ORTHOGONAL GROUPS AND SYMMETRIC SETS

NOBUO NOBUSAWA

(Received January 22, 1981)

Orthogonal groups are considered as automorphism groups of some symmetric sets of vectors. From this point of view, we can prove the well-known theorem of simplicity on orthogonal groups. (The cases for the other classical groups are given in [5].) The proof consists of two steps. The first step which will be given in 1 is to show that a transitive symmetric set of non-isotropic lines (of a certain type) is simple. After a short review on simple symmetric set is given, we will show the above fact. A point here is that it is so when dim V is 3. The second step is to show that the group of displacements of the simple symmetric set is a simple group, which will be given in 2. A useful supplement to the main theorem on simple symmetric sets will be found, and using it we can show the above fact when dim $V \ge 5$.

1. A simple symmetric set of non-isotropic lines

Let V be a vector space over a field of characteristic ± 2 with a non-singular orthogonal metric. Since the following results hold in a stronger sense for a finite field as was shown in [4], we assume in this note that the base field k is infinite. Suppose that dim $V \ge 3$ and that V contains a hyperbolic plane. Then, there exists a vector v such that v is orthogonal to a hyperbolic plane and (v, v) $= \varepsilon \pm 0$. Throughout this note, we fix the element ε . Now we consider $A = \{\overline{u} \mid (u, u) = \varepsilon\}$, where $\overline{u} = \langle u \rangle = a$ subspace generated by u. On A, we define a binary operation: $\overline{u} \circ \overline{v} = \overline{w}$ with $w = u^{\tau_v}$, where τ_v is the symmetry with respect to the hyperplane orthogonal to v. A is then a symmetric set, i.e., satisfies $\overline{u} \circ \overline{u} = \overline{u}$, $(\overline{u} \circ \overline{v}) \circ \overline{v} = \overline{u}$ and $(\overline{u} \circ \overline{v}) \circ \overline{w} = (\overline{u} \circ \overline{w}) \circ (\overline{v} \circ \overline{w})$.

We summarize some definitions and properties on simple symmetric sets. Let $S = \{a, b, c, \dots\}$ be a symmetric set. The right multiplication by an element a is an automorphism of S, which we denote by σ_a . Let $G(S) = \langle \sigma_a | a \in S \rangle$ and $H(S) = \langle \sigma_a \sigma_b | a, b \in S \rangle$. The latter is called the group of displacements of S. Let T be another symmetric set. A homomorphism f of S onto T is called proper if it is not one to one and if T contains more than one element. When G(S)=1, we say S is trivial. A non-trivial symmetric set is called simple if it has no proper homomorphism (to some symmetric set). It is important to characterize a simple symmetric set in a different way as follows. Let f be a homomorphism of S to T. $f^{-1}(t)$, the set of all inverse images, for an element t in T is called a coset of f. Then, S is decomposed into disjoint cosets of f: $S = \bigcup S_i$ with $S_i = f^{-1}(t_i)$ with $S_i \cap S_j = \phi$ if $i \neq j$. In this case, as is easily seen, σ_a induces a permutation on $X = \{S_i\}$, the set of cosets S_i . It is also clear that σ_a and σ_b induce the same permutation on X if a and b belong to a same coset. Conversely, suppose that $S = \bigcup S'_i$ is a disjoint union of subsets S'_i satisfying the above two conditions on σ_a . Then we can define a symmetric structure on $X = \{S'_i\}$ in such a way that the restriction mapping of S to X is a homomorphism. Thus the concept of homomorphisms is equivalent with that of cosetdecompositions. When a homomorphism f is proper, we say that the corresponding coset-decomposition is proper. The simplicity of a non-trivial symmetric set is now characterized by the fact that it has no proper coset-decomposition.

A symmetric set S is called transitive if G(S) (or, equivalently H(S)) is a transitive permutation group on S. If S is simple, then S is transitive. For, otherwise, $S = \bigcup S_i$ with S_i =orbits of elements in S by G(S) would be a proper coset-decomposition. A symmetric set is called effective if $\sigma_a \pm \sigma_b$ whenever $a \pm b$. The following is the main theorem on simple symmetric set obtained in [2] and [3]. (See also [5].)

Theorem. Suppose that S is a transitive and effective symmetric set. Then, S is simple if and only if H(S) is a minimal normal subgroup of G(S). The latter condition is equivalent with that H(S) is either a simple group or a direct product of simple subgroups N_1 and N_2 such that $N_2=N_1^{\sigma_4}$ for any element a in S. In the latter case, N_i are regular permutation groups on S.

As the last part of Theorem is not explicitly given in the previous papers, we explain it here. It is known that N_i are transitive on S. Now suppose that $a^{\tau} = a$ for an element a in S and τ in N_i . Then, $\tau^{-1}\sigma_a\tau = \sigma_a$, or τ and σ_a are commutative, and so $\tau = \sigma_a^{-1}\tau\sigma_a$, which belongs to N_1 as well as to N_2 . Thus, $\tau = 1$.

We now return to V and A. Let O(V) be the orthogonal group of V and $\Omega = \Omega(V)$ its commutator subgroup. Elements of O(V) naturally induce automorphisms of A. So, there is a natural homomorphism h of O(V) to the group of automorphisms of A. The kernel of h is $Z = \{\pm 1\}$, the center of O(V), due to Lemma 5.5, p. 206 [1]. Thus, PO(V) = O(V)/Z is condisered as a group of automorphisms of A. In this respect, we want to show that $P\Omega = H(A)$. This is equivalent with $\Omega = h^{-1}(H(A))$. Since Ω is generated by $\tau_v \tau_w$ with $(v, v) = (w, w) \pm 0$, it is clear that $H(A) \subset P\Omega$. When dim V = 3, $P\Omega$ is a simple group (Theorem 5.20, [1]). So, in this case, $H(A) = P\Omega$. To show it in a general case and also to show the simplicity of A, we use the following

Lemma. If $(u, u) = (v, v) = \varepsilon$, then there exists a hyperbolic plane P such that (u, P) = 0 and $v \in \langle u \rangle + P$.

Proof. If $\langle u, v \rangle$ is singular, it is easy to find the above *P*. Suppose that $\langle u, v \rangle$ is non-singular. Then, $v = \alpha u + v'$, where $v' \in \langle u \rangle^{\perp}$ and $(v', v') \neq 0$. (Naturally we are assuming dim $\langle u, v \rangle = 2$.) By the assumption on $\mathcal{E}, \langle u \rangle^{\perp}$ contains a hyperbolic plane. Since a hyperbolic plane contains an element w such that (w, w) is any element in the base field, i.e., is universal, we can find an isometry on $\langle u \rangle^{\perp}$ by Witt theorem which maps w to v'. We can let *P* be the image of the hyperbolic plane under the isometry.

From Lemma, we can conclude that $H(A)=P\Omega$, as we can always restrict our consideration to a 3-dimentional case. We can also conclude that A is transitive. For, Ω acts on A transitively. Here note that $\langle u \rangle^{\perp}$ is universal and we can insert σ_a with no effect on u where (a, a) is any prescribed value. Now we show that A is simple. Assume that A is not simple. Then there exists a proper coset-decomposition $A=\cup A_i$. Let \bar{a} and \bar{b} be two distinct elements in A_1 . Let $U=\langle a \rangle+P$, where (a, P)=0 and $b \in U$ from Lemma. Then $A(U)=\{\bar{u} | u \in U, (u, u)=\varepsilon\}$ is simple by the main theorem. Restrict $A=\cup A_i$ to the elements in A(U). We can conclude that $A(U) \subset A_1$. Now let Q be a hyperbolic plane such that (a, Q)=0. Since $O(V)=O(P)\Omega$ as we know, there exists an element in Ω which fixes a and maps P to Q. This implies that A_1 contains every element \overline{w} such that $w \in \langle u \rangle + Q$, $(w, w) = \varepsilon$. Using Lemma, we can conclude that $A=A_1$, which is a contradiction. Thus, A is simple.

2. Simplicity of the group H(A)

Let $S = \{a, b, \dots\}$ be an effective simple symmetric set. Suppose that H(S)is not a simple group. Then, $H(S) = N_1 \times N_2$ with simple subgroups N_i such that $N_2 = N_1^{\tau_a}$ for any element a in S. Moreover, N_i are regular permutation groups on S. Let τ be an element in N_1 and express it as a product of disjoint cyclic permutations: $\tau = (\dots, a, b, c, \dots)$. $(\dots) \dots$ We show that $a^{\sigma_b} = c$. Since N_1 and N_2 are commutative, we have $\tau \tau^{\sigma_b} = \tau^{\sigma_b} \tau$, or $\tau \sigma_b \tau \sigma_b = \sigma_b \tau \sigma_b \tau$. Therefore, $\sigma_b(\tau \sigma_b \tau \sigma_b) = \tau \sigma_b \tau = (\tau \sigma_b \tau \sigma_b) \sigma_b$. So, $\rho^{-1} \sigma_b \rho = \sigma_b$, where $\rho = \tau \sigma_b \tau \sigma_b = \tau \sigma^* \sigma^*$. Since $\rho^{-1} \sigma_b \rho = \sigma_b^{\rho}$ and S is effective, we have $b^{\rho} = b$, or $b^{\tau \tau \sigma_b} = b$. So, $b^{(\tau \sigma_b)^{-1}} = b^{\tau} = c$. On the other hand, $\tau^{\sigma_b} = (\dots, a^{\sigma_b}, b, c^{\sigma_b}, \dots) \cdots$. So, $b^{(\tau \sigma_b)^{-1}} = a^{\sigma_b}$. Therefore, $a^{\sigma_b} = c$, as required. In the above, (\dots, a, b, c, \dots) coincides with a cycle defined in the theory of symmetric set. Note also that τ is a product of cycles of the same length and every element of S must appear in a cycle. This is a supplement to the main theorem on simple symmetric sets. In the above, especially, $\tau = (a, b) (c, d) \cdots$ if $a^{\sigma_b} = a, c^{\sigma_d} = c$, etc. Since N_1 is regular, such an element τ exists if there exist a and b such that $a^{\sigma_b} = a$. In this case, we can show that if an element σ in H fixes a, b and c, then σ must fix d as well. For, $\tau^{\sigma} = (a, b)$ $(c, d^{\sigma}) \cdots$ must coincide with τ as both are elements in a regular permutation group and move a to b.

Now we return to A. Assume that dim $V \ge 5$ and that H(A) is not simple. Thus, $H(A)=N_1\times N_2$ as above. Let u_1 be an element in V such that $(u_1, u_1) = \varepsilon$ and let P be a hyperbolic plane orthogonal to u_1 . Select u_2 in P such that $(u_2, u_2)=\varepsilon$. Since N_1 is transitive, there exists an element τ in N_1 such that $\overline{u}_1^{\tau}=\overline{u}_2$. Then, $\tau=(\overline{u}_1, \overline{u}_2)$ $(\overline{v}, \overline{w})\cdots$, where we assume that $v \in P$. Since $\overline{v}^{\sigma_{\overline{w}}} = \overline{v}$, we have (v, w)=0. Also we have that $(u_2, w)=0$, because τ maps \overline{u}_1 and \overline{v} to \overline{u}_2 and \overline{w} respectively and $(u_1, v)=0$. Thus, (w, P)=0 as $P=\langle u_2, v \rangle$. Let $W=P^{\perp}$. W contains u_1 and $\overline{w}^{\rho} \neq \overline{w}$. For example, let ρ be a rotation around u_1 in some non-singular subspace of dim 3 containing u_1 and \overline{v} but moves \overline{w} , which contradicts the above argument. Thus, we have shown that H(A) must be a simple group if dim $V \ge 5$.

References

- [1] E. Artin: Geometric algebra, Interscience, New York, 1957.
- [2] H. Nagao: A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.
- [3] N. Nobusawa: Simple symmetric sets and simple groups, Osaka J. Math. 14 (1977), 411-415.
- [4] ———: Primitive symmetric sets in finite orthogonal geometry, Osaka J. Math.
 17 (1980), 407–410.

Department of Mathematics University of Hawaii Honolulu, Hawaii 96822 U. S. A.