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BP is the Brown-Peterson spectrum for a fixed prime p and BP,X is the
Brown-Peterson homology of the CW-spectrum X. The left BP,-module
BP,X is an associative comodule over the coalgebra BP,BP. In [2] we have
studied some torsion properties of (associative) BP,BP-comodules, by paying
attension to the behaviors of BP operations. It seems that the following result
is fundamental.

Theorem 0.1. Let M be a BP,BP-comodule. If an element x&M is
v,-torsion, then it is v,_,-torsion. ([2, Theorem 0.1]).

After a little while Landweber [8] has obtained several results about torsion
properties of associative BP,BP-comodules in an awfully algebraic manner, as
new applications of commutative algebra to the Brown-Peterson homology. In
this note we will give directly new proofs of Landweber’s principal results [8,
Theorems 1 and 2], by making use of two basic tools (Lemmas 1.1 and 1.2)
looked upon as generalizations of Johnson-Wilson results [1, Lemmas 1.7 and
1.9] handling BP operations:

Theorem 0.2. Let M be a BP BP-comodule and x==0 be an element of M.
Then the radical of the annihilator ideal of x

is ome of the invariant prime ideals I,=(p, vy, ***, Vyy) I BP,, 1=Sn=<co,

(Theorem 1.3).

Theorem 0.3. Let M be an associative BP,BP-comodule and 1<n<oo.
If M contains an element x satisfying \/ Ann(x) =1,, then there is a primitive element
y in M such that the annihilator ideal of y

Ann(y) = {AEBPy; Ay = 0}

15 just I,. (Theorem 2.2).
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As an immediate consequence Theorem 0.2 implies Landweber’s invariant
prime ideal theorem [4] that the invariant prime ideals in BP, are I, for | Sn=< oo
(Corollary 1.4). Our technique adopted in the proof of Theorem 0.3 allows us to
give a new proof of Landweber’s prime filtration theorem [5] (Theorem 2.3).

We prove Theorem 0.2 and hence Invariant prime ideal theorem in §1 and
Theorem 0.3 and Prime filtration theorem in § 2, although Landweber has shown
Theorems 0.2 and 0.3 after having known Invariant prime ideal theorem and
Prime filtration theorem.

Let BP be the category of all associative BP,BP-comodules and comodule
maps. An associative BP,BP-comodule has a BP-projective resolution in BP.
In [3] we introduced the concept of BP-injective weaker slightly than that of
BP-injective. In §3 we prove

Theorem 0.4. Let M be an associative BP 4 BP-comodule with w dimgp M <
co. Then M has a BP-injective resolution in BP (Corollary 3.12).

Let J be an invariant regular ideal in BP, of finite length. There is a left
BP-module spectrum BPJ] whose homotopy is BP,/J. When J is trivial,
BP] is just BP. we do prove our results for (associative) BPJ,BP J-comodules.
A reader who is interested only in associative BP . BP-comodules may neglect the
“J”” in the BP] notation.

1. The radicals of annihilator ideals

Let us fix an invariant regular ideal J=(aq, -+, @,-,) in BPy=Z,[v,, v, **].
There is an associative left BP-module spectrum whose coefficient is BPJ, =
BP.[(ct, ***, @,-1). BP] becomes a quasi-associative ring spectrum [2].

Let E=(e,, e,, *-*) be a finitely non-zero sequence of non-negative integers
and A=(a,, **+, a,-;) be a g-tuple consisting of zeros and ones. We put [E|=
‘2 2(p'—1)e; and | 4| =12(|aj| +1)a; where |a;| represents dimension of o;&

BP,. BPJ*BP] is the free left BPJ,-module whose free basis is formed by
elements 2%'4 with dimension |E |+ |A4|. When BPJBP] is viewed as a right
BPJ*-module, its free basis is given by the elements ¢(z%'4) where ¢ denotes the
canonical conjugation of BPJ,BP].

BPJ*BP]J is the direct product of copies of BPJ, indexed by all BP]
operations Sy 4: BP]—SEI*4IBP] When ] is trivial, operations S , coincide
with the BP operations ;. BP] operations Sj 4 satisfy the Cartan formula, i.e.,
for the BP-module structure map ¢: BP n BP]— BP] we have
(1.1) Se 4 = FZ &(rr A Sg.4): BP A BP] — S)EI+14IBP]

+6=p

The operation S, ,: BPJ]— BP] is a homotopy equivalence, which is uniquely
written in the form of
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(1.2) So,o =142 QASo,A
430

with certain coefficients ¢,&€BPJ,. The composition Sz 4Sr 5 has a unique
representation as a formal sum

(1.3) SE,ASF,B = 2] 96,c5¢.¢
&0

for certain coefficients g¢; c=¢¢ ((E, 4; F, B)€BPJ,.
A left BPJy-module M is called a BPJ,BP]-comodule [2] if it admits a
coaction map ry: M — BPJ,BP] @ M represented as
BPJ,
V(%) = 23 (=) @5 4(%),

»4)

which satisfies two conditions:
(1) Ay is a left BPJ,-module map, i.e.,

“Cartan formula” sg,a(Ax) = ;E 7r(N)sc, a(%)
for each Ax&BPJ, and x& M.
(ii) So,0(%) = x+ E qaS0,4(%)

for each x& M, where the coeflicients g, BP], are those given in (1.2).

Note that 4y, is a split monomorphism of left BPJ-modules when M is a
BP],BP]-comodule.

A BPJ,BP]J-comodule M is said to be associative if it satisfies an additional
condition:
(if) +ry is associative, i.e.,

Sp,4(Sr (%)) = ngoﬂ(;,csc,c(x)

for each x& M, where the coefficients g; &€ BPJ, are those given in (1.3).

Let M be a left BPJy-module which admits a structure of (associative)
BP,BP-comodule. Taking sz o(x)=75(x) and sz 4(x)=0 if 4340, we can regard
M as an (associative) BPJ,BPJ-comodule.

Recall that for 1=<m=co, I,=(p, v, ***, V,,—;) are invariant prime ideals in
BP,. Johnson-Wilson have observed nice behaviors of BP operations 7; modulo
I, [1, Lemmas 1.7 and 1.9]. We first give two useful lemmas, which descend
directly from the so-called “Ballentine Lemma”. The first lemma has already
appeared with a short proof in [2].

Lemma 1.1. Let E be an exponent sequence with |E | =2kp’(p"—p™), n=
m=1,s=20and k= 1. Then
ok?’ modulo 13" if E = kp**"A,_,

kS —
[#71K% =
=) 0  modulo I;,"* if otherwise
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where A,_w=(0, -+, 0, 1, 0, ---) with the single “‘1”’ with (n—m)-th position. (Cf.,
[1, Lemma 1.7]).

Proof. Using the Cartan formula and the fact that p&1,, we can easily
see that

eV ) =275 (0) -+ 75, ,5(v,) modulo I3+

where the summation > runs over all kp’-tuples (E, -+, E},s) of exponent sequ-
ences such that E=E,+ -+ E,,s and 7.(v,)=0 modulo 7, for all i, I<i<kp’.
The result now follows immediately from [1, Lemma 1.7].

Define an ordering on exponent sequences as follows: E=(e,, e,, =) <F=
(fo for =) if |[E|<|F] orif |E|=|F| and e,=f,, --, e;.1=fi-, but &>

Lemma 1.2. Let m=1, s=0 and N&BP,. If \ is not contained in I,
then there is an exponent sequence E and a unit uE Z, such that

wv?’ modulo 13 if F = p'c,E

)=
(M) { 0 modulo I if F> p'cE

‘ZUhere o-mE:(Pmem+1) pmem+2) '“) and k:em+em+l+"° for E:(eh **ty €y ”')-
(Cf., [1, Lemma 1.9]).
Proof. Put x:Z agv&l,, a;EZy, by defining v¢=vfi---0f for G=

(g >+ &u 0, --+). We may assume that G=(0, ---, 0, g, Zmr1, ***) and a; is a
unit of Z(,. Pick up the exponent sequence E so that ¢, E is maximal among
a,G. By [1, Corollary 1.8] we have

azv5®) modulo I,, if H = ¢, E

rg(\) = ; agry(v®)= 0 modulo 1, if H>¢,E

where R(G)=g,+gn+1++. By a similar argument to the proof of Lemma 1.1
we can compute 7x(\*") modulo I3 to obtain the required result.

Let J=(ay, ***, @,-1) be an invariant regular ideal in BP, of length ¢, and
M be a left BP] -module. Recall that the annihilator ideal Ann(x) of x&M in
BP, is defined by

Ann(x) = {AEBPy; rax = 0}
and that the radical \/Ann(x) of the annihilator ideal Ann(x) is done by
V/Ann(x) = {(MEBPy; Mx=0 for some k} .

For the element v, of BP, (by convention v,=p) we say that an element x& M
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is v,-torsion if vsx=0 for some k and that x& M is v,-torsion free if not so. Since
the radical /' J of J is just I, [6, Proposition 2.5], we note that

(1.4) every left BP]-module M is at least v,-torsion for each n, 0<n<gq, i.e.,
v, 'M=0 for 0=n<4q.

Making use of Lemma 1.1 we have obtained the following result in [2,
Lemma 2.3 and Corollary 2.4].

(1.5) Let M be a BPJ,BP]J-comodule and assume that x < M is v,-torsion.
Then x= M is v,,-torsion for all m, 0=m=mn. More generally, sp 4(x) is v,-torsion
for all m, 0=m=mn and for all elementary BP] operations s 4.

Given exponent sequences £ =(e, e, **+), F=(fi, fo, =), A={(a,, ***, a,-1)
and B=(b,, -+, b,-;) we define an ordering between pairs (E, 4) and (F, B) as
follows: (E, A)<(F, B) if i) |E|4+[A|<|F|+|B], or if i) |E|+|A4|=
|F|+|B| and E<F, or if iii) E=F, |A|=|B| and a,=b,, -+, @;_;=b;_, but
1=a;>b;=0.

As a principal result in [8] Landweber has determined the radical /Ann (x)
of x&M for an associative BP,BP-comodule M. Using Lemma 1.2 we give
a new proof without the restriction of associativity on M.

Theorem 1.3 (Landweber [8, Theorem 1]). Let | be an invariant regular
ideal in BPy of length q, M be a BPJ,BPJ-comodule and n=q. An element
xEM is v,_,-torsion and v,-torsion free if and only if \/Ann(x)=1,.

Proof. Assume that x&M is v,_;-torsion and v,-torsion free when #=1.
Obviously I,C\/Ann(x). If 0+ XE+/Ann(x)—1, then we may choose an
integer s=0 such that A?x=0 and I;*'s; 4(x)=0 for all (E, 4). By Lemma 1.2
there is an exponent sequence F so that

(uv?” modulo I3+ if H = p's,F

A=
M=) modulo I3 if H > pa,F

for some k>0 and some unit u&€Z,). There exists a pair (G', B’) such that
S¢r p/(x) is v,-torsion free because x&M is so. Pick up the maximal (G, B) of
such pairs, and choose an integer =0 such that v,s; 4(¥)=0 whenever (E, 4)>
(G, B). Using the Cartan formula we compute

t s . t s
0= 'UnsG+p‘o'mF,B(7\'p x) = @nrp’amF(Kp )«%,B(x)
s
= wvy s p(x) .
Thus s z(x) is v,-torsion. This is a contradiction. The “if”’ part is evident.
G,B n

In the =0 case the above proof works well if we apply [1, Lemma 1.9
(b)] in place of Lemma 1.2.
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Corollary 1.4. If I is an invariant ideal in BPy, then the radical \/'T of I
is I, for some n, |<n=<oco. In particular, the invariant prime ideals in BPy are
I, for 1=n=<oo. (Cf,[1, Corollary 1.10] or [4]).

2. Prime filtration theorem

Let M be a BP] ,BPJ-comodule. An element x&M is said to be primitive
if sz 4(x)=0 for all (E, A)=(0, 0).

Lemma 2.1. Let M be a BP]BP]-comodule and g<n<co where \/ ] =I,.
If a primitive element x=M is v,_,-torsion and v,-torsion free, then there is a
primitive element given in the form of vEx such that Ann(v¥x)=1I,, where we put
VK =provhie--vln for some (n-+1)-tuple K=(ky, ki, **, k,) of non-negative integers.
In particular, we may take k,=0 when M is v,-torsion free.

Proof. Inductively we construct a primitive element y,=v¥mx& M so that
1,9,=0 and y, is again v,-torsion free, where K,,=(k,, ***, k,_1, 0, --+, 0, &, ) is
a certain (n+1)-tuple with “0” in the positions of (m--1)-th through n-th.
Beginning with y,=x we inductively assume the existence of y,=v%"x, m<n.
Choose an integer k, =0 such that v,"y,, is v,-torsion free but vi=*'y, is v,-
torsion. Then there is an integer s=0 such that I3*'y, =0 and v »*'92’y, =0.
Taking Vmi1=04m08y,, it is v,-torsion free and v,,y,.,=0. Applying the
induction hypothesis that y,, is primitive and I,y,=0, we have

g, a(Yme1) = rE(v,ﬁ'”vﬁs)so’A(ym)
_ { vimrg(v) )y,  if A=0
~lo if A=%0.

By use of Lemma 1.1 we verify that y,,,=v%m+1x is primitive, where K, ,,=

(koa ) km’ 0) RS 0’ kn,m—'"ps)-

We next give a new proof of another principal result in [8], treated of the
annihilator ideal Ann(x) of x&M for an associative BP,BP-comodule M.

Theorem 2.2 (Landweber [8, Theorem 2]). Let J be an invariant regular
ideal in BPy of length q, M be an associative (or connective) BP],BP]-comodule
and g=n<<oco. If M contains an element x which is v,_,-torsion and v,-torsion
free, then there exists a primitive element 'y in M satisfying Ann(y)=1,.

Proof. Pick up the maximal pair (G, B) such that s; z(x) is v,-torsion free,
and then choose an integer s=0 for which I;*'s; ,(x)=0 for all (E, A) and
v4'sp c(¥)=0 for any (F, C)>(G, B). In the case when M is associative we have

SE,A(‘vﬁSSG,B(x)) = -"E,A(SG,B(’fo))

=2 QF,CSF,C(”'IZSx) =2 qF,c'z)ﬁssF’c(x) =0
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if (E, A)=+(0, 0). Hence x=1vs; 5(x) is primitive. So we apply Lemma 2.1 to
find out a desirable element y in .

In the connective case we use induction on dimension of x to show the
existence of a primitive element & M which is v,_,-torsion and v,-torsion free.

We are now in a position to prove directly Landweber’s prime filtration
theorem by repeated use of Lemma 2.1.

Theorem 2.3 (Prime filtration theorem [5]). Let J be an invariant regular
ideal in BP, of length q and M be a BP]BP J-comodule which is finitely presented
as a BP] -module. Then M has a finite filtration

M=M>OM, ,D-+-DM,DM,= {0}

consisting of subcomodules so that for 1<i=<s each subquotient M;/M,_, is stably
isomorphic to BP /I, for some k=gq.

Proof. Notice that a BPJ,-module is finitely presented if and only if it is
so as a BP,-module. By virtue of [4, Lemma 3.3] we may take M/ to be a cyclic
comodule BP,/I where I is an invariant finitely generated ideal including J.
Since I is finitely generated, we can choose an integer [ =0 to identify M=BP, /I
with BP*§)R,/I " for some finitely generated ideal I’ in the ring R,=Z,)[v,, -+, v/].

Note that ;ny extended module from R; to BP, is always v,,,-torsion free.
On the other hand, by (1.4) we remark that the BPJ,-module M is v,_,-torsion.

When the generator g=[1]eM=BP,/I is v,_,-torsion and v,-torsion free
for some m, g=<m=I-+1, it is sufficient to show that M has a finite filtration of
comodules

{0} = M°cM'c-..cM™'cM

so that for each A<r-1, M*/M*! is stably isomorphic to BP/I,, and moreover
that M/M"*! is an extended module from R;, whose generator g,,,=[1]€ M/M"*
is v,-torsion. Assume that the generator g=[1]e M=BP,/I is v,,_,-torsion and
v,-torsion free, m</+1. By Lemma 2.1 there is a (m-1)-tuple K=(k,, :*-, k,,)
with k;,,,=0, for which y=v*g is a primitive element satisfying Ann(y)=1I,.
Take M'=BP,-yC M so that N'=M|M" is a cyclic comodule which is an ex-
tended module from R, since v¥ belongs to R,. Take K'=(ky, -+, k;_y, k;—1,
0, -+, 0, k3,) if K=(ky, ***, k;, 0, +-+, 0, k,,) with k;=1. Then vK/g is not contai-
ned in M* for any k;,,=0, as is easily checked. By construction of an improved
primitive element developed in Lemma 2.1 we gain a primitive element y,=2%*1g,
in N'=M/|M" satisfying Ann(y,)=1,, where K,=(ky, -+, ki_y, k;—1, kl.1, -, k},)
for some k=0, i+1=<j=<m. Repeating this construction we get a primitive
element y,=ov%'g, EN*=M|M* with Ann(y,)=1,, at a suitable stage =1, where
K'=(ky, +++, kizyy ki—1,0, -+, 0, &, ;) for some &, ,=0. Applying a downward



130 Z. YOSIMURA

induction on 7 we lastly obtain a primitive element y,=v%g,EN"=M/M" for
some k=0 such that Ann(y,)=1,. Take the subcomodule M"™**CM to be
M+ |M"=BPy-y,, then the generator g,,,=[1]€M/M"** is obviously v,,-torsion.
Consequently we get a satisfactory filtration.

Let us denote by BPY the category of all associative BPJ,BPJ-comodules
and comodule maps. Clearly BPY is an abelian category. By employing (1.3)
we can show the following result due to Landweber [7, Proposition 2.4].

(2.1) The category BLY has enough projectives. That is, for each associative
BPJ.BPJ-comodule M there is an associative BPJ,BP J-comodule F which is
BP]-free and an epimorphism f: F— M of comodules. F may be taken to be
finitely generated if so is M.

Using (2.1) and the exactness of direct limit we obtain

(2.2) every associative BP [ BPJ-comodule is a direct limit of finitely presented
assoctative comodules.

Let G be a right BPJ,-module. We define the BPY-weak dimension of G,
denoted by w dimgg 4G, to be less than # if Tor/*/*(G, M)=0 for all i=#n and
all comodules M in BPY. Let N be a BPJ,BPJ-comodule. We regard
N as a right BPJ,BP]J-comodule. Since the right comodule structure map
W N— NBQ*BP]*BP] is split monic, we can easily see that w dimge 4N is

the same as the BPJ,-weak dimension of N.
For the fixed invariant regular ideal J of length ¢ we consider the invariant
ideals Ji,y=/J+1, and J{m={NEBP4; v, E Ji»} for any m=0. Then we

have an exact sequence

vm
(2.3) 0 — BPy/J(m = BPy/Jiw = BPy[Jini» — 0

of comodules. Note that J,=/J{),=1, for each k=q. When J is just I, J =1,
for any :=<q and hence J{;y=BP,, 1<q.

From Theorem 2.3, (2.1) and (2.2) we can immediately derive the BPY-
version of Landweber’s exact functor theorem (as extended) [7].

Theorem 2.4. Let | be an invariant regular ideal in BPy of length q, G be
a right BP] y-module and n=0. Then the following conditions are equivalent:
(i) wdimggsG=n,
(i) Torsf/*(G, BP,/I;)=0 for all k=g,
(iti) multiplication by v, is monic on Tor}"/*(G, BP/I1,) for each k=q and in
addition Toryf/*(G, BP/I)=0, and
(iv) the induced multiplication v,,: Tory */«(G, BPy[] (m)— Tor; " /(G, BPy/J(m)
is monic for all m=0.
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We call a right BPJ-module G BLY-flat when w dim g 4 G=0.

Corollary 2.5. If a right BPy-module G is BP-flat, then the extended
module GB§ BP] . is BPY-flat.

Recall that for any [, 0 </=<oo, BP{IDy=Zy[v,, -, v;] is viewed as a
quotient of BP,. Setting v,,'BP{l, | >4=v3"BP{l>4 Q@ BPJ, with 0=<m <1, it is
BP,

BPYIAfat.
Using the technique of Landweber [8, Theorem 3] by aid of Theorem 2.2
we can show

Proposition 2.6. Let M be an associative (or connective) BP ] BP]-comodule,
G be a right BP]-module and m=q where / | =I,. Assume that G is BLPY-flat
with Guy,! 1@ BP,/1,+0. Then M is v,-torsion if and only if Gvy,* @ M=0.
BPJ, BPJ,

Recall that E(m),=v»'BP{m>, and E(m, ])*:E(m)*l(§ BPJ,.

Corollary 2.7 ([8, Theorem 3]). Let M be an associative (or connective)
BPJBP]-comodule. Then M is v,-torsion if and only if E(m), @ M=0.
BP,

This allows us to give a simple proof of the following result [2, Proposition

2.8].

(2.4) An associative BP]BP J-comodule M is v,,-torsion if M is v,,,,-divisible,
i.e., if multiplication by v,,., is epic on M.

3. BPY-injective

Let B%PY, be the full subcategory of BPY consisting of all finitely
presented associative comodules. For a left BPJ,-module G we define the
BPY-injective dimension of G, denoted by inj dim g4 g G, to be less than = if
Exth p; (M, G)=0 for all i=n and all comodules M in BPY. The BPY,-
injective dimension of G is similarly defined.

As a dual of Theorem 2.4 we have

Lemma 3.1. Let G be a left BP]-module, \/7=Iq and n=0. Then the
following conditions are equivalent:

(i) injdimgesG=n,

(i) Exty%;(BPy/l;, G)=0 for all k=g,

(i) multiplication by v, is epic on Exty p; (BPy/I}, G) for each k=q and in
addition Exty%';,(BPy/1,, G)=0, and

(iv) the induced multiplication v,: Exthp;,(BPy/](m, G)—>Exthp ;,(BPy/
Jmy, G) is epic for all m=0.

Proposition 3.2. Let G be a left BPJy-module and n=0. Then
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inj dimgq s G=n if and only if inj dimgg s G<n and moreover Exts%;,(BPy/
I, G)=0 for any invariant ideal I including ] with the radical \/ | =I..

Proof. The n=0 case is shown by using Theorems 1.3 and 2.2 and a

Zorn’s lemma argument (see [3, Lemma 3.13]) similar to the abelian group case.
A general 7z case is done by induction.

As an immediéte consequence we have
(3.1) for any m, inj dimgg ¢ v»'G=n if inj dimge 4 G=n.

We call a left BPJy-module G BPY-injective when inj dimgep 4G =0.
Similarly for BPY,-injective.

Corollary 3.3. If a left BPy-module G is BP-injective, then the coextended
BP] -module Hompp,(BP]y, G) is BLP G-injective.

Consider the BP,-modules N7y and M7, for every m=0 defined induct-
ively by setting that N¢;s=BP{I>4, Miy=v,'N’, and N7 is the cokernel of
the localization homomorphism N7y—>M7;,. The sequence 0— N7, — M7, —
N7 —0 is exact for each m=</, and N?;,=0 for any n=1+2.

We can easily verify that

(3.2) MYy is BP-injective and hence Hompp (BP] ., M71y) is BLP J-injective.
As a dual of Proposition 2.6 we have

Proposition 3.4. Let M be an associative (or connective) BP [, BP]-comodule,
G be a left BP]y-module and m=q where N/ ] =1,. Assume that G is BPY-
injective with Hompp;,(BPy/I,, v»'G)=*0. Then M is v,-torsion if and only if
Homg,;, (M, v5'G)=0.

Putting M(m)=M ., and M(m, J])=Homp,,(BP]y, M(m)) we obtain

Corollary 3.5. Let M be an associative (or connective) BP],BP]-comodule.
Then M is v,,-torsion if and only if Homgp, (M, M(m))=0.

For the invariant regular ideal J=(c,, -+, @,-1) we put Jy=(ct, ***, a;—;) for

a
each k<q. The exact sequence 0 —BP,/ ],,—iBP*/ [Ji—>BPy/]i+1—0 induces
isomorphisms  Ext} p (BPy/Js, BPy/]) = Exty?,(BP/Jes1, BPy/J) and Ext}p,
(BPy/], BPy[]:) = Ext}p (BPy/], BPx/]4+1). So we observe that BP,[]=<

Hom,.(BPy, BP4[J) S Exths,(BPy[J, BP,[J) = Exty».(BP,|J, BPy).
Setting N y=Homp,(BPJy, Né23) and M $=Hompp,(BP]y, M$%3) we have

Lemma 3.6. N; and M} are associative BP],BPJ-comodules such that
N%Y=BP]J,, Mj=v;{ N} and the sequence 0—>N;—M;—N;*'—0 is an exact
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sequence of comodules.

Proof. Since M., is BP-injective and Hompp,(BPy /], M{=3)=0 by (1.4)
we see that Hompp, (BPy[], N{.,)==Ext}p,(BPy[], BP,) and Ext} p,(BPy/], N...;)
=Ext}%,(BPy/], BPy)=0 for any r=q. Hence N}=BP, /] and the sequence
0—->N;}—>M;—>N%$'—0 is exact. Obviously M;=v;} N; and itis an associa-
tive comodule by [2, Proposition 2.9] (or see [9, Lemma 3.2]).

For a left BPJ,-module G we write w dimg; 4G <n if Tor{"/%(N}, G)=0
for all f=n+1 and all s=0. When we regard a left BPJ.-module as a right
one by mere necessity, it is evident that

(3.3) wdimg, , G =n if wdimgg s G=n.
Putting N, = Homypp,(BPy/I,, N%J') we have a short exact sequence

‘Z)m . .
0—N ;71— Ns— N;—0 of comodules for any s=1. Using this exact sequence
and Theorem 2.4 we can show that the converse of (3.3) is valid when J is just

1,. By induction on s=0 we can see that there is an isomorphism
34 N; @ BP,[I,=N;
BPJ,

where \/ J =1I,. This implies that Tor?”/*(Nj, BP,[I,)=0 for all =1 and
s=0, i.e.,

(3.5) w dimg; ¢ BPy/I, = 0.
Moreover we notice that
(3.6)  wdimgg vi,G=n and wdimgy BPJ*BP]Bg*v;:nG <n,

since w dimgp;, N;<s and the right BPJ,-modules N} and N; @ BPJ,BP]
BPJ,

are v, ,-,-torsion.

Lemma 3.7. Let G be a left BP]y-module with w dimg, 4 G <co. Assume
that M is a left BP],-module which is v,-torsion for every m=0. Then
Exthp (M, G)=0 for all k=0. (Cf., [3, Corollary 2.4]).

Proof. It is sufficient to prove the case that wdimg, 4 G=0. The
sequence 0 >N} @ G—>M; ® G—-Nj*' @ G—0is exact. Using this exact

BPJy BPJy BPJy

sequence we get immediately that Ext}p;, (M, G)=Homss;, (M, N ;m(og}* G@)=0

for any £=0 since Extgp, (M, M; @ G)=0 for all =0 under our assumption
BPJ,
on M.

Combining Proposition 3.2 with Lemma 3.7 we obtain
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Theorem 3.8. Let G be a left BP]y-module with w dimg)gG<co and
n=0. Then inj dimggq 4G =n if and only if inj dimg e g G =n.

Lemma 3.9. Let M be an associative (or connective) BP]BP J-comodule
and \/ J=I,. If wdimg,g M <n, then M is v,.,-torsion free. (Cf., [8, Lemma
3.4).

Proof. Assume that M has a v,,,-torsion element x=£0. If x&M is v,,-
torsion for all m=>0, then we can find a primitive element y==0 in M which is
also v,,~torsion for all m=0 (cf., Theorem 2.2). Taking L=BP,-yCM,itisa
non-zero subcomodule of M. However Lemma 3.7 shows that Homgp,, (L, M)
=0. This is a contradiction. So we may assume that x& M is v,_,-torsion and
v,-torsion free for some k>g-+n. Then, by Theorem 2.2 there is a primitive
element yeM satisfying Ann(y)=1I,. Hence we have an exact sequence
0—BP,/I,—>M—>N—0 of comodules. Applying this exact sequence we ob-
serve that Tor{f/*(N]~%, BPy/I,)=0 under the assumption that w dimg; s M <n.
This implies that multiplication by v,_; is monic on Torf?/* (N =%, BPy/I,-;)
and hence that Torff/4(N}~% BPy/I,_)=0 since N}~?is v,_,-torsion. Repeat-
ing this argument we get that N }*‘qu BP,/I,=0, which is not true by (3.4).

Let I be an invariant ideal in BP, including J and G be a left BP]-module.
Take a BPJ,-homomorphism f: BP,/I—BPJ,BP] @ G, which is represented
BPJ,

as f(x):(z c(2EYQ fr,a(N).  fr,a satisfies the Cartan formula, i.e., fz 4(N)=

B,4)

F;ﬂrp(x)fc,,,(l). Moreover we observe that I-f; ,(1)=0 and so fz «(1)E
Homyp;(BPy/I, G). Consider the group homomorphism

T: Homgp;,(BP/I, BP],BP] ;@ G) e(ﬁ)HomBN*(BP*/I, G)
BPJTy »
defined to be T(f)= @ fr 4(1). As is easily checked, 7" is an isomorphism.
1,45

Lemma 3.10. Let G be a left BPJy-module and n=0. Then
inj dimg g g G =n if and only if inj dim g g 4 BP]*BP]B%*G =un.

Proof. It is sufficient to prove the #=0 case. Consider the exact

sequence 0 — BP, /] (’,,,)z_}_";BP*/ [Jim)—> BPy|J(m+1 —> 0 of comodules given in (2.3).
We have the following commutative square

T
Homy,;(BPy/Jw, BEJ+BF] @ G) — @Homm*(BP*iJw, G)
Homr 1. (BPy/Jéuy BPJ+BP] @ G)— @Hom ;s (BPy/Jém, G)

because v,, is primitive in BPy/J(,. Since T is an group isomorphism, Lemma
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3.1 shows that G is BPY,-injective if and only if so is BPJ,BP] @ G.
BPT,

Let 3P4, be the full subcategory of BPJ consisting of all associative
comodules M with w dimg; s M<co. Finally we show that the category 3P4,
has enough AP J-injectives.

Theorem 3.11. Let [ be an invariant regular ideal in BPy, of length q and
M be an associative BP]BP]-comodule with w dimg, gM<oo. Then there is an
associative BPJBPJ-comodule Q with w dimg, g Q< oo which is BPG-injective,
and a monomorphism g: M —> Q of comodules.

Proof. Assume that w dimg, gM =n for some n=0. By Lemma 3.9 the
localization homomorphism M —v7},M is monic. Choose an injective left
BP]J-module D such that M is a submodule of D. Consider the composition
map

o MY BPI.BP] @ M — BPJ,BP] @ D —> BPJ,BP] @ v;1,D
BPJ, BPJ BPJy

involving the comodule structure map ) of M. Obviously g is a comodule
map and it is monic. Putting Q=BPJ,BP] Q v{,D, the extended comodule
BPJ,

Q is BFYinjective by Lemma 3.10 and w dimg;yQ=n by (3.6). From
Theorem 3.8 it follows that Q is in fact BP J-injective.

Corollary 3.12. Let M be an associative BP],BP]J-comodule with
w dimg) g M<co. Then M has a BP Y-injective resolution

O—)M—)Qo—agle

of comodules.
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