assume that $G = (0, \dots, 0, g_m, g_{m+1}, \dots)$ and a_G is a unit of $Z_{(p)}$. Pick up the exponent sequence E so that $\sigma_m E$ is maximal among $\sigma_m G$. By [1, Corollary 1.8] we have

$$r_{H}(\lambda) = \sum_{G} a_{G} r_{H}(v^{G}) \equiv \begin{cases} a_{E} v_{m}^{k(E)} \mod I_{m} \text{ if } H = \sigma_{m} E \\ 0 \mod I_{m} \text{ if } H > \sigma_{m} E \end{cases}$$

where $k(G) = g_m + g_{m+1} + \cdots$. By a similar argument to the proof of Lemma 1.1 we can compute $r_F(\lambda^{p^s})$ modulo I_m^{s+1} to obtain the required result.

Let $J=(\alpha_0, \dots, \alpha_{q-1})$ be an invariant regular ideal in BP_* of length q, and M be a left BP_* -module. Recall that the *annihilator ideal* Ann(x) of $x \in M$ in BP_* is defined by

Ann
$$(x) = \{\lambda \in BP_*; \lambda x = 0\}$$

and that the radical $\sqrt{\operatorname{Ann}(x)}$ of the annihilator ideal Ann(x) is done by

$$\sqrt{\operatorname{Ann}(x)} = \{\lambda \in BP_*; \lambda^k x = 0 \text{ for some } k\}$$
.

For the element v_n of BP_* (by convention $v_0 = p$) we say that an element $x \in M$

126

is v_n -torsion if $v_n^k x=0$ for some k and that $x \in M$ is v_n -torsion free if not so. Since the radical \sqrt{I} of J is just I_q [6, Proposition 2.5], we note that

(1.4) every left BPJ_{*}-module M is at least v_n -torsion for each $n, 0 \leq n < q$, i.e., $v_n^{-1}M = 0$ for $0 \leq n < q$.

Making use of Lemma 1.1 we have obtained the following result in [2, Lemma 2.3 and Corollary 2.4].

(1.5) Let M be a BPJ_{*}BPJ-comodule and assume that $x \in M$ is v_n -torsion. Then $x \in M$ is v_m -torsion for all $m, 0 \leq m \leq n$. More generally, $s_{E,A}(x)$ is v_m -torsion for all $m, 0 \leq m \leq n$ and for all elementary BPJ operations $s_{E,A}$.

Given exponent sequences $E = (e_1, e_2, \dots)$, $F = (f_1, f_2, \dots)$, $A = (a_0, \dots, a_{q-1})$ and $B = (b_0, \dots, b_{q-1})$ we define an ordering between pairs (E, A) and (F, B) as follows: (E, A) < (F, B) if i) |E| + |A| < |F| + |B|, or if ii) |E| + |A| =|F| + |B| and E < F, or if iii) E = F, |A| = |B| and $a_0 = b_0, \dots, a_{j-1} = b_{j-1}$ but $1 = a_j > b_j = 0$.

As a principal result in [8] Landweber has determined the radical $\sqrt{\operatorname{Ann}(x)}$ of $x \in M$ for an associative BP_*BP -comodule M. Using Lemma 1.2 we give a new proof without the restriction of associativity on M.

Theorem 1.3 (Landweber [8, Theorem 1]). Let J be an invariant regular ideal in BP_* of length q, M be a BPJ_*BPJ -comodule and $n \ge q$. An element $x \in M$ is v_{n-1} -torsion and v_n -torsion free if and only if $\sqrt{Ann(x)} = I_n$.

Proof. Assume that $x \in M$ is v_{n-1} -torsion and v_n -torsion free when $n \ge 1$. Obviously $I_n \subset \sqrt{\operatorname{Ann}(x)}$. If $0 \neq \lambda \in \sqrt{\operatorname{Ann}(x)} - I_n$, then we may choose an integer $s \ge 0$ such that $\lambda^{p^s} x = 0$ and $I_n^{s+1} s_{E,A}(x) = 0$ for all (E, A). By Lemma 1.2 there is an exponent sequence F so that

$$r_{H}(\lambda^{p^{s}}) \equiv \begin{cases} uv_{n}^{kp^{s}} \text{ modulo } I_{n}^{s+1} \text{ if } H = p^{s}\sigma_{m}F \\ 0 \text{ modulo } I_{n}^{s+1} \text{ if } H > p^{s}\sigma_{m}F \end{cases}$$

for some k>0 and some unit $u \in Z_{(p)}$. There exists a pair (G', B') such that $s_{G',B'}(x)$ is v_n -torsion free because $x \in M$ is so. Pick up the maximal (G, B) of such pairs, and choose an integer $t \ge 0$ such that $v_n^t s_{E,A}(x) = 0$ whenever (E, A) > (G, B). Using the Cartan formula we compute

$$0 = v_n^t s_{G+p^s \sigma_m F,B}(\lambda^{p^s} x) = v_n^t r_{p^s \sigma_m F}(\lambda^{p^s}) s_{G,B}(x)$$

= $u v_n^{t+hp^s} s_{G,B}(x)$.

Thus $s_{G,B}(x)$ is v_n -torsion. This is a contradiction. The "if" part is evident.

In the n=0 case the above proof works well if we apply [1, Lemma 1.9 (b)] in place of Lemma 1.2.

Corollary 1.4. If I is an invariant ideal in BP_* , then the radical \sqrt{I} of I is I_n for some $n, 1 \le n \le \infty$. In particular, the invariant prime ideals in BP_* are I_n for $1 \le n \le \infty$. (Cf., [1, Corollary 1.10] or [4]).

2. Prime filtration theorem

Let M be a BPJ_*BPJ -comodule. An element $x \in M$ is said to be primitive if $s_{E,A}(x)=0$ for all $(E, A) \neq (0, 0)$.

Lemma 2.1. Let M be a BPJ_{*}BPJ-comodule and $q \leq n < \infty$ where $\sqrt{J} = I_q$. If a primitive element $x \in M$ is v_{n-1} -torsion and v_n -torsion free, then there is a primitive element given in the form of $v^K x$ such that $Ann(v^K x) = I_n$, where we put $v^K = p^{k_0} v_1^{k_1} \cdots v_n^{k_n}$ for some (n+1)-tuple $K = (k_0, k_1, \cdots, k_n)$ of non-negative integers. In particular, we may take $k_n = 0$ when M is v_n -torsion free.

Proof. Inductively we construct a primitive element $y_m = v^{K_m} x \in M$ so that $I_m y_m = 0$ and y_m is again v_n -torsion free, where $K_m = (k_0, \dots, k_{m-1}, 0, \dots, 0, k_{n,m})$ is a certain (n+1)-tuple with "0" in the positions of (m+1)-th through *n*-th. Beginning with $y_0 = x$ we inductively assume the existence of $y_m = v^{K_m} x, m < n$. Choose an integer $k_m \ge 0$ such that $v_m^{k_m} y_m$ is v_n -torsion free but $v_m^{k_m+1} y_m$ is v_n -torsion. Then there is an integer $s \ge 0$ such that $I_n^{s+1} y_m = 0$ and $v_m^{k_m+1} v_n^{s} y_m = 0$. Taking $y_{m+1} = v_m^{k_m} v_n^{s} y_m$, it is v_n -torsion free and $v_m y_{m+1} = 0$. Applying the induction hypothesis that y_m is primitive and $I_m y_m = 0$, we have

$$s_{E,A}(y_{m+1}) = r_E(v_m^{k_m}v_n^{p^s})s_{0,A}(y_m) \\ = \begin{cases} v_m^{k_m}r_E(v_n^{p^s})y_m & \text{if } A = 0 \\ 0 & \text{if } A \neq 0 \end{cases}$$

By use of Lemma 1.1 we verify that $y_{m+1}=v^{K_{m+1}}x$ is primitive, where $K_{m+1}=(k_0, \dots, k_m, 0, \dots, 0, k_{n,m}+p^s)$.

We next give a new proof of another principal result in [8], treated of the annihilator ideal Ann(x) of $x \in M$ for an associative BP_*BP -comodule M.

Theorem 2.2 (Landweber [8, Theorem 2]). Let J be an invariant regular ideal in BP_* of length q, M be an associative (or connective) BPJ_*BPJ -comodule and $q \leq n < \infty$. If M contains an element x which is v_{n-1} -torsion and v_n -torsion free, then there exists a primitive element y in M satisfying $Ann(y) = I_n$.

Proof. Pick up the maximal pair (G, B) such that $s_{G,B}(x)$ is v_n -torsion free, and then choose an integer $s \ge 0$ for which $I_n^{s+1}s_{E,A}(x) = 0$ for all (E, A) and $v_n^{p^s}s_{F,C}(x) = 0$ for any (F, C) > (G, B). In the case when M is associative we have

$$s_{E,A}(v_n^{p^s}s_{G,B}(x)) = s_{E,A}(s_{G,B}(v_n^{p^s}x))$$

= $\sum q_{F,C}s_{F,C}(v_n^{p^s}x) = \sum q_{F,C}v_n^{p^s}s_{F,C}(x) = 0$

if $(E, A) \neq (0, 0)$. Hence $z = v_n^{p^s} s_{G,B}(x)$ is primitive. So we apply Lemma 2.1 to find out a desirable element y in M.

In the connective case we use induction on dimension of x to show the existence of a primitive element $z \in M$ which is v_{n-1} -torsion and v_n -torsion free.

We are now in a position to prove directly Landweber's prime filtration theorem by repeated use of Lemma 2.1.

Theorem 2.3 (Prime filtration theorem [5]). Let J be an invariant regular ideal in BP_* of length q and M be a BPJ_*BPJ -comodule which is finitely presented as a BPJ_* -module. Then M has a finite filtration

$$M = M_s \supset M_{s-1} \supset \cdots \supset M_1 \supset M_0 = \{0\}$$

consisting of subcomodules so that for $1 \leq i \leq s$ each subquotient M_i/M_{i-1} is stably isomorphic to BP_*/I_k for some $k \geq q$.

Proof. Notice that a BPJ_* -module is finitely presented if and only if it is so as a BP_* -module. By virtue of [4, Lemma 3.3] we may take M to be a cyclic comodule BP_*/I where I is an invariant finitely generated ideal including J. Since I is finitely generated, we can choose an integer $l \ge 0$ to identify $M = BP_*/I$ with $BP_* \bigotimes_{R_I} R_I/I'$ for some finitely generated ideal I' in the ring $R_I = Z_{(p)}[v_1, \dots, v_I]$. Note that any extended module from R_I to BP_* is always v_{I+1} -torsion free. On the other hand, by (1.4) we remark that the BPJ_* -module M is v_{q-1} -torsion.

When the generator $g=[1] \in M=BP_*/I$ is v_{m-1} -torsion and v_m -torsion free for some $m, q \leq m \leq l+1$, it is sufficient to show that M has a finite filtration of comodules

$$\{0\} = M^{\scriptscriptstyle 0} \subset M^{\scriptscriptstyle 1} \subset \cdots \subset M^{r+1} \subset M$$

so that for each $k \leq r+1$, M^k/M^{k-1} is stably isomorphic to BP_*/I_m and moreover that M/M^{r+1} is an extended module from R_l , whose generator $g_{r+1}=[1]\in M/M^{r+1}$ is v_m -torsion. Assume that the generator $g=[1]\in M=BP_*/I$ is v_{m-1} -torsion and v_m -torsion free, $m \leq l+1$. By Lemma 2.1 there is a (m+1)-tuple $K=(k_0, \dots, k_m)$ with $k_{l+1}=0$, for which $y=v^Kg$ is a primitive element satisfying $\operatorname{Ann}(y)=I_m$. Take $M^1=BP_*\cdot y\subset M$ so that $N^1=M/M^1$ is a cyclic comodule which is an extended module from R_l since v^K belongs to R_l . Take $K'=(k_0,\dots,k_{l-1},k_l-1,$ $0,\dots,0,k'_m)$ if $K=(k_0,\dots,k_l,0,\dots,0,k_m)$ with $k_l\geq 1$. Then $v^{K'}g$ is not contained in M^1 for any $k'_m\geq 0$, as is easily checked. By construction of an improved primitive element developed in Lemma 2.1 we gain a primitive element $y_1=v^{K_1}g_1$ in $N^1=M/M^1$ satisfying $\operatorname{Ann}(y_1)=I_m$, where $K_1=(k_0,\dots,k_{l-1},k_l-1,k'_{l+1},\dots,k'_m)$ for some $k'_l\geq 0$, $i+1\leq j\leq m$. Repeating this construction we get a primitive element $y_q=v^{K'}g_q\in N^q=M/M^q$ with $\operatorname{Ann}(y_q)=I_m$ at a suitable stage $q\geq 1$, where $K'=(k_0,\dots,k_{l-1},k_l-1,0,\dots,0,k_{m,q})$ for some $k_{m,q}\geq 0$. Applying a downward induction on *i* we lastly obtain a primitive element $y_r = v_m^k g_r \in N' = M/M'$ for some $k \ge 0$ such that $\operatorname{Ann}(y_r) = I_m$. Take the subcomodule $M^{r+1} \subset M$ to be $M^{r+1}/M' \cong BP_* \cdot y_r$, then the generator $g_{r+1} = [1] \in M/M^{r+1}$ is obviously v_m -torsion. Consequently we get a satisfactory filtration.

Let us denote by \mathcal{BPJ} the category of all *associative BPJ*_{*}*BPJ*-comodules and comodule maps. Clearly \mathcal{BPJ} is an abelian category. By employing (1.3) we can show the following result due to Landweber [7, Proposition 2.4].

(2.1) The category \mathcal{BPJ} has enough projectives. That is, for each associative BPJ_*BPJ -comodule M there is an associative BPJ_*BPJ -comodule F which is BPJ_* -free and an epimorphism $f: F \rightarrow M$ of comodules. F may be taken to be finitely generated if so is M.

Using (2.1) and the exactness of direct limit we obtain

(2.2) every associative BPJ_*BPJ -comodule is a direct limit of finitely presented associative comodules.

Let G be a right BPJ_* -module. We define the \mathscr{BPJ} -weak dimension of G, denoted by w dim $_{\mathscr{BPJ}}$ G, to be less than n if $\operatorname{Tor}_i^{BPJ*}(G, M)=0$ for all $i \ge n$ and all comodules M in \mathscr{BPJ} . Let N be a BPJ_*BPJ -comodule. We regard N as a right BPJ_*BPJ -comodule. Since the right comodule structure map $_N\psi: N \to N \bigotimes_{BPJ*} BPJ_*BPJ$ is split monic, we can easily see that w dim $_{\mathscr{BPJ}}N$ is the same as the BPJ_* -weak dimension of N.

For the fixed invariant regular ideal J of length q we consider the invariant ideals $J_{(m)} = J + I_m$ and $J'_{(m)} = \{\lambda \in BP_*; \lambda v_m \in J_{(m)}\}$ for any $m \ge 0$. Then we have an exact sequence

(2.3)
$$0 \to BP_*/J'_{(m)} \xrightarrow{\mathcal{V}_m} BP_*/J_{(m)} \to BP_*/J_{(m+1)} \to 0$$

of comodules. Note that $J_{(k)} = J'_{(k)} = I_k$ for each $k \ge q$. When J is just $I_q, J_{(i)} = I_q$ for any $i \le q$ and hence $J'_{(i)} = BP_*, i < q$.

From Theorem 2.3, (2.1) and (2.2) we can immediately derive the \mathscr{BPG} -version of Landweber's exact functor theorem (as extended) [7].

Theorem 2.4. Let J be an invariant regular ideal in BP_* of length q, G be a right BPJ_* -module and $n \ge 0$. Then the following conditions are equivalent: (i) w dim_{\mathcal{BP} \notin} G \le n,

(ii) $\operatorname{Tor}_{n+1}^{BPJ}(G, BP_*/I_k) = 0$ for all $k \ge q$,

(iii) multiplication by v_k is monic on $\operatorname{Tor}_n^{BPJ*}(G, BP_*/I_k)$ for each $k \ge q$ and in addition $\operatorname{Tor}_{n+1}^{BPJ*}(G, BP_*/I_q) = 0$, and

(iv) the induced multiplication v_m : $\operatorname{Tor}_n^{BPJ}(G, BP_*/J'_{(m)}) \to \operatorname{Tor}_n^{BPJ}(G, BP_*/J_{(m)})$ is monic for all $m \ge 0$.

BP OPERATIONS AND HOMOLOGICAL PROPERTIES OF BP*BP-COMODULES

We call a right BPJ_* -module $G \mathcal{BPJ}$ -flat when w dim $\mathfrak{gpq} \mathcal{G} = 0$.

Corollary 2.5. If a right BP_* -module G is \mathcal{BP} -flat, then the extended module $G \bigotimes BPJ_*$ is \mathcal{BPJ} -flat.

Recall that for any $l, 0 \leq l \leq \infty$, $BP \langle l \rangle_* \simeq Z_{(p)}[v_1, \dots, v_l]$ is viewed as a quotient of BP_* . Setting $v_m^{-1}BP \langle l, J \rangle_* = v_m^{-1}BP \langle l \rangle_* \bigotimes_{BP_*} BPJ_*$ with $0 \leq m \leq l$, it is \mathcal{BPA} -flat.

Using the technique of Landweber [8, Theorem 3] by aid of Theorem 2.2 we can show

Proposition 2.6. Let M be an associative (or connective) BPJ_*BPJ -comodule, G be a right BPJ_* -module and $m \ge q$ where $\sqrt{J} = I_q$. Assume that G is \mathcal{BPJ} -flat with $Gv_m^{-1} \bigotimes_{BP_{J_*}} BP_*/I_m \neq 0$. Then M is v_m -torsion if and only if $Gv_m^{-1} \bigotimes_{BP_{J_*}} M = 0$.

Recall that $E(m)_* = v_m^{-1}BP\langle m \rangle_*$ and $E(m, J)_* = E(m)_* \bigotimes_{BP_*} BPJ_*$.

Corollary 2.7 ([8, Theorem 3]). Let M be an associative (or connective) BPJ_*BPJ -comodule. Then M is v_m -torsion if and only if $E(m)_* \bigotimes_{BP_*} M=0$.

This allows us to give a simple proof of the following result [2, Proposition 2.8].

(2.4) An associative BPJ_{*}BPJ-comodule M is v_m -torsion if M is v_{m+1} -divisible, i.e., if multiplication by v_{m+1} is epic on M.

3. **BP**J-injective

Let \mathscr{BPJ}_0 be the full subcategory of \mathscr{BPJ} consisting of all finitely presented associative comodules. For a left BPJ_* -module G we define the \mathscr{BPJ} -injective dimension of G, denoted by inj dim $_{\mathscr{BPJ}}G$, to be less than n if $\operatorname{Ext}_{BPJ_*}^i(M, G)=0$ for all $i \ge n$ and all comodules M in \mathscr{BPJ} . The \mathscr{BPJ}_0 injective dimension of G is similarly defined.

As a dual of Theorem 2.4 we have

Lemma 3.1. Let G be a left BPJ_* -module, $\sqrt{J} = I_q$ and $n \ge 0$. Then the following conditions are equivalent:

(i) inj dim $\mathcal{BP}_{\mathcal{P}}\mathcal{J}_0 G \leq n$,

(ii) $\operatorname{Ext}_{BPJ_*}^{n+1}(BP_*|I_k, G) = 0$ for all $k \ge q$,

(iii) multiplication by v_k is epic on $\operatorname{Ext}_{BPJ*}^n(BP_*|I_k, G)$ for each $k \ge q$ and in addition $\operatorname{Ext}_{BPJ*}^{n+1}(BP_*|I_q, G)=0$, and

(iv) the induced multiplication v_m : $\operatorname{Ext}_{BPJ*}^n(BP_*/J_{(m)}, G) \to \operatorname{Ext}_{BPJ*}^n(BP_*/J_{(m)}, G)$ is epic for all $m \ge 0$.

Proposition 3.2. Let G be a left BPJ_* -module and $n \ge 0$. Then

inj dim $_{\mathcal{BP}\mathcal{G}} G \leq n$ if and only if inj dim $_{\mathcal{BP}\mathcal{G}_0} G \leq n$ and moreover $\operatorname{Ext}_{BPJ_*}^{n+1}(BP_*/I, G) = 0$ for any invariant ideal I including J with the radical $\sqrt{I} = I_{\infty}$.

Proof. The n=0 case is shown by using Theorems 1.3 and 2.2 and a Zorn's lemma argument (see [3, Lemma 3.13]) similar to the abelian group case. A general n case is done by induction.

As an immediate consequence we have

(3.1) for any *m*, inj dim $\mathfrak{ggg} \mathfrak{g} v_{\mathfrak{m}}^{-1}G \leq n$ if inj dim $\mathfrak{gggg}_{\mathfrak{g}} G \leq n$.

We call a left BPJ_* -module $G \ \mathcal{BPJ}$ -injective when inj $\dim_{\mathcal{BPJ}}G = 0$. Similarly for \mathcal{BPJ}_0 -injective.

Corollary 3.3. If a left BP_* -module G is \mathcal{BP} -injective, then the coextended BPJ_* -module $Hom_{BP_*}(BPJ_*, G)$ is \mathcal{BPJ} -injective.

Consider the BP_* -modules $N_{\langle l \rangle}^m$ and $M_{\langle l \rangle}^m$ for every $m \ge 0$ defined inductively by setting that $N_{\langle l \rangle}^0 = BP \langle l \rangle_*$, $M_{\langle l \rangle}^m = v_m^{-1} N_{\langle l \rangle}^m$ and $N_{\langle l \rangle}^{m+1}$ is the cokernel of the localization homomorphism $N_{\langle l \rangle}^m \to M_{\langle l \rangle}^m$. The sequence $0 \to N_{\langle l \rangle}^m \to M_{\langle l \rangle}^m \to$ $N_{\langle l \rangle}^{m+1} \to 0$ is exact for each $m \le l$, and $N_{\langle l \rangle}^n = 0$ for any $n \ge l+2$.

We can easily verify that

(3.2) $M_{\langle l \rangle}^{m}$ is \mathcal{BP} -injective and hence Hom_{BP*}(BPJ*, $M_{\langle l \rangle}^{m}$) is $\mathcal{BP}\mathcal{J}$ -injective.

As a dual of Proposition 2.6 we have

Proposition 3.4. Let M be an associative (or connective) BPJ_*BPJ -comodule, G be a left BPJ_* -module and $m \ge q$ where $\sqrt{J} = I_q$. Assume that G is \mathcal{BPJ} injective with $\operatorname{Hom}_{BPJ_*}(BP_*/I_m, v_m^{-1}G) = 0$. Then M is v_m -torsion if and only if $\operatorname{Hom}_{BPJ_*}(M, v_m^{-1}G) = 0$.

Putting $M(m) = M_{\langle m \rangle}^{m}$ and $M(m, J) = \operatorname{Hom}_{BP*}(BPJ_*, M(m))$ we obtain

Corollary 3.5. Let M be an associative (or connective) BPJ_*BPJ -comodule. Then M is v_m -torsion if and only if $Hom_{BP*}(M, M(m))=0$.

For the invariant regular ideal $J = (\alpha_0, \dots, \alpha_{q-1})$ we put $J_k = (\alpha_0, \dots, \alpha_{k-1})$ for each $k \leq q$. The exact sequence $0 \rightarrow BP_*/J_k \xrightarrow{\alpha_k} BP_*/J_k \rightarrow BP_*/J_{k+1} \rightarrow 0$ induces isomorphisms $\operatorname{Ext}_{BP_*}^k(BP_*/J_k, BP_*/J) \cong \operatorname{Ext}_{BP_*}^{k+1}(BP_*/J_{k+1}, BP_*/J)$ and $\operatorname{Ext}_{BP_*}^g(BP_*/J_k, BP_*/J_k) \cong \operatorname{Ext}_{BP_*}^g(BP_*/J_k, BP_*/J_{k+1})$. So we observe that $BP_*/J \cong$ $\operatorname{Hom}_{BP_*}(BP_*, BP_*/J) \xrightarrow{\cong} \operatorname{Ext}_{BP_*}^g(BP_*/J, BP_*/J) \xleftarrow{\cong} \operatorname{Ext}_{BP_*}^g(BP_*, BP_*/J) \xrightarrow{\cong} \operatorname{Ext}_{BP_*}^g(BP_*, N_*^{(m)})$ and $M_j^s = \operatorname{Hom}_{BP_*}(BP_*, M_*^{(m)})$ we have

Lemma 3.6. N_j^s and M_j^s are associative BPJ_*BPJ -comodules such that $N_j^0 \simeq BPJ_*, M_j^s \simeq v_{q+s}^{-1}N_j^s$ and the sequence $0 \rightarrow N_j^s \rightarrow M_j^s \rightarrow N_j^{s+1} \rightarrow 0$ is an exact

sequence of comodules.

Proof. Since $M_{\langle \infty \rangle}^m$ is \mathcal{BP} -injective and $\operatorname{Hom}_{BP_*}(BP_*|J, M_{\langle \infty \rangle}^{q-1})=0$ by (1.4) we see that $\operatorname{Hom}_{BP_*}(BP_*|J, N_{\langle \infty \rangle}^q)\cong \operatorname{Ext}_{BP_*}^q(BP_*|J, BP_*)$ and $\operatorname{Ext}_{BP_*}^{l}(BP_*|J, N_{\langle \infty \rangle}^r)\cong \operatorname{Ext}_{F_*}^{r+1}(BP_*|J, BP_*)=0$ for any $r \ge q$. Hence $N_J^0 \cong BP_*|J$ and the sequence $0 \to N_J^s \to M_J^s \to N_J^{s+1} \to 0$ is exact. Obviously $M_J^s \cong v_{q+s}^{-1}N_J^s$ and it is an associative comodule by [2, Proposition 2.9] (or see [9, Lemma 3.2]).

For a left BPJ_* -module G we write w $\dim_{\mathcal{H}}G \leq n$ if $\operatorname{Tor}_i^{B^PJ_*}(N_j^s, G)=0$ for all $i \geq n+1$ and all $s \geq 0$. When we regard a left BPJ_* -module as a right one by mere necessity, it is evident that

(3.3)
$$\operatorname{w} \dim_{\mathcal{H}} G \leq n \quad \text{if } \operatorname{w} \dim_{\mathcal{B}} G \leq n.$$

Putting $N_m^s = \text{Hom}_{BP_*}(BP_*/I_m, N_{\langle \infty \rangle}^{m+s})$ we have a short exact sequence $0 \rightarrow N_{m+1}^{s-1} \rightarrow N_m^s \xrightarrow{v_m} N_m^s \rightarrow 0$ of comodules for any $s \ge 1$. Using this exact sequence and Theorem 2.4 we can show that the converse of (3.3) is valid when J is just I_q . By induction on $s \ge 0$ we can see that there is an isomorphism

$$(3.4) N_{j} \bigotimes_{BPJ_{*}} BP_{*}/I_{q} \simeq N_{q}^{s}$$

where $\sqrt{J} = I_q$. This implies that $\operatorname{Tor}_i^{BPJ}(N_j^s, BP_*/I_q) = 0$ for all $i \ge 1$ and $s \ge 0$, i.e.,

(3.5)
$$\operatorname{w} \dim_{\mathcal{T} q} BP_*/I_q = 0.$$

Moreover we notice that

(3.6)
$$\operatorname{w} \dim_{\mathcal{N}_{\mathcal{J}}} v_{q+n}^{-1} G \leq n \quad and \quad \operatorname{w} \dim_{\mathcal{N}_{\mathcal{J}}} BPJ_* BPJ_* BPJ_{BPJ_*} v_{q+n}^{-1} G \leq n$$
,

since w dim_{BPJ*} $N_{J}^{s} \leq s$ and the right BPJ_{*} -modules N_{J}^{s} and $N_{J}^{s} \bigotimes_{BPJ_{*}} BPJ_{*}BPJ$ are v_{q+s-1} -torsion.

Lemma 3.7. Let G be a left BPJ_* -module with $w \dim_{\mathcal{N}\mathcal{J}} G < \infty$. Assume that M is a left BPJ_* -module which is v_n -torsion for every $n \ge 0$. Then $\operatorname{Ext}_{BPJ_*}^k(M, G) = 0$ for all $k \ge 0$. (Cf., [3, Corollary 2.4]).

Proof. It is sufficient to prove the case that $\operatorname{wdim}_{\mathcal{H}\mathcal{J}}G=0$. The sequence $0 \to N_{J}^{s} \bigotimes_{BPJ_{*}} G \to M_{J}^{s} \bigotimes_{BPJ_{*}} G \to N_{J}^{s+1} \bigotimes_{BPJ_{*}} G \to 0$ is exact. Using this exact sequence we get immediately that $\operatorname{Ext}_{BPJ_{*}}^{k}(M, G) \cong \operatorname{Hom}_{BPJ_{*}}(M, N_{J}^{k} \bigotimes_{BPJ_{*}} G)=0$ for any $k \ge 0$ since $\operatorname{Ext}_{BPJ_{*}}^{i}(M, M_{J}^{s} \bigotimes_{BPJ_{*}} G)=0$ for all $i \ge 0$ under our assumption on M.

Combining Proposition 3.2 with Lemma 3.7 we obtain

Theorem 3.8. Let G be a left BPJ_* -module with $w \dim_{\mathcal{H}} G < \infty$ and $n \ge 0$. Then inj $\dim_{\mathcal{BP}} G \le n$ if and only if inj $\dim_{\mathcal{BP}} G \le n$.

Lemma 3.9. Let M be an associative (or connective) BPJ_*BPJ -comodule and $\sqrt{J} = I_q$. If $w \dim_{\mathcal{N}} M \leq n$, then M is v_{q+n} -torsion free. (Cf., [8, Lemma 3.4]).

Proof. Assume that M has a v_{q+n} -torsion element $x \neq 0$. If $x \in M$ is v_m torsion for all $m \geq 0$, then we can find a primitive element $y \neq 0$ in M which is
also v_m -torsion for all $m \geq 0$ (cf., Theorem 2.2). Taking $L = BP_* \cdot y \subset M$, it is a
non-zero subcomodule of M. However Lemma 3.7 shows that $\operatorname{Hom}_{BPJ_*}(L, M)$ = 0. This is a contradiction. So we may assume that $x \in M$ is v_{k-1} -torsion and v_k -torsion free for some k > q+n. Then, by Theorem 2.2 there is a primitive
element $y \in M$ satisfying $\operatorname{Ann}(y) = I_k$. Hence we have an exact sequence $0 \to BP_*/I_k \to M \to N \to 0$ of comodules. Applying this exact sequence we observe that $\operatorname{Tor}_{k-q}^{BPJ_*}(N_j^{k-q}, BP_*/I_k) = 0$ under the assumption that w $\dim_{\mathcal{H}_g} M \leq n$.
This implies that multiplication by v_{k-1} is monic on $\operatorname{Tor}_{k-q-1}^{BPJ_*}(N_j^{k-q}, BP_*/I_{k-1})$ and hence that $\operatorname{Tor}_{k-q-1}^{BPJ_*}(N_j^{k-q}, BP_*/I_{k-1}) = 0$ since N_j^{k-q} is v_{k-1} -torsion. Repeating this argument we get that $N_j^{k-q} \bigotimes_{BP_*} BP_*/I_q = 0$, which is not true by (3.4).

Let *I* be an invariant ideal in BP_* including *J* and *G* be a left BPJ_* -module. Take a BPJ_* -homomorphism $f: BP_*/I \to BPJ_*BPJ \bigotimes_{BPJ_*} G$, which is represented as $f(\lambda) = \sum_{(B,A)} c(z^{E,A}) \otimes f_{E,A}(\lambda)$. $f_{E,A}$ satisfies the Cartan formula, i.e., $f_{E,A}(\lambda) = \sum_{F+G=B} r_F(\lambda) f_{G,A}(1)$. Moreover we observe that $I \cdot f_{E,A}(1) = 0$ and so $f_{E,A}(1) \in$ Hom_{BPJ*}($BP_*/I, G$). Consider the group homomorphism

$$T: \operatorname{Hom}_{BPJ_{*}}(BP_{*}|I, BPJ_{*}BPJ \underset{BPJ_{*}}{\otimes} G) \to \bigoplus_{(\overline{U}, A)} \operatorname{Hom}_{BPJ_{*}}(BP_{*}|I, G)$$

defined to be $T(f) = \bigoplus_{(m,A)} f_{E,A}(1)$. As is easily checked, T is an isomorphism.

Lemma 3.10. Let G be a left BPJ_* -module and $n \ge 0$. Then inj dim $_{\mathcal{BPJ}_0} G \le n$ if and only if inj dim $_{\mathcal{BPJ}_0} BPJ_*BPJ \underset{BPJ_*}{\otimes} G \le n$.

Proof. It is sufficient to prove the n=0 case. Consider the exact sequence $0 \rightarrow BP_*/J'_{(m)} \xrightarrow{v_m} BP_*/J_{(m)} \rightarrow BP_*/J_{(m+1)} \rightarrow 0$ of comodules given in (2.3). We have the following commutative square

$$\operatorname{Hom}_{BPJ_{*}}(BP_{*}|J_{(m)}, BPJ_{*}BPJ \underset{BPJ_{*}}{\otimes} G) \xrightarrow{T} \oplus \operatorname{Hom}_{BPJ_{*}}(BP_{*}|J_{(m)}, G)$$
$$\operatorname{Hom}_{BPJ_{*}}(BP_{*}|J_{(m)}', BPJ_{*}BPJ \underset{BPJ_{*}}{\otimes} G) \xrightarrow{T} \oplus \operatorname{Hom}_{BPJ_{*}}(BP_{*}|J_{(m)}', G)$$

because v_m is primitive in $BP_*/J_{(m)}$. Since T is an group isomorphism, Lemma

3.1 shows that G is $\mathscr{BP}\mathcal{G}_0$ -injective if and only if so is $BPJ_*BPJ \bigotimes_{app} G$.

Let \mathscr{BPJ}_w be the full subcategory of \mathscr{BPJ} consisting of all associative comodules M with w dim_{\mathcal{IIJ}} $M < \infty$. Finally we show that the category \mathscr{BPJ}_w has enough \mathscr{BPJ} -injectives.

Theorem 3.11. Let J be an invariant regular ideal in BP_{*} of length q and M be an associative BPJ_{*}BPJ-comodule with w dim_{$\mathcal{N}\mathcal{J}$} $M < \infty$. Then there is an associative BPJ_{*}BPJ-comodule Q with w dim_{$\mathcal{N}\mathcal{J}$} $Q < \infty$ which is $\mathcal{BP}\mathcal{J}$ -injective, and a monomorphism g: $M \rightarrow Q$ of comodules.

Proof. Assume that $\operatorname{w} \dim_{\mathcal{H}_{g}} M \leq n$ for some $n \geq 0$. By Lemma 3.9 the localization homomorphism $M \to v_{q+n}^{-1} M$ is monic. Choose an injective left BPJ_* -module D such that M is a submodule of D. Consider the composition map

$$g\colon M \xrightarrow{\psi_M} BPJ_*BPJ \underset{BPJ_*}{\otimes} M \to BPJ_*BPJ \underset{BPJ_*}{\otimes} D \to BPJ_*BPJ \underset{BPJ_*}{\otimes} v_{q+n}^{-1}D$$

involving the comodule structure map ψ_M of M. Obviously g is a comodule map and it is monic. Putting $Q=BPJ_*BPJ \bigotimes_{BPJ_*} v_{q+n}^{-1}D$, the extended comodule Q is \mathscr{BPJ}_0 -injective by Lemma 3.10 and w dim $_{\mathscr{H}}Q \leq n$ by (3.6). From Theorem 3.8 it follows that Q is in fact \mathscr{BPJ} -injective.

Corollary 3.12. Let M be an associative BPJ_*BPJ -comodule with $w \dim_{\mathcal{H}\mathcal{A}} M < \infty$. Then M has a \mathcal{BPJ} -injective resolution

$$0 \to M \to Q_0 \to Q_1 \to \cdots$$

of comodules.

References

- D.C. Johnson and W.S. Wilson: BP operations and Morava's extraordinary Ktheories, Math. Z. 144 (1975), 55-75.
- [2] D.C. Johnson and Z. Yosimura: Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117-136.
- [3] D.C. Johnson, P.S. Landweber and Z. Yosimura: Injective BP*BP-comodules and localizations of Brown-Peterson homology, Illinois J. Math. 25 (1981), 599-609.
- [4] P.S. Landweber: Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 273-284.
- [5] P.S. Landweber: Associated prime ideals and Hopf algebras, J. Pure Appl. Algebra 3 (1973), 43-58.
- [6] P.S. Landweber: Invariant ideals in Brown-Peterson homology, Duke Math. J. 42 (1975), 499-505.

- P.S. Landweber: Homological properties of comodules over MU_{*}(MU) and BP_{*} (BP), Amer. J. Math. 98 (1976), 591-610.
- [8] P.S. Landweber: New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology, Waterloo 1978, Lecture Notes in Math. 741, Springer (1979), 449-460.
- [9] H.R. Miller and D.C. Ravenel: Morava stabilizer algebras and the localization of Novikov's E₂-term, Duke Math. J. 44 (1977), 433-447.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan