ON THE FUNDAMENTAL SOLUTION FOR A DEGENERATE HYPERBOLIC SYSTEM

Kenzo SHINKAI

(Received November 2, 1979)

Introduction. Let $S\left[m_{1}, m_{2}\right]$ denote the set of all C^{∞}-symbols $a(t, x, \xi)$ on $[0, T] \times R_{x}^{n} \times R_{\xi}^{n}(0<T \leqq 1)$ such that

$$
\begin{equation*}
\left|D_{t}^{j} D_{\xi}^{\alpha} D_{x}^{\beta} a(t, x, \xi)\right| \leqq C_{j, \alpha, \beta}\langle\xi\rangle^{m_{1}-|\alpha|}\left(t+\langle\xi\rangle^{-\omega}\right)^{m_{2}-j} \tag{0.1}
\end{equation*}
$$

for constants $C_{j, \alpha, \beta}$, where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and $\omega=1 /(l+1)$ with an integer $l>0$.
Consider a hyperbolic operator of first order:

$$
\boldsymbol{L}=\boldsymbol{D}_{t}-t^{l}\left[\begin{array}{ccc}
\mu_{1}(t, X, & \left.D_{x}\right) & 0 \tag{0.2}\\
& \ddots & \\
0 & \ddots & \\
& & \mu_{m}\left(t, X, D_{x}\right)
\end{array}\right]+\boldsymbol{B}(t)
$$

where $\mu_{j}, j=1, \cdots, m$ are real valued and satisfy

$$
\left\{\begin{align*}
\text { i) } & \mu_{j}(t, x, \xi) \in S[1,0] \tag{0.3}\\
\text { ii) } & \left|\mu_{j}(t, x, \xi)-\mu_{k}(t, x, \xi)\right| \geqq c\langle\xi\rangle \quad(j \neq k)
\end{align*}\right.
$$

for a constant $c>0$, and the symbol $\sigma(\boldsymbol{B}(t))(x, \xi)$ of the lower order operator $\boldsymbol{B}(t)$ satisfies

$$
\begin{equation*}
\sigma(\boldsymbol{B}(t))(x, \xi) \in S[0,-1] \tag{0.4}
\end{equation*}
$$

The purpose of the present paper is to construct the fundamental solution $\boldsymbol{E}(t, s)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
\boldsymbol{L} U=\Phi(t) \quad \text { on } \quad\left[s, T_{0}\right] \tag{0.5}\\
\left.U\right|_{t=s}=\Psi
\end{array}\right.
$$

for a small constant $T_{0}\left(0<T_{0} \leqq T\right)$. It should be noted that the operator \boldsymbol{L} is degenerate at $t=0$ and $\boldsymbol{B}(t)$ is not uniformly bounded on $[0, T]$ as a family of pseudo-differential operators with parameter $t \in[0, T]$.

To construct $\boldsymbol{E}(t, s)$, we find first the perfect diagonalizer $\boldsymbol{N}(t)$ such that the symbol $\sigma(\boldsymbol{N}(t))(x, \xi)$ belongs to $S[0,0]$ and

$$
\begin{equation*}
\boldsymbol{L} \boldsymbol{N}(t) \equiv \boldsymbol{N}(t) \boldsymbol{L}_{1} \bmod \mathscr{B}_{t}\left(S^{-\infty}\right), \tag{0.6}
\end{equation*}
$$

where \boldsymbol{L}_{1} is an operator of the form

$$
\begin{align*}
\boldsymbol{L}_{1}=\boldsymbol{D}_{t}- & t^{l}\left[\begin{array}{ccc}
\mu_{1}(t, X, & \left.D_{x}\right) & 0 \\
& \ddots & \\
0 & \ddots & \\
& +\left[\begin{array}{ccc}
f_{1}(t, X, & \left.D_{x}\right) & 0 \\
& \ddots & \\
0 & \ddots & \\
& & f_{m}\left(t, X, D_{x}\right)
\end{array}\right]+\boldsymbol{R}(t)
\end{array}\right. \tag{0.7}
\end{align*}
$$

such that $f_{j}(t, x, \xi) \in S[0,-1]$ and $\sigma(\boldsymbol{R}(t))(x, \xi) \in \mathcal{H}^{\omega}=\bigcap_{\nu=0}^{\infty} S[\omega-\nu \omega,-\nu]$. Then, for \boldsymbol{L}_{1} we can construct the fundamental solution $\boldsymbol{E}_{1}(t, s)$, and, by using $\boldsymbol{E}_{1}(t, s)$, the fundamental solution $\boldsymbol{E}(t, s)$ for \boldsymbol{L} can be found in the form

$$
\begin{equation*}
\boldsymbol{E}(t, s)=\boldsymbol{N}(t) \boldsymbol{E}_{1}(t, s) \boldsymbol{N}^{*}(s)+\boldsymbol{R}_{-\infty}(t, s), \tag{0.8}
\end{equation*}
$$

where $\boldsymbol{N}^{*}(s)$ is a parametrix of $\boldsymbol{N}(s)$ and $\sigma\left(\boldsymbol{R}_{-\infty}(t, s)\right)(x, \xi) \in \mathscr{D}_{t, s}\left(S^{-\infty}\right)$.
We note that $\boldsymbol{E}(t, s)$ is represented as the sum of Fourier integral operators which have phase functions $\phi_{j}(t, s, x, \xi)$ defined as the solutions of eiconal equations:

$$
\left\{\begin{array}{l}
\partial_{t} \phi_{j}-t^{l} \mu_{j}\left(t, x, \nabla_{x} \phi_{j}\right)=0 \quad\left(0 \leqq s \leqq t \leqq T_{0}\right), \tag{0.9}\\
\phi_{j}(s, s)=x \cdot \xi
\end{array}\right.
$$

and have symbols in $\bigcap_{0<\varepsilon<1} S[0, \boldsymbol{M}+\varepsilon,-\boldsymbol{M}-\varepsilon]$. The constant \boldsymbol{M} is defined by

$$
\begin{equation*}
\boldsymbol{M}=\max _{1 \leq i \leq m} \lim _{R \rightarrow \infty} \sup _{\substack{x, t \leq \xi^{\omega} \geq R \\ 0 \leq t \leq R^{-1}}}\left\{t \mathscr{I}_{m} f_{j}(t, x, \xi)\right\}, \tag{0.10}
\end{equation*}
$$

and indicates the order of regularity-loss of the solution of the Cauchy problem.
Concerning the problem (0.5) Kumano-go [7] constructed the fundamental solution without condition (0.3) ii) by using Fourier integral operators of multiphase. It should be emphasized that our fundamental solution $\boldsymbol{E}(t, s)$ is represented by Fourier integral operators of single phase, and \boldsymbol{M} is determined explicitly by (0.10). The perfect diagonzalization of (0.6) for L enable us such a construction of $\boldsymbol{E}(t, v)$.

In §1 we define some classes of pseudo-differential operators and Fourier integral operators as variants of classes in Boutet de Monvel [2], and summarize fundamental theorems on operators of these classes. In §2, using a similar method to that of Kumano-go [6], we construct the perfect diagonalizer $N(t)$ such
that (0.6) holds. We note that $\sigma(\boldsymbol{R}(t))(x, \xi) \in \mathcal{H}^{\infty}$ and $\in S^{-\infty}$ for any fixed $t>0$, but that $\mathcal{H}^{\omega} \nsubseteq \mathscr{G}_{t}\left(S^{-\infty}\right)$ on $[0, T]$. So we can not apply the method in Kumanogo [6] directly. From this reason, in §3, we first treat a single operator and then construct the fundamental solution $\boldsymbol{E}_{2}(t, s)$ for a purely diagonal operator $\boldsymbol{L}_{2}=$ $\boldsymbol{L}_{1}-\boldsymbol{R}(t)$. In $\S 4$ the fundamental solution $\boldsymbol{E}_{1}(t, s)$ for \boldsymbol{L}_{1} is constructed in the form

$$
\boldsymbol{E}_{1}(t, s)=\boldsymbol{E}_{2}(t, s)(I+\boldsymbol{Q}(t, s))+\boldsymbol{Q}_{\infty}(t, s)
$$

and by using $\boldsymbol{E}_{1}(t, s)$ the fundamental solution $\boldsymbol{E}(t, s)$ for the general \boldsymbol{L} can be constructed. The crucial point in the discussions of $\S 4$ is in finding $\boldsymbol{Q}(t, s)$. Finally in $\S 5$ we consider a higher order operator L of the form:

$$
\begin{equation*}
L=D_{t}^{m}+\sum_{k=1}^{m} a_{k}\left(t, X, D_{x}\right) D_{t}^{m-k} \tag{0.11}
\end{equation*}
$$

where $a_{k}(t, x, \xi)$ have the forms

$$
\begin{equation*}
a_{k}(t, x, \xi)=\sum_{j=0}^{k} t^{\sigma(j, k)} a_{k, j}(t, x, \xi) \tag{0.12}
\end{equation*}
$$

with differential polynomials $a_{k, j}(t, x, \xi)$ of order $k-j$ in ξ and $\sigma(j, k)=\max$ $\{0,(k-j)(!+1)-k\}$. We assume that the roots μ_{1}, \cdots, μ_{m} of the equation

$$
\begin{equation*}
\lambda^{m}+a_{1,0} \lambda^{m-1}+\cdots+a_{m, 0}=0 \tag{0.13}
\end{equation*}
$$

are real and satisfy (0.3). Then, we show that the Cauchy problem:

$$
\left\{\begin{array}{l}
L u=\varphi(t) \quad \text { on } \quad\left[s, T_{0}\right] \tag{0.14}\\
\left.D_{t}^{j}\right|_{t=s}=\psi_{j}, \quad j=0, \cdots, m-1
\end{array}\right.
$$

is reduced to the system (0.5) by modifying the method in Shinaki [11]. We note that the operator L of this type is a generalization of operators which have been treated by Alinhac [1], Chi Min-You [3], Nakamura [8], Nakamura and Uryu [9], Oleinik [10], Uryu [13] and Yoshikawa [14], [15].

The author would like to express his gratitude to Professor H. Kumano-go, Professor M. Ikawa and Mr. K. Taniguchi for their kind suggestions and a number of stimulating conversations.

1. Preliminaries. For $x \in R_{x}^{n}, \xi \in R_{\xi}^{n}$ and multi-indices α, β we use the following notation:

$$
\begin{aligned}
& x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}, \quad\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2} \\
& |\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{n}! \\
& d \xi=(2 \pi)^{-n} d \xi, \quad D_{t}=-i \partial / \partial t, \quad \partial_{\xi_{j}}=\partial / \partial_{\xi_{j}} \\
& D_{x_{j}}=-i \partial / \partial x_{j},
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{\xi}^{\alpha}=\partial_{\xi_{1}}^{\alpha} \cdots \partial_{\xi_{n}}^{\alpha}, \quad D_{x}^{\beta}=D_{x_{1}}^{\beta_{1}} \cdots D_{x_{n}^{\prime}}^{\beta_{n}}, \\
& a_{\beta \beta}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi) \\
& \nabla_{x} f(x)=\left(\partial_{x_{1}} f(x), \cdots, \partial_{x_{n}} f(x)\right) .
\end{aligned}
$$

Let $S^{\nu}\left(=S_{1,0}^{\nu}\right)$ denote Hörmander's class of symbols $a(x, \xi)$ on R^{n} which satisfy

$$
\begin{equation*}
\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\infty \beta}\langle\xi\rangle^{\nu-|\alpha|} \quad \text { on } \quad R_{x}^{n} \times R_{\xi}^{n}, \tag{1.1}
\end{equation*}
$$

and the assoc:ated pseudo-differential operators $a\left(X, D_{x}\right)$ are defined by

$$
\begin{align*}
a\left(X, D_{x}\right) u(x)= & 0 s-\iint e^{-i y \cdot \xi} a(x, \xi) u(x+y) d \xi d y \tag{1.2}\\
= & \lim _{\varepsilon \rightarrow 0} \iint e^{-i y \cdot \xi} \chi(\varepsilon \xi, \varepsilon y) a(x, \xi) u(x+y) d \xi d y \\
& \left(u \in \mathscr{B}\left(R^{n}\right)\right),
\end{align*}
$$

where $\chi(\xi, y) \in \mathcal{S}$ (the Schwartz space of rapidly decreasing functions on $R^{2 n}$) such that $\chi(0,0)=1$ and $\mathscr{B}\left(R^{n}\right)$ denotes the space of C^{∞}-functions in R^{n} whose derivatives of any order are all bounded.

Let $\chi(t)$ be a C^{∞}-function in R^{1} such that

$$
\left\{\begin{array}{l}
0 \leqq \chi(t) \leqq 1 \quad \text { on } \quad R^{1} \tag{1.3}\\
\chi(t)=1(|t| \leqq 1), \quad=0(|t| \geqq 2) .
\end{array}\right.
$$

Set $\omega=1 /(l+1)$ for a positive integer l and define a function η by

$$
\begin{equation*}
\eta(t)=\eta(t, \xi)=t+\langle\xi\rangle^{-\omega} \chi\left(t\langle\xi\rangle^{\omega}\right) . \tag{1.4}
\end{equation*}
$$

Then we have

$$
\left\{\begin{array}{l}
\left(t+\langle\xi\rangle^{-\infty}\right) / 2 \leqq \eta(t, \xi) \leqq t+\langle\xi\rangle^{-\infty}, \tag{1.5}\\
\langle\xi\rangle^{-\omega} \leqq \eta(t, \xi) \leqq 2 \quad(0 \leqq t \leqq T \leqq 1)
\end{array}\right.
$$

and by easy calculation

$$
\begin{equation*}
\left|D_{t}^{j} \partial_{\xi}^{\alpha} \eta(t, \xi)\right| \leqq C_{j, \infty}\langle\xi\rangle^{-|a|} \eta(t, \xi)^{1-j} . \tag{1.6}
\end{equation*}
$$

Following Boutet de Monvel [2] we define classes of symbols of pseudodifferential operators.

Definition 1.1. i) For real m_{1}, m_{2} we denote by $S\left[m_{1}, m_{2}\right]$ the space of all C^{∞}-symbols $a(t, x, \xi)$ on $[0, T] \times R_{x}^{n} \times R_{\xi}^{n}(0 \leqq T \leqq 1)$ such that for any nonnegative integer j and multi-indices α, β we have

$$
\begin{equation*}
\left|D_{t}^{j} a_{(\beta)}^{(\alpha)}(t, x, \xi)\right| \leqq C_{j, \alpha, \beta}\langle\xi\rangle^{m_{1}-|\alpha|} \eta(t, \xi)^{m_{2}-j} . \tag{1.7}
\end{equation*}
$$

ii) For real m_{1}, m_{2}, m_{3} we denote by $S\left[m_{1}, m_{2}, m_{3}\right]$ the space of all C^{∞} -
symbols $a(t, s, x, \xi)$ on $[0, T] \times[0, T] \times R_{x}^{n} \times R_{\xi}^{n}(0 \leqq T \leqq 1)$ such that for any nonnegative integers j, k and multi-indices α, β we have

$$
\begin{equation*}
\left|D_{t}^{i} D_{s}^{k} a_{(\beta)}^{(\alpha)}(t, s, x, \xi)\right| \leqq C_{j, k, \infty} \beta\langle\xi\rangle^{m_{1}-|\alpha|} \eta(t, \xi)^{m_{2}-j} \eta(s, \xi)^{m_{3}-k} . \tag{1.8}
\end{equation*}
$$

iii) We set

$$
\begin{aligned}
& \mathscr{B}_{t}\left(S^{-\infty}\right)=\bigcap_{\nu} S\left[m_{1}-\nu, m_{2}\right], \\
& \mathcal{B}_{t, s}\left(S^{-\infty}\right)=\bigcap_{\nu} S\left[m_{1}-\nu, m_{2}, m_{3}\right], \\
& \mathcal{H}^{m}=\bigcap_{\nu} S[m-\nu,-\nu(l+1)] .
\end{aligned}
$$

Remark. 1°. From (1.5) and (1.6) we have

$$
\begin{equation*}
\eta(t, \xi)^{\nu} \in S[0, \nu] \quad \text { for real } \nu \tag{1.9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
a(t, x, \xi) \in S\left[m_{1}, m_{2}\right] \Rightarrow a(t, x, \xi) \in S^{m, \omega m_{2}^{-}} \tag{1.10}\\
a(t, s, x, \xi) \in S\left[m_{1}, m_{2}, m_{3}\right] \\
\Rightarrow a(t, s, x, \xi) \in S^{m_{1}+\omega m_{2}^{-}+\omega m_{3}}\left(m_{j}^{-}=\max \left\{0,-m_{j}\right\}\right) \\
\text { for any fixed } t \text { and } s \in[0, T]
\end{array}\right.
$$

2°. We can consider $a(t, x, \xi) \in S\left[m_{1}, m_{2}\right]$ as an element of $S\left[m_{1}, m_{2}, 0\right]$. So by this identification we write $S\left[m_{1}, m_{2}\right] \subset S\left[m_{1}, m_{2}, 0\right]$, and the statements for the symbols of $S\left[m_{1}, m_{2}, m_{3}\right]$ often hold for symbols of $S\left[m_{1}, m_{2}\right]$.
3°. It is easily proved that

$$
\bigcap_{\nu} S\left[m_{1}-\nu, m_{2}\right]=\bigcap_{\nu} \mathscr{B}_{t}\left(S^{-\nu}\right)
$$

and

$$
\bigcap_{\nu} S\left[m_{1}-\nu, m_{2}, m_{3}\right]=\bigcap_{\nu} \mathscr{B}_{t, s}\left(S^{-v}\right) .
$$

Proposition 1.2. i) $S\left[m_{1}, m_{2}\right] \cap S\left[m_{1}^{\prime}, m_{2}^{\prime}\right]$, if $m_{1} \leqq m_{1}^{\prime}$ and $m_{1}-m_{2} \omega \leqq m_{1}^{\prime}-$ $m_{2}^{\prime} \omega$.
ii) $S\left[m_{1}, m_{2}, m_{3}\right] \subset S\left[m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right]$ if " $m_{1} \leqq m_{1}^{\prime}, m_{1}-m_{2} \omega \leqq m_{1}^{\prime}-m_{2}^{\prime} \omega$ and $m_{3} \geqq m_{3}^{\prime \prime}$, or ' $m_{1} \leqq m_{1}^{\prime}, m_{1}-m_{3} \omega \leqq m_{1}^{\prime}-m_{3}^{\prime} \omega$ and $m_{2} \geqq m_{2}^{\prime \prime}$ ".

Proof is omitted.
Proposition 1.3. i) Let $a(t, s, x, \xi) \in S\left[m_{1}, m_{2}, m_{3}\right]$. Then, for any nonnegative integers j, k we have

$$
\begin{equation*}
t^{j} s^{k} a(t, s, x, \xi) \in S\left[m_{1}, m_{2}+j, m_{3}+k\right] \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i}^{i} D_{s}^{k} a(t, s, x, \xi) \in S\left[m_{1}, m_{2}-j, m_{3}-k\right] . \tag{1.12}
\end{equation*}
$$

ii) Let $a(t, s, x, \xi) \in S\left[m_{1}, m_{2}, m_{3}\right]$ and $b(t, s, x, \xi) \in S\left[m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right]$. Then, we have

$$
\begin{equation*}
a(t, s, x, \xi) b(t, s, x, \xi) \in S\left[m_{1}+m_{1}^{\prime}, m_{2}+m_{2}^{\prime}, m_{3}+m_{3}^{\prime}\right] . \tag{1.13}
\end{equation*}
$$

iii) Let $a(t, x, \xi) \in \mathcal{H}^{m}$ and $b(t, x, \xi) \in S\left[m_{1}, m_{2}\right]$. Then, we have

$$
\begin{equation*}
a(t, x, \xi) b(t, x, \xi) \in \mathscr{G}^{m+m_{1}-m_{2} \omega} . \tag{1.14}
\end{equation*}
$$

Proof. i) and ii) are clear. Writing $\eta(t, \xi)^{m_{2}}=\langle\xi\rangle^{-m_{2} \omega}\left(\langle\xi\rangle^{\omega} \eta(t, \xi)\right)^{m_{2}}$ we get (1.14).

Lemma 1.4. $S e t$

$$
\begin{equation*}
h(t, \xi)=\eta(t, \xi)^{l}\langle\xi\rangle \tag{1.15}
\end{equation*}
$$

Then, we have
i) $h(t, \xi)^{\nu} \in S[\nu, \nu l]$ for any real ν,
ii) $h(t, \xi)-t^{l}\langle\xi\rangle \in \mathcal{H}^{\omega}$,
iii) $i h_{t}(t, \xi) / h(t, \xi)-l / \eta(t, \xi) \in \mathcal{H}^{\omega}$,
where $h_{t}(t, \xi)=D_{t} h(t, \xi)$.
Proof. i) is clear. Since $I(t, \xi)=h(t, \xi))-t^{l}\langle\xi\rangle=0$ when $t\langle\xi\rangle^{\omega} \geqq 2$, $\eta(t, \xi)\langle\xi\rangle^{\omega}$ is bounded on $\operatorname{supp} I(t, \xi)$. So we have ii). Since $i \eta_{t}(t, \xi)=1+$ $i \chi_{t}\left(t\langle\xi\rangle^{\omega}\right)$ and $\chi_{t}\left(t\langle\xi\rangle^{\omega}\right) \in \mathscr{H}^{0}$, we have by Proposition 1.3-iii)

$$
\begin{aligned}
& i h_{t}(t, \xi) / h(t, \xi)-l / \eta(t, \xi) \\
= & i l \chi_{t}\left(t\langle\xi\rangle^{\omega}\right) / \eta(t, \xi) \in \mathcal{G}^{\omega}
\end{aligned}
$$

Proposition 1.5. i) Let $a_{\nu}(t, s, x, \xi) \in S\left[m_{1}-\nu, m_{2}, m_{3}\right]$ for $\nu=0,1, \cdots$. Then, there exists an $a(t, s, x, \xi) \in S\left[m_{1}, m_{2}, m_{3}\right]$ such that

$$
a \sim a_{0}+a_{1}+\cdots \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right)
$$

in the sense

$$
a-\sum_{\nu=0}^{N-1} a_{\nu} \in S\left[m_{1}-N, m_{2}, m_{3}\right] \quad \text { for all } N
$$

Two such symbols differ by an element of $\mathscr{S}_{t, s}\left(S^{-\infty}\right)$.
ii) Lei $b_{\nu}(t, x, \xi) \in S\left[m_{1}-\nu, m_{2}-\nu(l+1)\right]$ for $\nu=0,1, \cdots$. Then, there exists $a b(t, x, \xi) \in S\left[m_{1}, m_{2}\right]$ such that

$$
b \sim b_{0}+b_{1}+\cdots \quad \bmod \mathscr{H}^{m_{1}-m_{2} \omega}
$$

in the sense

$$
b-\sum_{\nu=0}^{N-1} b_{\nu} \in S\left[m_{1}-N, m_{2}-N(l+1)\right] \quad \text { for all } N
$$

Two such symbols differ by an element of $\mathscr{H}^{m_{1}-m_{2} \omega}$.
Proof. Using $\chi(t)$ of (1.3) we set

$$
\left\{\begin{array}{l}
\psi_{\mathrm{e}}(\xi)=1-\chi(\varepsilon\langle\xi\rangle) \tag{1.16}\\
\gamma_{\mathrm{z}}(t, \xi)=1-\chi\left(\varepsilon \eta(t, \xi)^{l+1}\langle\xi\rangle\right) .
\end{array}\right.
$$

Then, setting

$$
a(t, s, x, \xi)=\sum_{\nu=0}^{\infty} \psi_{\varepsilon_{\nu}}(\xi) a_{\nu}(t, s, x, \xi)
$$

and

$$
b(t, x, \xi)=\sum_{\nu=0}^{\infty} \gamma_{\varepsilon \nu}(t, \xi) b_{\nu}(t, x, \xi)
$$

for appropriate $1 \geqq \varepsilon_{0}>\varepsilon_{1}>\cdots>\varepsilon_{v}>\cdots \rightarrow 0$, we get i) and ii) by usual method.
Proposition 1.6. Let $a(t, s, x, \xi) S \in\left[m_{1}, m_{2}, m_{3}\right]$ and $b(t, s, x, \xi) \in S\left[m_{1}^{\prime}, m_{2}^{\prime}\right.$, $\left.m_{3}^{\prime}\right]$ and define $a \circ b(t, s, x, \xi)$ by

$$
\begin{align*}
& a \circ b(t, s, x, \xi) \tag{1.17}\\
& =0 s-\int e^{-i y \cdot \xi^{\prime}} a\left(t, s, x, \xi+\xi^{\prime}\right) b(t, s, x+y, \xi) d \xi^{\prime} d y
\end{align*}
$$

Then, we have

$$
\begin{equation*}
a \circ b(t, s, x, \xi) \in S\left[m_{1}+m_{1}^{\prime}, m_{2}+m_{2}^{\prime}, m_{3}+m_{3}^{\prime}\right] \tag{1.18}
\end{equation*}
$$

and for $A=a\left(t, s, X, D_{x}\right), B=b\left(t, s, X, D_{x}\right)$ we have

$$
A B=a \circ b\left(t, s, X, D_{x}\right)
$$

Moreover, we have

$$
\begin{equation*}
a \circ b(t, s, x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} a^{(\alpha)}(t, s, x, \xi) b_{(\alpha)}(t, s, x, \xi) \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right) \tag{1.19}
\end{equation*}
$$

Proof. If we note Remark 1° of Definition 1.1, the proof is clear.
Corollary 1.7. Let $a(t, x, \xi) \in S\left[m_{1}, m_{2}\right]$ and $b(t, x, \xi) \in \mathcal{H}^{m}$. Then, both $a \circ b(t, x, \xi)$ and $b \circ a(t, x, \xi)$ belong to $\mathcal{H}^{m+m_{1}-m_{2} \omega}$.

When $\boldsymbol{A}(t)$ is an $m \times m$ matrix of pseudo-differential operators with symbols in $S\left[m_{1}, m_{3}\right]$, we also write $\sigma(\boldsymbol{A}(t)) \in S\left[m_{1}, m_{2}\right]$. We denfie $|\sigma(\boldsymbol{A}(t))|$ by

$$
|\sigma(\boldsymbol{A}(t))|=\max _{1 \leqq j, k \leq m}\left|a_{j, k}(t, x, \xi)\right|
$$

where $a_{j, k}(t, x, \xi)$ is the (j, k)-element of $\sigma(\boldsymbol{A}(t))(x, \xi)$.
Lemma 1.8. Let $\sigma\left(\boldsymbol{N}^{(\nu)}(t)\right)(x, \xi) \in S[-\nu,-\nu(l+1)] \nu=1,2, \cdots$, be $m \times m$ matrices. Then, there exists $N(t)$ such that $\sigma(N(t))(x, \xi) \in S[0,0]$ and

$$
\begin{equation*}
N(t) \sim I+N^{(1)}(t)+N^{(2)}(t)+\cdots \quad \bmod \mathscr{H}^{0} . \tag{1.20}
\end{equation*}
$$

Moreover, $\boldsymbol{N}(t)$ has a parametrix $\boldsymbol{N}(t)^{\sharp}$ such that $\sigma\left(\boldsymbol{N}(t)^{\sharp}\right)(x, \xi) \in S[0,0]$ and

$$
\sigma\left(N(t) N(t)^{\sharp}-I\right), \quad \sigma\left(N(t)^{\ddagger} N(t)-I\right) \in \mathscr{B}_{t}\left(S^{-\infty}\right) .
$$

Proof. Let $\gamma_{\mathrm{e}}(t, \xi)$ be the symbol defined by (1.16). Then, by Proposition $1.5-\mathrm{ii})$ we see that

$$
\sigma(N(t))(x, \xi)=I+\sum_{\nu=1}^{\infty} \gamma_{\varepsilon_{\nu}}(t, \xi) \sigma\left(N^{(\nu)}(t)\right)(x, \xi)
$$

belongs to $S[0,0]$ for appropriate $1 \geqq \varepsilon_{1}>\cdots>\varepsilon_{\nu}>\cdots \rightarrow 0$ and (1.20) holds. Furthermore, noting

$$
\left|D_{t}^{j} \gamma_{\varepsilon_{\nu}}^{(\alpha)}(t, \xi)\right| \leqq C_{j, \omega} \varepsilon_{\nu} \eta(t, \xi)^{l+1}\langle\xi\rangle\langle\xi\rangle^{-|a|} \eta(t, \xi)^{-j}
$$

and $\eta(t, \xi)^{l+1}\langle\xi\rangle \sigma\left(N^{\nu \nu}(t)\right)(x, \xi) \in S[-(\nu-1),-(\nu-1)(l+1)] \subset S[0,0], \nu=1,2, \cdots$, we get $|\operatorname{det} \sigma(N(t))(x, \xi)| \geqq c$ for a constant $c>0$, if we choose small $\varepsilon_{\nu}>0$. Noting Remark 1° of Definition 1.1, the parametrix $N(t)^{*}$ of $\boldsymbol{N}(t)$ can be constructed by usual procedure.

According to Kumano-go [5] we call a real valued C^{∞}-function $\phi(x, \xi)$ in $R_{x}^{n} \times R_{\xi}^{n}$ a phase function, when it satisfies conditions:

$$
\left\{\begin{align*}
\text { i) } & \phi(x, \xi)-x \cdot \xi \in S^{1} \tag{1.21}\\
\text { ii) } & \left|\nabla_{x} \phi(x, \xi)-\xi\right| \leqq\left(1-\varepsilon_{0}\right)|\xi|+c \\
\text { iii) } & \left|\nabla_{x} \nabla_{\xi} \phi(x, \xi)-I\right| \leqq 1-\varepsilon_{0}^{\prime} \\
& \left(0<\varepsilon_{0} \leqq 1,0<\varepsilon_{0}^{\prime} \leqq 1, c>0\right)
\end{align*}\right.
$$

Then the Fourier integral operator $A_{\phi}=a_{\phi}\left(X, D_{x}\right)$ with phase function $\phi(x, \xi)$ and symbol $a(x, \xi) \in S^{m}$ is defined by.

$$
\begin{equation*}
A_{\Phi} u(x)=O_{s}-\iint e^{i\left(\phi(x, \xi)-x^{\prime} \cdot \xi\right)} a(x, \xi) u\left(x^{\prime}\right) d \xi d x^{\prime}\left(u \in \mathscr{B}\left(R_{x}^{n}\right)\right) . \tag{1.22}
\end{equation*}
$$

Concerning fundamental theorems on Fourier integral operators, we refer to §2 of [5].

Let $\lambda(t, x, \xi) \in S[1, l]$ be real valued. Consider the Hamilton equation

$$
\left\{\begin{array}{l}
\frac{d t}{d q}=-\nabla_{\xi} \lambda(t, q, p), \quad \frac{d p}{d t}=\nabla_{x} \lambda(t, q, p) \quad \text { on } 0 \leqq s, t \leqq T_{0} \tag{1.23}\\
\{q, p\}_{t=s}=\left\{y, \xi^{\prime}\right\}
\end{array}\right.
$$

and the eiconal equation

$$
\left\{\begin{array}{l}
\partial_{t} \phi-\lambda\left(t, x, \nabla_{x} \phi\right)=0 \quad \text { on } 0 \leqq s, t \leqq T_{0}, \tag{1.24}\\
\phi(s, s, x, \xi)=x \cdot \xi
\end{array}\right.
$$

for a small $T_{0}\left(0<T_{0} \leqq T\right)$. Then, we can prove the following statements by the same procedure to §3 in [5].

Lemma 1.9. For a small $T_{1}\left(0<T_{1} \leqq T\right)$ the initial value problem (1.23) has the solution $\{q, p\}\left(t, s, y, \xi^{\prime}\right)$ on $0 \leqq s, t \leqq T_{1}$ such that

$$
\begin{cases}q\left(t, s, y, \xi^{\prime}\right)-y \in S[0, l+1,0] & \left(0 \leqq s \leqq t \leqq T_{1}\right) \tag{1.25}\\ p\left(t, s, y, \xi^{\prime}\right)-\xi^{\prime} \in S[1, l+1,0] & \left(0 \leqq s \leqq t \leqq T_{1}\right)\end{cases}
$$

and

$$
\begin{cases}q\left(t, s, y, \xi^{\prime}\right)-y \in S[0,0, l+1] & \left(0 \leqq t \leqq s \leqq T_{1}\right) \tag{1.25}\\ p\left(t, s, y, \xi^{\prime}\right)-\xi^{\prime} \in S[1,0, l+1] & \left(0 \leqq t \leqq s \leqq T_{1}\right)\end{cases}
$$

Lemma 1.10. Let $T_{2}\left(0<T_{2} \leqq T_{1}\right)$ and $\varepsilon_{1}\left(0<\varepsilon_{1} \leqq 1\right)$ be constants such that

$$
|\partial q / \partial y-I| \leqq\left(1-\varepsilon_{1}\right) \quad 0 \leqq s, t \leqq T_{1}
$$

Then, for the mapping $x=q(t, s, y, \xi): R_{y}^{n} \ni y \rightarrow x \in R_{x}^{n}$ with (t, s, ξ) as parameters, there exists the inverse $y=y(t, s, x, \xi)$ such that

$$
\begin{cases}y(t, s, x, \xi)-x \in S[0, l+1,0] & 0 \leqq s \leqq t \leqq T_{2} \tag{1.26}\\ y(t, s, x, \xi)-x \in S[0,0, l+1] & 0 \leqq t \leqq s \leqq T_{2} \\ |\partial y| \partial x-I \mid \leqq\left(1-\varepsilon_{1}\right) / \varepsilon_{1} & \end{cases}
$$

Theorem 1.11. There exists $T_{0}\left(0<T_{0} \leqq T\right)$ such that the initial value problem (1.24) has the unique solution $\phi(t, s)=\phi(t, s, x, \xi)$ on $0 \leqq s, t \leqq T_{0}$ which satisfies (1.21) and

$$
\begin{cases}\phi(t, s, x, \xi)-x \cdot \xi \in S[1, l+1,0] & \left(0 \leqq s \leqq t \leqq T_{0}\right) \tag{1.27}\\ \phi(t, s, x, \xi)-x \cdot \xi \in S[1,0, l+1] & \left(0 \leqq t \leqq s \leqq T_{0}\right)\end{cases}
$$

Corollary 1.12. For a $C^{\infty}-$ function $f(t, x, \xi)$ on $\left[0, T_{0}\right] \times R_{x}^{n} \times R_{\xi}^{n}$ set

$$
\tilde{f}(t, s, y, \xi)=f(t, q(t, s, y, \xi), \xi)
$$

Then, we have

$$
\begin{align*}
& D_{t} \tilde{f}(t, s, y, \xi) \tag{1.28}\\
& =\left\{D_{t} f(t, x, \xi)-\sum_{|\alpha|=1} \lambda^{(\alpha)}\left(t, x, \nabla_{x} \phi(t, s, x, \xi)\right) f_{(\alpha)}(t, x, \xi)\right\}_{x=q(t s, y, \xi)}
\end{align*}
$$

The following lemma is important in the proof of Theorem 4.2 in §4.

Lemma 1.13. Let $a(t, s, x, \xi) \in S\left[m_{1}, m_{2}, m_{3}\right]$ and $r(t, s, x, \xi) \in \bigcap_{\nu=0}^{\infty} S\left[m_{1}^{\prime}-\nu\right.$, $\left.m_{2}^{\prime}-\nu(l+1), m_{3}^{\prime}\right] . \quad$ Set $A_{\phi}=a_{\phi}\left(t, s, X, D_{x}\right)$ with $\phi(t, s, x, \xi)$ of Theorem 1.11 and $R=r\left(t, s, X, D_{x}\right)$. Then both $R_{1}=A_{\phi} R$ and $R_{2}=R A_{\phi}$ are pseudo-differential operators with symbols

$$
\begin{array}{r}
r_{j}(t, s, x, \xi) \in \bigcap_{\nu=0}^{\infty} S\left[m_{1}+m_{1}^{\prime}-\nu, m_{2}+m_{2}^{\prime}-\nu(l+1), m_{3}+m_{3}^{\prime}\right] \tag{1.29}\\
(j=1,2)
\end{array}
$$

where

$$
\begin{equation*}
r_{1}\left(t, s, x, \xi^{\prime}\right)=O s-\iint e^{i \varphi_{1}} a(t, s, x, \xi) r\left(t, s, x^{\prime}, \xi^{\prime}\right) d \xi d x^{\prime} \tag{1.30}
\end{equation*}
$$

with

$$
\varphi_{1}=\phi(t, s, x, \xi)-x \cdot \xi+\left(x-x^{\prime}\right) \cdot\left(\xi-\xi^{\prime}\right)
$$

and

$$
\begin{equation*}
r_{2}\left(t, s, x, \xi^{\prime}\right)=O s-\iint e^{i \varphi_{2}} r(t, s, x, \xi) a\left(t, s, x^{\prime}, \xi^{\prime}\right) d \xi d x^{\prime} \tag{1.31}
\end{equation*}
$$

with

$$
\varphi_{2}=\left(x-x^{\prime}\right) \cdot\left(\xi-\xi^{\prime}\right)+\phi\left(t, s, x^{\prime}, \xi^{\prime}\right)-x^{\prime} \cdot \xi^{\prime}
$$

Moreover, we have

$$
\begin{equation*}
r_{1}(t, s, x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \tilde{a}^{(\alpha)}(t, s, x, \xi) r_{(\alpha)}(t, s, x, \xi) \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right) \tag{1.32}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}(t, s, x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} r^{(\alpha)}(t, s, x, \xi) \tilde{a}_{(\alpha)}(t, s, x, \xi) \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right) \tag{1.33}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{a}(t, s, x, \xi)=e^{i(\phi(t, s, x, \xi)-x \cdot \xi)} a(t, s, x, \xi) \tag{1.34}
\end{equation*}
$$

Proof. It is clear that r_{1} and r_{2} are defined by (1.30) and (1.31), respectively. By Theorem 1.11 we have

$$
\begin{align*}
& \left|D_{t}^{j} D_{s}^{k} \tilde{a}_{(\beta)}^{(\alpha)}(t, s, x, \xi)\right| \tag{1.35}\\
& \leqq C_{j, k, \alpha, \beta}\langle\xi\rangle^{m_{1}-|\alpha|}\left(\eta(t, \xi)^{l+1}\langle\xi\rangle\right)^{|\alpha+\beta|+j+k} \eta(t, \xi)^{m_{2}-j} \eta(s, \xi)^{m_{3}-k} .
\end{align*}
$$

On the other hand by the assumption for $r(t, s, x, \xi)$ we have

$$
\begin{equation*}
\eta\left((t, \xi)^{l+1}\langle\xi\rangle\right)^{\tau} r(t, s, x, \xi) \in \bigcap_{\nu=0}^{\infty} S\left[m_{1}^{\prime}-\nu, m_{2}^{\prime}-\nu(l+1), m_{3}^{\prime}\right] \quad \text { for any } \tau \tag{1.36}
\end{equation*}
$$

Then, from (1.35) and (1.36) we see that

$$
\begin{align*}
& \tilde{a}^{(\alpha)}(t, s, x, \xi) r_{(\alpha)}(t, s, x, \xi) \tag{1.37}\\
& \in \bigcap_{\nu=0}^{\infty} S\left[m_{1}+m_{1}^{\prime}-\nu-|\alpha|, m_{2}+m_{2}^{\prime}-\nu(l+1), m_{3}+m_{3}^{\prime}\right] .
\end{align*}
$$

Now we write

$$
r_{1}\left(t, s, x, \xi^{\prime}\right)=O s-\iint e^{-i y \cdot \xi^{\prime \prime}} \tilde{a}\left(t, s, x, \xi^{\prime}+\xi^{\prime \prime}\right) r\left(t, s, x+y, \xi^{\prime}\right) d \xi^{\prime \prime} d y
$$

Then, by Taylor's expansion

$$
\begin{aligned}
& \tilde{a}\left(t, s, x, \xi^{\prime}+\xi^{\prime \prime}\right)=\sum_{|a|<N} \frac{\xi^{\prime \prime \infty}}{\alpha!} \tilde{a}^{(\alpha)}\left(t, s, x, \xi^{\prime}\right) \\
& \quad+N \sum_{|\alpha|=N} \frac{\varepsilon^{\prime \prime \infty}}{\alpha!} \int_{0}^{1}(1-\theta)^{N-1} \tilde{a}^{(\alpha)}\left(t, s, x, \xi^{\prime}+\theta \xi^{\prime \prime}\right) d \theta
\end{aligned}
$$

we have

$$
\begin{align*}
& r_{1}\left(t, s, x, \xi^{\prime}\right)=\sum_{|\alpha|<N} \frac{1}{\alpha!} \tilde{a}^{(\alpha)}\left(t, s, x, \xi^{\prime}\right) r_{(\alpha)}\left(t, s, x, \xi^{\prime}\right) \tag{1.38}\\
& \quad+N \sum_{|\alpha|=N} \frac{1}{\alpha!} \int_{0}^{1}(1-\theta)^{N-1} h_{\alpha \theta}\left(t, s, x, \xi^{\prime}\right) d \theta
\end{align*}
$$

where

$$
\begin{align*}
& h_{a, \theta}\left(t, s, x, \xi^{\prime}\right) \tag{1.39}\\
& =O s-\iint e^{-i y \cdot \xi^{\prime \prime}} \tilde{a}^{(\alpha)}\left(t, s, x, \xi^{\prime}+\theta \xi^{\prime \prime}\right) r_{(\alpha)}\left(t, s, x+y, \xi^{\prime}\right) d \xi^{\prime \prime} d y \\
& =O s-\iint e^{-i y \cdot \xi^{\prime}\left\langle\xi^{\prime \prime}\right\rangle^{-\tilde{n}} \tilde{a}^{(\alpha)}\left(t, s, x, \xi^{\prime}+\theta \xi^{\prime \prime}\right)} \\
& \times\left\langle D_{y}\right\rangle^{\tilde{n}} r_{(\alpha)}\left(t, x, s+y, \xi^{\prime}\right) d \xi^{\prime \prime} d y
\end{align*}
$$

for any even integer $\tilde{n} \geqq 0$. Then, noting

$$
\left\{\begin{array}{l}
\left\langle\xi^{\prime}+\theta \xi^{\prime \prime}\right\rangle^{ \pm 1} \leqq 2\left\langle\xi^{\prime \prime}\right\rangle\left\langle\xi^{\prime}\right\rangle^{ \pm 1}, \\
\eta\left(t, \xi^{\prime}+\xi^{\prime \prime}\right)^{ \pm 1} \leqq 2^{\infty}\left\langle\xi^{\prime \prime}\right\rangle{ }^{\omega} \eta\left(t, \xi^{\prime}\right)^{ \pm 1}
\end{array}\right.
$$

and using (1.35) we see from the assumption for $r(t, s, x, \xi)$ that

$$
\begin{aligned}
& \left\{h_{\alpha, \theta}(t, s, x, \xi)\right\}_{|\alpha|=N, 0 \leq \theta \leq 1} \quad \text { is bounded in } \\
& \bigcap_{\nu=0}^{\infty} S\left[m_{1}+m_{1}^{\prime}-N-\nu, m_{2}+m_{2}^{\prime}-\nu(l+1), m_{3}+m_{3}^{\prime}\right] .
\end{aligned}
$$

Hence, from (1.38), (1.39) we get (1.29) for $j=1$ and (1.32). By the same method we get the statement for $r_{2}(t, s, x, \xi)$.
2. Diagonalization. In this section we consider a hyperbolic $m \times m$ system

$$
\begin{equation*}
\boldsymbol{L}_{0}=\boldsymbol{D}_{t}-\boldsymbol{A}_{1}(t)-\boldsymbol{A}_{0}(t) \quad \text { on }[0, T] \tag{2.1}
\end{equation*}
$$

of pseudo-differential operators of first order, where

$$
\boldsymbol{D}_{t}=\left[\begin{array}{ccc}
D_{t} & & 0 \\
0 & \ddots & 0 \\
& & D_{t}
\end{array}\right]
$$

and

$$
\sigma\left(A_{1}(t)\right)(x, \xi) \in S[1, l], \quad \sigma\left(A_{0}(t)\right)(x, \xi) \in S[0,-1]
$$

for an integer $l>0$. We assume the eigenvalues $\lambda_{1}(t, x, \xi), \cdots, \lambda_{m}(t, x, \xi)$ of $\sigma\left(A_{1}(t)\right)(x, \xi)$ are all real and belong to $S[1, l]$. Modifying the notion 'prefectly diagonalizable' in Kumano-go [6] we introduce the following notion.

Definition 2.1. i) For $\eta(t)=\eta(t, \xi)$ defined in (1.4) the operator \boldsymbol{L}_{0} is said to be $\eta(t)$-diagonalizable, when there exists $\boldsymbol{N}_{0}(t)$ such that $\sigma\left(\boldsymbol{N}_{0}(t)\right) \in S[0,0]$ and $\left|\operatorname{det} \sigma\left(N_{0}(t)\right)\right| \geqq c$ on $[0, T] \times R_{x}^{n} \times R_{\xi}^{n}$ for a constant $c>0$, and we can write

$$
\begin{equation*}
\boldsymbol{L}_{0} \boldsymbol{N}_{0}(t) \equiv \boldsymbol{N}_{0}(t) \boldsymbol{L} \quad \bmod \mathscr{B}_{t}\left(S^{-\infty}\right) \tag{2.2}
\end{equation*}
$$

for some \boldsymbol{L} of the form

$$
\begin{equation*}
\boldsymbol{L}=\boldsymbol{D}_{\boldsymbol{t}}-\mathscr{D}(t)+\boldsymbol{B}(t) \quad \text { on }[0, T] \tag{2.3}
\end{equation*}
$$

where

$$
\sigma(\mathscr{D}(t))(x, \xi)=\left[\begin{array}{ccc}
\lambda_{1}(t, x, & \xi) & 0 \tag{2.4}\\
0 & \ddots & 0 \\
& \lambda_{m}(t, x, \xi)
\end{array}\right]
$$

and $\sigma(\boldsymbol{B}(t))(x, \xi) \in S[0,-1]$.
ii) The operator \boldsymbol{L}_{0} is said to be $\eta(t)$-perfectly diagonalizable, when there exists $\boldsymbol{N}(t)$ such that $\sigma(\boldsymbol{N}(t)) \in S[0,0]$ and $|\operatorname{det} \sigma(\boldsymbol{N}(t))|>c$ on $[0, T] \times R_{x}^{n} \times R_{\xi}^{n}$ for a constant $c>0$, and we can write

$$
\begin{equation*}
\boldsymbol{L}_{0} \boldsymbol{N}(t) \equiv \boldsymbol{N}(t) \boldsymbol{L}_{1} \quad \bmod \mathscr{B}_{t}\left(S^{-\infty}\right) \tag{2.5}
\end{equation*}
$$

for some \boldsymbol{L}_{1} of the form

$$
\begin{equation*}
\boldsymbol{L}_{1}=\boldsymbol{D}_{t}-\mathscr{D}(t)+\boldsymbol{F}(t)+\boldsymbol{R}(t) \quad \text { on }[0, T], \tag{2.6}
\end{equation*}
$$

where $\sigma(\boldsymbol{F}(t))$ is a diagonal matrix of the form

$$
\sigma(\boldsymbol{F}(t))=\left[\begin{array}{ccc}
f_{1}(t, x, \xi) & 0 \tag{2.7}\\
0 & \ddots & 0 \\
& f_{m}(t, x, \xi)
\end{array}\right] \in S[0,-1]
$$

and $\sigma(\boldsymbol{R}(t)) \in \mathcal{H}^{\omega}$.
$\boldsymbol{N}_{0}(t), \boldsymbol{N}(t)$ are called the diagonalizer, the perfect diagonalizer for \boldsymbol{L}_{0}, respec-
tively.
Theorem 2.2. For L of (2.3), assume that there exists a constant $c_{0}>0$ such that

$$
\begin{equation*}
\left|\lambda_{j}(t, x, \xi)-\lambda_{k}(t, x, \xi)\right| \geqq c_{0} \eta(t)^{\iota}\langle\xi\rangle \quad(j \neq k) . \tag{2.8}
\end{equation*}
$$

Then, L is $\eta(t)$-perfectly diagonalizable.
Proof. According to Kumano-go [6] we find the perfect diagonalizer $\boldsymbol{N}(t)$ such that

$$
\begin{align*}
& \left\{\begin{array}{lc}
\boldsymbol{N}(t) \sim I+\boldsymbol{N}^{(1)}(t)+\boldsymbol{N}^{(2)}(t)+\cdots & \bmod \mathscr{H}^{0} \\
\sigma \boldsymbol{N}^{(\nu)}((t)) \in S[-\nu,-\nu(l+1)] & (\nu=1,2, \cdots),
\end{array}\right. \tag{2.9}\\
& \left(\boldsymbol{D}_{t}-\mathscr{D}(t)+\boldsymbol{B}(t)\right) \boldsymbol{N}(t) \equiv \boldsymbol{N}(t)\left(\boldsymbol{D}_{t}-\mathscr{D}(t)+\boldsymbol{F}(t)+\boldsymbol{R}(t)\right) \tag{2.10}\\
& \\
& \bmod \mathscr{B}_{t}\left(S^{-\infty}\right),
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
\boldsymbol{F}(t) \sim \boldsymbol{F}^{(0)}(t)+\boldsymbol{F}^{(1)}(t)+\cdots \quad \bmod \mathscr{H}^{(\omega} \tag{2.11}\\
\sigma\left(\boldsymbol{F}^{(\nu)}(t)\right) \in S[-\nu,-\nu(l+1)-1] \quad(\nu=0,1, \cdots) .
\end{array}\right.
$$

Let $b_{j, k}(k)$ bet the (j, k)-elements of $\sigma(\boldsymbol{B}(t))$, and set

$$
\begin{equation*}
\left\{\right. \tag{2.12}
\end{equation*}
$$

where by $\operatorname{diag}[\boldsymbol{B}]$ we denote a diagonal matrix with the same diagonal with \boldsymbol{B} 's. Then, we have

$$
\begin{array}{ll}
& \boldsymbol{B}^{(1)}=\boldsymbol{B}-\left[\mathscr{D}, \boldsymbol{N}^{(1)}\right]-\boldsymbol{F}^{(0)}+\boldsymbol{N}_{t}^{(1)}+\boldsymbol{B} \boldsymbol{N}^{(1)}-\boldsymbol{N}^{(1)} \boldsymbol{F}^{(0)}, \\
\text { where } \quad & {\left[\mathscr{D}, \boldsymbol{N}^{(1)}\right]=\mathscr{D} \boldsymbol{N}^{(1)}-\boldsymbol{N}^{(1)} \mathscr{D} \text { and } \sigma\left(\boldsymbol{N}_{t}^{(1)}\right)=D_{t} \sigma\left(\boldsymbol{N}^{(1)}\right) .}
\end{array}
$$

Since $\sigma\left(\boldsymbol{B}-\left[\mathscr{D}, \boldsymbol{N}^{(1)}\right]-\boldsymbol{F}^{(0)}\right) \in S[-1,-1]$, we have

$$
\left\{\begin{array}{l}
\sigma\left(\boldsymbol{F}^{(0)}\right) \in S[0,-1], \tag{2.13}\\
\sigma\left(\boldsymbol{N}^{(1)}\right) \in S[-1,-(l+1)], \\
\sigma\left(\boldsymbol{B}^{(1)}\right) \in S[-1,-(l+1)-1] .
\end{array}\right.
$$

Now, we assume that $\boldsymbol{F}^{(\mu)}, \boldsymbol{N}^{(\mu+1)}, \boldsymbol{B}^{(\mu+1)}, \mu=0,1, \cdots, \nu-1(\nu \geqq 1)$ are determined as

$$
\left\{\begin{array}{l}
\sigma\left(\boldsymbol{F}^{(\mu)}\right) \in S[-\mu,-\mu(l+1)-1] \tag{2.13}\\
\sigma\left(\boldsymbol{N}^{(\mu+1)}\right) \in S[-(\mu+1),-(\mu+1)(l+1)] \\
\sigma\left(\boldsymbol{B}^{(\mu+1)}\right) \in S[-(\mu+1),-(\mu+1)(l+1)-1]
\end{array}\right.
$$

and define $\boldsymbol{F}^{(\nu)}, \boldsymbol{N}^{(\nu+1)}, \boldsymbol{B}^{(\nu+1)}$ by

$$
\left\{\begin{align*}
\boldsymbol{F}^{(\nu)}=\operatorname{diag}\left[\boldsymbol{B}^{(\nu)}\right], \tag{2.12}\\
\sigma\left(\boldsymbol{N}^{(\nu+1)}\right)=\left(n_{j, k}^{(\nu+1)}\right) \quad \text { by } \\
n_{j, k}^{(\nu+1)}= \begin{cases}b_{j, k}^{(\nu)} /\left(\lambda_{j}-\lambda_{k}\right) & (j \neq k) \\
0 & (j=k)\end{cases} \\
\boldsymbol{B}^{(\nu+1)}=\left(\boldsymbol{D}_{t}-\mathscr{D}+\boldsymbol{B}\right)\left(I+\sum_{\mu=1}^{\nu+1} \boldsymbol{N}^{(\mu)}\right) \\
\quad-\left(I+\sum_{\mu=1}^{\nu+1} \boldsymbol{N}^{(\mu)}\right)\left(\boldsymbol{D}_{t}-\mathscr{D}+\sum_{\mu=0}^{\nu} \boldsymbol{F}^{(\mu)}\right),
\end{align*}\right.
$$

where $b_{j, k}^{(\nu)}$ are the (j, k)-elements of $\sigma\left(\boldsymbol{B}^{(\nu)}\right)$.
Then, we have

$$
\begin{aligned}
\boldsymbol{B}^{(\nu+1)}= & \left(\boldsymbol{B}^{(\nu)}-\left[\mathscr{D}, \boldsymbol{N}^{(\nu+1)}\right]-\boldsymbol{F}^{(\nu)}\right)+\boldsymbol{N}_{t}^{(\nu+1)} \\
& +\boldsymbol{B} \boldsymbol{N}^{(\nu+1)}-\sum_{\mu=1}^{\nu} \boldsymbol{N}^{(\mu)} \boldsymbol{F}^{(\nu)}-\boldsymbol{N}^{(\nu+1)} \sum_{\mu=0}^{\nu} \boldsymbol{F}^{(\mu)}
\end{aligned}
$$

and by the definition of $\boldsymbol{F}^{(\nu)}$ and $\boldsymbol{N}^{(v+1)}$ we have

$$
\sigma\left(\boldsymbol{B}^{(\nu)}-\left[\mathscr{D}, \boldsymbol{N}^{(\nu+1)}\right]-\boldsymbol{F}^{(\nu)}\right) \in S[-(\nu+1),-\nu(l+1)-1] .
$$

Hence we get $(2.13)_{\mu}$ for $\mu=\nu$, and by induction, for any $\mu=0,1, \cdots$.
Now, by Proposition 1.5 -ii) there exist $\boldsymbol{N}(t)$ and $\boldsymbol{F}(t)$ such that (2.9) and (2.11) hold. We set

$$
\tilde{R}=L N-N\left(D_{t}-\mathscr{D}+F\right) .
$$

Then, we have $\sigma(\tilde{\boldsymbol{R}}) \in \mathcal{H}^{\omega}$. Let \boldsymbol{N}^{\sharp} be a parametrix of \boldsymbol{N} which exists by Lemma 1.8 , and set $\boldsymbol{R}=\boldsymbol{N}^{*} \tilde{\boldsymbol{R}}$. Then $\sigma(\boldsymbol{R}) \in \mathscr{H} \mathscr{C}^{\oplus}$ and

$$
\sigma\left(\boldsymbol{L} \boldsymbol{N}(t)-\boldsymbol{N}(t)\left(\boldsymbol{D}_{t}-\mathscr{D}+\boldsymbol{F}(t)+\boldsymbol{R}(t)\right)\right) \in \mathscr{B}_{t}\left(S^{-\infty}\right)
$$

Corollary 2.3. Let \boldsymbol{L}_{0} be $\eta(t)$-diagonalizable. Assume that the eigenvalues $\lambda_{1}(t, x, \xi), \cdots, \lambda_{m}(t, x, \xi)$ of $\sigma\left(\boldsymbol{A}_{1}(t)\right)$ satisfy (2.8). Then \boldsymbol{L}_{0} is perfectly diagonalizable.
3. Construction of fundamental solution. The first order single operator case. Let L be a single hyperbolic operator of the form

$$
\begin{equation*}
L=D_{t}-\lambda\left(t, X, D_{x}\right)+f\left(t, X, D_{x}\right) \quad \text { on }[0, T] \quad(0<T \leqq 1), \tag{3.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\lambda(t, x, \xi) \in S[1, l] \quad \text { real valued } \tag{3.2}\\
f(t, x, \xi) \in S[0,-1]
\end{array}\right.
$$

Consider the Cauchy problem

$$
\begin{cases}L u=\varphi(t) & \text { on }\left[s, T_{0}\right] \tag{3.3}\\ \left.u\right|_{t=s}=\psi & \left(0 \leqq s \leqq T_{0}\right)\end{cases}
$$

for a small $T_{0}\left(0<T_{0} \leqq T\right)$.
Theorem 3.1. Set

$$
\begin{equation*}
M=\lim _{R \rightarrow \infty} \sup _{\substack{x, t \leq \xi \leq j_{\infty} \geq R \\ 0 \leqq t \leq R^{-1}}}\left\{t g_{m} f(t, x, \xi)\right\} \tag{3.4}
\end{equation*}
$$

Then, there exists uniquely a symbol $e(t, s, x, \xi)$ in the class $\bigcap_{0<\varepsilon<1} S[0, M+\varepsilon,-M-\varepsilon]$ on $0 \leqq s \leqq t \leqq T_{0}$ (with T_{0} of Theorem 1.11) such that the Fourier integral operator $E_{\phi}(t, s)=e_{\phi}\left(t, s, X, D_{x}\right)$ with phase function $\phi(t, s, x, \xi)$ given by Theorem 1.11 is the fundamental solution of the Cauchy problem(3.1) for L, i.e.,

$$
\begin{cases}L E_{\phi}(t, s)=0 & \text { on } 0 \leqq s \leqq t \leqq T_{0} \tag{3.5}\\ E_{\phi}(s, s)=I & \text { (identity operator) }\end{cases}
$$

Remark. Since $\left(t+\langle\xi\rangle^{-\infty}\right)\left(1-1 /\left(t\langle\xi\rangle^{\infty}+1\right)\right) \leqq\left(t+\langle\xi\rangle^{-\infty}\right)-\langle\xi\rangle^{-\omega}$ $\leqq \eta(t, \xi) \leqq t+\langle\xi\rangle^{-\infty}$, and $\langle\xi\rangle^{-\infty} \leqq t \mid R$ when $t\langle\xi\rangle^{\infty} \geqq R$, we have

$$
\begin{align*}
& M=\lim _{R \rightarrow \infty} \sup _{\substack{x, t\left\langle\xi \xi \bar{\omega} \geq R \\
0 \leqq t \leqq R^{-1}\right.}}\left\{\left(t+\langle\xi\rangle^{-\infty}\right) \mathcal{I}_{m} f(t, x, \xi)\right\}, \tag{3.4}\\
& M=\lim _{R \rightarrow \infty} \sup _{\substack{x, t\langle\xi \xi| \ldots \geq R \\
0 \leqq t \leqq R^{-1}}}\left\{\eta(t, \xi) \mathcal{I}_{m} f(t, x, \xi)\right\} . \tag{3.4}
\end{align*}
$$

Proof. The uniqueness will be proved after Theorem 3.2. Solving transport equations we first construct an approximate fundamental solution $\widetilde{E_{\phi}}(t, s)$ in the sence

$$
\left\{\begin{array}{l}
L \widetilde{E_{\phi}}(t, s) \equiv 0 \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right) \text { on } 0 \leqq s \leqq t \leqq T_{0} \tag{3.6}\\
\widetilde{E}_{\phi}(s, s)=I
\end{array}\right.
$$

We assume that the symbol $\tilde{e}(t, s, x, \xi)$ of $\widetilde{E_{\phi}}(t, s)$ has the form:

$$
\begin{equation*}
\tilde{e}(t, s, x, \xi) \sim \sum_{v=0}^{\infty} e_{v}(t, s, x, \xi) \quad \bmod \mathscr{D}_{t, s}\left(S^{-\infty}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{\nu}(t, s, x, \xi) \in \bigcap_{0<\varepsilon<1} S[-\nu, M+\varepsilon,-M-\varepsilon] \quad(\nu=0,1,2, \cdots) \tag{3.8}
\end{equation*}
$$

Set

$$
\begin{align*}
g(t, s, x, \xi)=- & i \sum_{|\alpha|=2} \frac{1}{\alpha!} \lambda^{(\alpha)}\left(t, x, \nabla_{x} \phi(t, s, x, \xi)\right) \tag{3.9}\\
& \times \partial_{x}^{\alpha} \phi(t, s, x, \xi)+f\left(t, s, x, \nabla_{x} \phi(t, s, x, \xi)\right)
\end{align*}
$$

and consider

$$
\begin{equation*}
\mathcal{L}=D_{t}-\sum_{|\alpha|=1} \lambda^{(\alpha)}\left(t, x, \nabla_{x} \phi\right) D_{x}^{\alpha}+g(t, s, x, \xi) . \tag{3.10}
\end{equation*}
$$

Then, by the usual expansion formula of Fourier integral operators (See [5]), we have by using (1.24)

$$
\begin{equation*}
\sigma\left(L e_{\nu, \phi}(t, s)\right)(x, \xi)=\mathcal{L} e_{\nu, \phi}+r_{\nu}(t, s, x, \xi) . \tag{3.11}
\end{equation*}
$$

Here

$$
\begin{align*}
r_{\nu}(t, s, x, \xi) \sim-\sum_{|\alpha| \geqq 2} & \frac{1}{\alpha!}\left\{D _ { x ^ { \prime } } ^ { \alpha } \lambda ^ { (\alpha) } \left(\left(t, x, \tilde{\nabla}_{x} \phi\left(t, s, x, x^{\prime}, \xi\right)\right)\right.\right. \tag{3.12}\\
& \left.\left.\quad \times e_{\nu}\left(t, s, x^{\prime}, \xi\right)\right)\right\}_{x^{\prime}=x} \quad \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{x} \phi\left(t, s, x, x^{\prime}, \xi\right)=\int_{0}^{1} \nabla_{x} \phi\left(t, s, x^{\prime}+\theta\left(x-x^{\prime}\right), \xi\right) d \theta . \tag{3.13}
\end{equation*}
$$

Then, from (1.27), (3.2) and (3.8) we see that

$$
\begin{equation*}
r_{\nu}(t, s, x, \xi) \in \bigcap_{0<\varepsilon<1} S[-\nu, M+\varepsilon-1,-M-\varepsilon] \quad(\nu=0,1, \cdots) . \tag{3.14}
\end{equation*}
$$

Hence, if we can determine $e_{\nu}(t, s)$ as the solution of

$$
\left\{\begin{array}{l}
\mathcal{L} e_{0}=0 \quad \text { on } 0 \leqq s \leqq t \leqq T_{0}, \tag{3.15}\\
e_{0}(s, s)=1
\end{array}\right.
$$

and

$$
\begin{cases}\mathcal{L} e_{\nu}+r_{\nu-1}=0 & \text { on } 0 \leqq s \leqq t \leqq T_{0} \tag{3.16}\\ e_{\nu}(s, s)=0 & (\nu=1,2, \cdots)\end{cases}
$$

then we have

$$
\begin{aligned}
\sigma & \left(L \sum_{\nu=0}^{N} e_{\nu, \phi}\left(t, s, X, D_{x}\right)\right) \\
& =\sum_{\nu=0}^{N}\left(\mathcal{L} e_{\nu}+r_{\nu}\right) \\
& =\mathcal{L} e_{0}+\sum_{\nu=1}^{N}\left(\mathcal{L} e_{\nu}+r_{\nu-1}\right)+r_{N} \\
& =r_{N} \in \bigcap_{0<\varepsilon<1} S[-N, M+\varepsilon-1,-M-\varepsilon] .
\end{aligned}
$$

Thus, if we determine $\tilde{e}(t, s, x, \xi)$ so that (3.7) holds and $e(s, s)=1$, then we get (3.6).

Now, we solve (3.15) and (3.16) in what follows. Let $q_{i}(t, s, y, \xi)$ be the solution of (1.23) given by Lemma 1.9. Then, by Corollary 1.12 the equations (3.15) and (3.16) are reduced, respectively, to

$$
\left\{\begin{array}{l}
D_{t} \tilde{e}_{0}(t, s, y, \xi)+\tilde{g}(t, s, y, \xi) \tilde{e}_{0}(t, s, y, \xi)=0 \tag{3.18}\\
\tilde{e}_{0}(s, s, y, \xi)=1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
D_{i} \tilde{e}_{\nu}\left(t, s, y, \tilde{\xi}_{)}\right. \tag{3.19}\\
+\tilde{g}(t, s, y, \xi) \tilde{e}_{v}(t, s, y, \xi)+\tilde{r}_{\nu-1}(t, s, y, \xi)=0 \\
\tilde{e}_{\nu}(s, s, y, \xi)=0 \quad(\nu=1,2, \cdots)
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\tilde{e}_{\nu}(t, s, y, \xi)=e_{\nu}(t, s, q(t, \dot{v}, y, \xi), \xi) \tag{3.20}\\
\tilde{g}(t, s, y, \xi)=g(t, s, q(t, s, y, \xi), \xi) \\
\tilde{r}_{\nu}(t, s, y, \xi)=r_{\nu}(t, s, q(t, s, y, \xi), \xi)
\end{array}\right.
$$

Hence we have

$$
\begin{equation*}
\tilde{e}_{0}(t, s, y, \xi)=\exp \left[-i \int_{s}^{t} \tilde{g}(\sigma, s, y, \xi) d \sigma\right] \tag{3.21}
\end{equation*}
$$

and

$$
\begin{align*}
& \tilde{e}_{\nu}(t, s, y, \xi) \\
= & -i \int_{s}^{t} \tilde{r}_{\nu-1}(\sigma, s, y, \xi) \exp \left[-i \int_{\sigma}^{t} \tilde{g}\left(\sigma^{\prime}, s, y, \xi\right) d \sigma^{\prime}\right] d \sigma . \tag{3.22}
\end{align*}
$$

Consequently, setting

$$
\left\{\begin{array}{l}
\widetilde{\tilde{g}}(t, \sigma, s, x, \xi)=g(\sigma, s, q(\sigma, s, y(t, s, x, \xi), \xi), \xi) \tag{3.23}\\
\widetilde{r}_{\nu}(t, \sigma, s, x, \xi)=r_{\nu}(\sigma, s, q(\sigma, s, y(t, s, x, \xi), \xi), \xi)
\end{array}\right.
$$

for the inverse $y=y(t, s, x, \xi)$ of $x=q(t, s, y, \xi)$ given by Lemma 1.10, we have

$$
\begin{equation*}
e_{0}(t, s, x, \xi)=\exp \left[-i \int_{s}^{t} \widetilde{g}(t, \sigma, s, x, \xi) d \sigma\right] \tag{3.24}
\end{equation*}
$$

and

$$
\begin{align*}
& e_{\nu}(t, s, x, \xi) \\
= & -i \int_{s}^{t} \tilde{r}_{\nu-1}(t, \sigma, s, x, \xi) \exp \left[-i \int_{\sigma}^{t} \tilde{\tilde{g}}\left(t, \sigma^{\prime}, s, x, \xi\right) d \sigma^{\prime}\right] d \sigma . \tag{3.25}
\end{align*}
$$

Now, we first note that from Remark of Theorem 3.1 we have

$$
\begin{align*}
& \left(t+\langle\xi\rangle^{-\omega}\right)\left(1-1 /\left(t\langle\xi\rangle^{\omega}+1\right)\right) \\
\leqq & \eta(t, \xi) \leqq t+\langle\xi\rangle^{-\omega} \tag{3.26}
\end{align*}
$$

By the definition (3.4)' of M there exists for any $\varepsilon>0$ a constant C_{ε} such that

$$
\begin{aligned}
& \quad \operatorname{Imf} f(t, s, \xi) \\
& \leqq(M+\varepsilon / 2)\left(t+\langle\xi\rangle^{-\omega}\right)+C_{\mathrm{\varepsilon}}\left\{1+\langle\xi\rangle^{-\omega} /\left(t+\langle\xi\rangle^{-\omega}\right)^{2}\right\} .
\end{aligned}
$$

Then, using (3.9), (3.23), (3.26), (3.27) and Theorem 1.11, we have

$$
\begin{aligned}
& \operatorname{Re}(-i \tilde{g}(t, \sigma, s, x, \xi)) \\
\leqq & (M+\varepsilon) /\left(\sigma+\langle\xi\rangle^{-\omega}\right)+C_{\varepsilon}^{\prime}\left\{1+\langle\xi\rangle^{-\omega} /\left(\sigma+\langle\xi\rangle^{-\infty}\right)^{2}\right\}
\end{aligned}
$$

for another constant C_{ε}^{\prime}. On the other hand, by (1.5)

$$
\begin{equation*}
\log \left(\left(t+\langle\xi\rangle^{-\omega}\right) /\left(s+\langle\xi\rangle^{-\omega}\right)\right) \leqq \log (\eta(t, \xi) /(\eta(s, \xi))+\log 2 \tag{3.29}
\end{equation*}
$$

Hence, using

$$
\int_{s}^{t}\langle\xi\rangle^{-\omega}\left(\sigma+\langle\xi\rangle^{-\omega}\right)^{2} d \sigma \leqq 1
$$

and (3.28), we have

$$
\begin{equation*}
\left|\exp \left[-i \int_{s}^{t} \widetilde{\tilde{g}}(t, \sigma, s, x, \xi) d \sigma\right]\right| \leqq C_{z}^{\prime \prime}(\eta(t, \xi) / \eta(s, \xi))^{M+z} \tag{3.30}
\end{equation*}
$$

for a constant $C_{\varepsilon}^{\prime \prime}$. We have

$$
\begin{aligned}
& \left|D_{t}^{j} D_{\sigma}^{k} D_{s}^{j^{\prime}} \partial_{\xi}^{\alpha} D_{x}^{\beta} \tilde{\tilde{g}}(t, \sigma, s, x, \xi)\right| \\
\leqq & C_{j, j^{\prime}, k, \alpha, \beta}\langle\xi\rangle^{-|\alpha|} \eta(t, \xi)^{-j} \eta(\sigma, \xi)^{-1-k} \eta(s, \xi)^{-j^{\prime}} .
\end{aligned}
$$

Then, noting

$$
\begin{aligned}
& \quad \int_{s}^{t} \eta(\sigma, \xi)^{-1} d \sigma \leqq 2 \log \left(\left(t+\langle\xi\rangle^{-\omega}\right) /\left(s+\langle\xi\rangle^{-\omega}\right)\right) \\
& \leqq \tilde{C}_{\varepsilon}(\eta(t, \xi) / \eta(s, \xi))^{\varepsilon}
\end{aligned}
$$

for a constant \tilde{C}_{g}, we have

$$
\begin{align*}
& \left|D_{t}^{j} D_{s}^{k} \partial_{\xi}^{\alpha} D_{x}^{\beta} \int_{s}^{t} \widetilde{g}(t, \sigma, s, x, \xi) d \sigma\right| \tag{3.31}\\
\leqq & C_{\varepsilon, j, k, \alpha, \beta}\langle\xi\rangle^{-|\alpha|} \eta(t, \xi)^{-j} \eta(s, \xi)^{-k}(\eta(t, \xi) / \eta(s, \xi))^{\varepsilon} .
\end{align*}
$$

Thus, together with (3.30) we see that

$$
\begin{equation*}
e_{0}(t, s, x, \xi) \in \bigcap_{0<\varepsilon<1} S[0, M+\varepsilon,-M-\varepsilon] . \tag{3.32}
\end{equation*}
$$

We already checked (3.14) for r_{ν} if (3.8) holds for e_{ν}. Hence, if we prove (3.8) for e_{ν} assuming (3.14) for $\nu-1$, then (3.8) holds for any ν. And this fact is clear by (3.25).

Now, from (3.17) we see that there exists $r_{\infty}(t, s, x, \xi) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right)$ such that

$$
\begin{equation*}
L \tilde{e}_{\phi}\left(t, s, X, D_{x}\right)=R_{\infty}(t, s)\left(=r_{\infty}\left(t, s, X, D_{x}\right)\right) \tag{3.33}
\end{equation*}
$$

Then, setting

$$
\left\{\begin{array}{l}
W_{1}(t, s)=-i R_{\infty}(t, s) \tag{3.34}\\
W_{\nu+1}(t, s)=\int_{s}^{t} W_{1}(t, \theta) W_{\nu}(\theta, s) d \theta \quad(\nu=1,2, \cdots),
\end{array}\right.
$$

we get the fundamental solution $E(t, s)$ in the form

$$
\begin{equation*}
E(t, s)={ }_{\phi}(\widetilde{E t}, s)+\int_{s}^{t} \widetilde{E_{\phi}}(t, \theta) \sum_{\nu=1}^{\infty} W_{\nu}(\theta, s) d \theta . \tag{3.35}
\end{equation*}
$$

From the theory of pseudo-differential operators of multiple symbols, there exists a symbol $\tilde{e}_{\infty}(t, s, x, \xi) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right)$ such that

$$
E(t, s)=\tilde{e}_{\phi}\left(t, s, X, D_{x}\right)+\tilde{e}_{\infty, \phi}\left(t, s, X, D_{x}\right)
$$

(cf. [5], [12]). Then, setting

$$
e(t, s, x, \xi)=\tilde{e}(t, s, x, \xi)+\tilde{e}_{\infty}(t, s, x, \xi),
$$

we get the desired result.
Theorem 3.2. The fundamental solution $E_{\phi}(t, s)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ given in Theorem 3.1 has the meaning even when $0 \leqq t \leqq s \leqq T_{0}$, and $E_{\phi}(t, s)\left(0 \leqq t \leqq s \leqq T_{0}\right)$ is the fundamental solution of the backward initial value problem for L, i.e.,

$$
\left\{\begin{array}{l}
L E_{\phi}(t, s)=0 \quad \text { on } 0 \leqq t \leqq s \leqq T_{0} \tag{3.36}\\
E_{\phi}(s, s)=I
\end{array}\right.
$$

Furthermore, we have

$$
\begin{equation*}
e(t, s, x, \xi) \in \bigcap_{0<\varepsilon<1} S\left[0,-M^{\prime}-\varepsilon, M^{\prime}+\varepsilon\right]\left(0 \leqq t \leqq s \leqq T_{0}\right) \tag{3.37}
\end{equation*}
$$

where M^{\prime} is defined by

Proof. We check the proof of Theorem 3.1. We have by Lemma 1.9, 1.10 and Theorem 1.11 that

$$
\left\{\begin{array}{l}
q\left(t, s, y, \xi^{\prime}\right)-y \in S[0,0, l+1] \tag{3.39}\\
y\left(t, s, x, \xi^{\prime}\right)-x \in S[0,0, l+1] \\
\phi(t, s, x, \xi)-x \cdot \xi \in S[1,0, l+1]
\end{array}\right.
$$

on $0 \leqq t \leqq s \leqq T_{0}$. Noting (3.24) we write

$$
e_{0}(t, s, x, \xi)=\exp \left[i \int_{t}^{s} \tilde{g}(t, \sigma, s, x, \xi) d \sigma\right]
$$

on $0 \leqq t \leqq s \leqq T_{0}$. Then, from (3.9) and (3.38)

$$
e_{0}(t, s, x, \xi) \in \bigcap_{0<\varepsilon<1} S\left[0,-M^{\prime}-\varepsilon, M^{\prime}+\varepsilon\right],
$$

and, following the similar procedure to the proof of Theorem 3.1 by keeping in mind the fact $0 \leqq t \leqq s \leqq T_{0}$, we complete the proof.

Proof of the uniquness of $E_{\phi}(t, s)$ in Theorem 3.1. Set

$$
L^{*}=D_{t}-\lambda^{*}\left(t, X, D_{x}\right)+f^{*}\left(t, X, D_{x}\right),
$$

where λ^{*} and f^{*} are the formal adjoints of λ and f, respectively. Then, L^{*} is the formal adjoint of L. Since $\lambda(t, x, \xi)$ is real valued, we see that $\lambda^{*}(t, x, \xi)$ $\lambda(t, x, \xi) \in S[0, l]$, and, there exists a $\tilde{f}^{*}(t, x, \xi) \in S[0,-1]$ such that

$$
L^{*}=D_{t}-\lambda\left(t, X, D_{x}\right)+\tilde{f}^{*}\left(t, X, D_{x}\right) .
$$

Therefore, we can apply Theorem 3.2 to L^{*}. Let $E_{\phi}^{*}(t, s)\left(0 \leqq t \leqq s \leqq T_{0}\right)$ be the fundamental solution of the backward initial value problem for L^{*}.

Now, assume that thr there exist two fundamental solutions $E_{\phi}(t, s)$ and $E_{\phi}^{\prime}(t, s)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ of L in $\bigcap_{0<\varepsilon<1} S[0, M+\varepsilon,-M-\varepsilon]$. For $w \in \mathcal{S}$ we set

$$
u(t, s, x)=\left(E_{\phi}(t, s)-E_{\phi}^{\prime}(t, s)\right) w \quad\left(0 \leqq s \leqq t \leqq T_{0}\right)
$$

Then, $u(t, s, x)$ satisfies

$$
\left\{\begin{array}{l}
L u(t, s, x)=0 \text { on } 0 \leqq s \leqq t \leqq T_{0} \\
u(s, s, x)=0
\end{array}\right.
$$

On the other hand, for $b(t, x) \in \mathcal{B}_{t}(\mathcal{S})$ on $\left[0, T_{0}\right]$ set

$$
v(t, x)=i \int_{T_{0}}^{t} E^{*}(t, \sigma) b(\sigma, x) d \sigma
$$

Then, we have

$$
L^{*} v=b(t, x)\left(0 \leqq t \leqq T_{0}\right), v\left(T_{0}, x\right)=0
$$

Hence, we have

$$
\begin{aligned}
0 & =\int_{s}^{T_{0}}(L u, v) d \sigma=\int_{s}^{T_{0}}\left(u, L^{*} v\right) d \sigma \\
& =\int_{s}^{T_{0}}(u, b) d \sigma \text { for all } b \in \mathscr{B}_{t}(\mathcal{S}) .
\end{aligned}
$$

This means that

$$
\begin{aligned}
& 0=u(t, s, x)=\left(E_{\phi}(t, s)-E_{\phi}^{\prime}(t, s)\right) w \text { for all } \\
& w \in \mathcal{S}\left(0 \leqq s \leqq t \leqq T_{0}\right) .
\end{aligned}
$$

Thus we have $e(t, s, x, \xi)=e^{\prime}(t, s, x, \xi)$.
Corollary 3.3. i) The solution $u(t, x) \in \mathcal{B}_{t}(\mathcal{S})$ on $\left[0, T_{0}\right]$ of the Cauchy problem (3.3) for $\varphi(t) \in \mathscr{B}_{t}(\mathcal{S})$ on $\left[0, T_{0}\right]$ and $\psi \in \mathcal{S}$ exists uniquely and is represented by

$$
\begin{equation*}
u(t, s, x)=E_{\phi}(t, s) \psi+i \int_{s}^{t} E_{\phi}(t, \theta) \varphi(\theta) d \theta . \tag{3.40}
\end{equation*}
$$

ii) We have

$$
\begin{equation*}
E_{\phi}(t, \tau) E_{\phi}(\tau, s)=E_{\phi}(t, s)\left(0 \leqq s, \tau, t \leqq T_{0}\right) . \tag{3.41}
\end{equation*}
$$

Proof. i) It is clear that $u(t, s, x)$ defined by (3.40) is the solution of (3.3). Let $v(t, x) \in \mathscr{B}_{t}(\mathcal{S})$ on $\left[0, T_{0}\right]$ be the solution of (3.3) for $\varphi(t)=0$ and $\psi=0$, and let $E_{\phi}^{*}(t, s)$ be the fundameintal solution for the formal adjoint L^{*} of L. Set

$$
w(t, s)=i \int_{T_{0}}^{t} E_{\phi}^{*}(t, \theta) v(\theta, x) d \theta
$$

Then, we have

$$
L^{*} w=v \text { on }\left[0, T_{0}\right], w\left(T_{0}, x\right)=0
$$

Hence we have

$$
\int_{0}^{T_{0}}(v, v) d t=\int_{0}^{T_{0}}\left(v, L^{*} w\right) d t=\int_{0}^{T_{0}}(L v, w) d t=0
$$

and $v(t, x)=0$ on $\left[0, T_{0}\right]$. This proves the uniqueness of the solution of (3.3).
ii) Set $u(t, \tau, x)=E_{\phi}(t, \tau) E_{\phi}(\tau, s) \psi$ for $\psi \in \mathcal{S}$. Then, u satisfies

$$
\left\{\begin{array}{l}
L u=0 \text { on }\left[0, T_{0}\right] \tag{3.42}\\
u(\tau, \tau, x)=E_{\phi}(\tau, s) \psi
\end{array}\right.
$$

On the other hand $\tilde{u}(t, x)=E_{\phi}(t, s) \psi$ also satisfies (3.42). Hence, by i) we have $u=\tilde{u}$ on $\left[0, T_{0}\right]$ which proves (3.41).

Corollary 3.4. For the operator \boldsymbol{L}_{1} of (2.6) let \boldsymbol{L}_{2} be the operator of the form

$$
\begin{equation*}
\boldsymbol{L}_{2}=\boldsymbol{D}_{t}-\mathscr{D}(t)+\boldsymbol{F}(t) \tag{3.43}
\end{equation*}
$$

Let $E_{j, \phi_{j}}(t, s),\left(0 \leqq s, t \leqq T_{0}\right)$ be the fundamental solution for $L_{j}=D_{t}-\lambda_{j}\left(t, X, D_{x}\right)+$ $f_{j}\left(t, X, D_{x}\right)$. Then, the fundamental solution $\boldsymbol{E}_{2}(t, s)\left(0 \leqq s, t \leqq T_{0}\right)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
\boldsymbol{L}_{2} U=\Phi(t) \text { on }\left[0, T_{0}\right] \tag{3.44}\\
\left.U\right|_{t=s}=\Psi\left(0 \leqq s \leqq T_{0}\right)
\end{array}\right.
$$

exists uniquely in the form

$$
E_{2}(t, s)=\left[\begin{array}{ccc}
E_{1, \phi_{1}}(t, s) & 0 \tag{3.45}\\
0 & \ddots & \\
0 & E_{m, \phi_{m}}(t, s)
\end{array}\right] .
$$

4. Construction of fundamental solution. The first order system case. In the first place we prove the fundamental lemma.

Lemma 4.1. Let L_{1} be the operator of the form (2.6). Then, the fundamental solution $\boldsymbol{E}_{1}(t, s)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
L_{1} U=\Phi(t) \text { on }\left[s, T_{0}\right], \tag{4.1}\\
\left.U\right|_{t=s}=\Psi\left(0 \leqq s \leqq T_{0}\right)
\end{array}\right.
$$

exists in the form

$$
\begin{equation*}
\boldsymbol{E}_{1}(t, s)=\boldsymbol{E}_{2}(t, s)(I+\boldsymbol{Q},(t s))+\boldsymbol{Q}_{\infty}(t, s), \tag{4.2}
\end{equation*}
$$

where $\boldsymbol{E}_{2}(t, s)$ is the fundamental solution for \boldsymbol{L}_{2} in Corollary 3.4, and $\boldsymbol{Q}(t, s), \boldsymbol{Q}_{\infty}(t, s)$ satisfy

$$
\left\{\begin{array}{l}
\boldsymbol{Q}(s, s)=0, \sigma(\boldsymbol{Q}(t, s))(x, \xi) \in S[0,0,0] \tag{4.3}\\
\boldsymbol{Q}_{\infty}(s, s)=0, \sigma\left(\boldsymbol{Q}_{\infty}(t, s)\right)(x, \xi) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right)
\end{array}\right.
$$

$\left(0 \leqq s \leqq t \leqq T_{0}\right)$.
Proof. If we find \boldsymbol{Q} such that $\tilde{\boldsymbol{E}}_{1}(t, s)=\boldsymbol{E}_{2}(t, s)(I+\boldsymbol{Q}(t, s))$ satisfies

$$
\begin{equation*}
\sigma\left(\boldsymbol{L}_{1} \tilde{\boldsymbol{E}}_{1}\right)=\sigma\left(\boldsymbol{R} \boldsymbol{E}_{2}+\boldsymbol{R} \boldsymbol{E}_{2} \boldsymbol{Q}+\boldsymbol{E}_{2} \boldsymbol{D}_{t} \boldsymbol{Q}\right) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right) \tag{4.4}
\end{equation*}
$$

then $\tilde{E}_{1}(t, s)$ is an approximate fundamental solution for \boldsymbol{L}_{1}. Hence by the usual procedure, which also used in the proof of Theorem 3.1, we can find $\boldsymbol{E}_{1}(t, s)$ in the form (4.2).

Set

$$
\begin{equation*}
\tilde{\boldsymbol{R}}(t, s)=\boldsymbol{E}_{2}(s, t) \boldsymbol{R}(t) \boldsymbol{E}_{2}(t) \quad \text { with } \boldsymbol{R}(t) \text { of (2.6). } \tag{4.5}
\end{equation*}
$$

Then, we see that (4.4) is equivalent to

$$
\begin{align*}
& \sigma\left(\boldsymbol{D}_{t} \boldsymbol{Q}(t, s)+\tilde{\boldsymbol{R}}(t, s) \boldsymbol{Q}(t, s)+\tilde{\boldsymbol{R}}(t, s)\right) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right) \tag{4.6}\\
&\left(0 \leqq s \leqq t \leqq T_{0}\right) .
\end{align*}
$$

We find such $\boldsymbol{Q}(t . s)=\boldsymbol{q}\left(t, s, X, D_{x}\right)$ in the form

$$
\left\{\begin{array}{l}
\boldsymbol{q}_{\nu}(t, s) \in S[-\nu, 0,0] \quad\left(0 \leqq s \leqq t \leqq T_{0}\right) \tag{4.7}\\
\boldsymbol{q}_{\nu}(s, s)=0
\end{array}\right.
$$

and

$$
\begin{equation*}
\boldsymbol{q}(t, s) \sim \boldsymbol{q}_{0}(t, s)+\boldsymbol{q}_{1}(t, s)+\cdots \bmod \mathscr{B}_{t, s}\left(S^{-\infty}\right) . \tag{4.8}
\end{equation*}
$$

We first note that from Theorem 3.1, 3.2 and Corollary 3.4

$$
\left\{\begin{array}{c}
\sigma\left(\boldsymbol{E}_{2}(t, s)\right)(x, \xi) \in \bigcap_{0<\varepsilon<1} S[0, \boldsymbol{M}+\varepsilon,-\boldsymbol{M}-\varepsilon] \tag{4.9}\\
\left(0 \leqq s \leqq t \leqq T_{0}\right) \\
\sigma\left(\boldsymbol{E}_{2}(s, t)\right)(x, \xi) \in \bigcap_{0<\varepsilon<1} S\left[0, \boldsymbol{M}^{\prime}+\varepsilon,-\boldsymbol{M}^{\prime}-\varepsilon\right] \\
\left(0 \leqq s \leqq t \leqq T_{0}\right)
\end{array}\right.
$$

where

Hence, setting $\tilde{\boldsymbol{r}}(t, s, x, \xi)=\sigma(\tilde{\boldsymbol{R}}(t, s))(x, \xi)$, we have by Lemma 1.13

$$
\begin{align*}
& \tilde{\boldsymbol{r}}(t, s, x, \xi) \tag{4.11}\\
& \quad \in \bigcap_{0<\varepsilon<1} \bigcap_{v \geqq 1} S\left[\omega-j, \boldsymbol{M}+\boldsymbol{M}^{\prime}+\varepsilon-j(l+1),-\boldsymbol{M}-\boldsymbol{M}^{\prime}-\varepsilon\right] .
\end{align*}
$$

Then, noting

$$
\begin{aligned}
(\eta(t, \xi) / \eta(s, \xi))^{\nu} & \leqq\left(\eta(t, \xi)^{l+1}\langle\xi\rangle\right)^{\nu \omega}\left(\eta(s, \xi)\langle\xi\rangle^{\omega}\right)^{-\nu} \\
& \leqq\left(\eta(t, \xi)^{l+1}\langle\xi\rangle\right)^{\nu \omega}
\end{aligned}
$$

we see that

$$
\begin{equation*}
\tilde{r}(t, s, x, \xi) \in \bigcap_{j \geq 1} S[\omega-j,-j(l+1), 0] \tag{4.12}
\end{equation*}
$$

If we assume (4.7), we can write for $\boldsymbol{Q}_{\nu}(t, s)=\boldsymbol{q}_{\nu}\left(t, s, X, D_{x}\right)$

$$
\begin{equation*}
\sigma\left(\boldsymbol{D}_{t} \boldsymbol{Q}_{\phi}+\tilde{\boldsymbol{R}} \boldsymbol{Q}_{\nu}\right)=\boldsymbol{D}_{t} \boldsymbol{q}_{\nu}+\tilde{\boldsymbol{r}} \boldsymbol{q}_{\nu}+\boldsymbol{r}_{\nu} \quad(\nu=0,1, \cdots) \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\nu}(t, s, x, \xi) \in S[\omega-\nu-1,0,0] \tag{4.14}
\end{equation*}
$$

Now, using (4.13) we define \boldsymbol{q}_{ν} by

$$
\left\{\begin{array}{l}
\boldsymbol{D}_{t} \boldsymbol{q}_{\nu}+\tilde{\boldsymbol{r}}_{\nu}+\boldsymbol{r}_{v-1}=0\left(\boldsymbol{r}_{-1}=\tilde{\boldsymbol{r}}\right) \tag{4.15}\\
\boldsymbol{q}_{\nu}(s, s)=0 \quad(\nu=0,1, \cdots)
\end{array}\right.
$$

inductively. Then, if we check (4.7) for \boldsymbol{q}_{v}, we get $\boldsymbol{q}(t, s, x, \xi)$ by (4.8).
The solution of (4.15) can be written in the form

$$
\begin{align*}
& \boldsymbol{q}_{\nu}(t, s)=-i \int_{s}^{t} \boldsymbol{r}_{\nu-1}\left(s_{1}, s\right) d s_{1} \tag{4.16}\\
&+ \sum_{\mu=2}^{\infty}(-i)^{\mu} \int_{s}^{t} d s_{1} \int_{s 2}^{s_{1}} d s_{2} \cdots \int_{s}^{s \mu-1} \tilde{\boldsymbol{r}}\left(s_{1}, s\right) \\
& \quad \cdots \tilde{\boldsymbol{r}}\left(s_{\mu-1}, s\right) \boldsymbol{r}_{\nu-1}\left(s_{\mu}, s\right) d_{s \mu}
\end{align*}
$$

By (4.12) we have

$$
\begin{equation*}
|\tilde{\boldsymbol{r}}(t, s)| \leqq C\langle\xi\rangle^{\omega}\left(t\langle\xi\rangle^{\omega}+1\right)^{-2} \tag{4.17}
\end{equation*}
$$

and get

$$
\begin{align*}
\int_{s}^{t}|\tilde{r}(\sigma, s)| d \sigma & \leqq \int_{s}^{t} C\langle\xi\rangle^{\omega}\left(\sigma\langle\xi\rangle^{\omega}+1\right)^{-2} d \sigma \tag{4.18}\\
& =-\left[C /\left(\sigma\langle\xi\rangle^{\omega}+1\right)\right]_{s}^{t} \\
& \leqq C(t-s) /\left(t+\langle\xi\rangle^{-\omega}\right)
\end{align*}
$$

Set

$$
\begin{align*}
& I_{\mu}(t, s, x, \xi) \tag{4.19}\\
= & \int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{\mu-1}}\left|\tilde{\boldsymbol{r}}\left(s_{1}, s\right)\right| \cdots\left|\tilde{\boldsymbol{r}}\left(s_{\mu}, s\right)\right| d s_{\mu}
\end{align*}
$$

and assume

$$
I_{\mu}(t, s, x, \xi) \leqq \frac{C^{\mu}(t-s)^{\mu}}{\mu!\left(t+\langle\xi\rangle^{-\omega}\right)^{\mu}} .
$$

Then, we have

$$
\begin{aligned}
I_{\mu+1}(t, s, x, \xi) & \leqq \int_{s}^{t} \frac{C\langle\xi\rangle^{\omega}}{\left(\sigma\langle\xi\rangle^{\omega}+1\right)^{2}} \frac{C^{\mu}(\sigma-s)^{\mu}}{\mu!\left(\sigma+\langle\xi\rangle^{-\omega}\right)^{\mu}} d \sigma \\
& =\frac{C^{\mu+1}\langle\xi\rangle^{-\omega}}{\mu!} \int_{s}^{t} \frac{(\sigma-s)^{\mu}}{\left(\sigma+\langle\xi\rangle^{-\omega}\right)^{\mu+2}} d \sigma
\end{aligned}
$$

and setting $z=(\sigma-s) /\left(\sigma+\langle\xi\rangle^{-\omega}\right)$ we have

$$
\begin{aligned}
\int_{s}^{t} \frac{(\sigma-s)^{\mu}}{\left(\sigma+\langle\xi\rangle^{-\omega}\right)^{\mu+2}} d \sigma & =\left(s+\langle\xi\rangle^{-\omega}\right)^{-1} \int_{0}^{(t-s) /(t+\langle\xi\rangle-\omega)} z^{\mu} d z \\
& =\frac{(t-s)^{\mu+1}}{(\mu+1)\left(s+\langle\xi\rangle^{-\omega}\right)\left(t+\langle\xi\rangle^{-\omega}\right)^{\mu+1}} .
\end{aligned}
$$

So we have

$$
I_{\mu+1}(t, s, x, \xi) \leqq \frac{C^{\mu+1}(t-s)^{\mu+1}}{(\mu+1)!\left(t+\langle\xi\rangle^{-\omega}\right)^{\mu+1}}
$$

With (4.19) we have

$$
\begin{equation*}
I_{\mu}(t, s, x, \xi) \leqq \frac{C^{\mu}(t-s)^{\mu}}{\mu!\left(t+\langle\xi\rangle^{-\omega}\right)^{\mu}} \quad(\mu=1,2, \cdots) . \tag{4.20}
\end{equation*}
$$

Thus, from (4.16) for $\nu=0$ we have

$$
\begin{align*}
\left|\boldsymbol{q}_{0}(t, s)\right| & \leqq \sum_{\mu=1}^{\infty} \frac{C^{\mu}(t-s)^{\mu}}{\mu!\left(t+\langle\xi\rangle^{-\omega}\right)^{\mu}} \tag{4.21}\\
& \leqq \exp \left[\frac{C(t-s)}{t+\langle\xi\rangle^{-\omega}}\right]-1 .
\end{align*}
$$

Differentiate the both sides of (4.16) and estimate similarly. Then, we see that

$$
\begin{equation*}
\boldsymbol{q}_{0}(t, s, x, \xi) \in S[0,0,0], \boldsymbol{q}_{0}(s, s)=0 \tag{4.22}
\end{equation*}
$$

Now, assume that (4.7) holds for some $\nu \geqq 0$. Then, by (4.14)

$$
\begin{equation*}
\int_{s}^{t}\left|r_{\nu}(\sigma, s)\right| d \sigma \leqq C(t-s)\langle\xi\rangle^{\omega-\nu-1} \tag{4.23}
\end{equation*}
$$

Hence, in (4.16) we use

$$
\begin{aligned}
\int_{s}^{s_{\mu-1}}\left|r_{\nu-1}\left(s_{\mu}, s\right)\right| d s_{\mu} & \leqq C\left(s_{\mu-1}-s\right)\langle\xi\rangle^{\omega-\nu-1} \\
& \leqq C(t-s)\langle\xi\rangle^{\omega-\mu-1}
\end{aligned}
$$

Then, by (4.20) we have

$$
\begin{align*}
\left|\boldsymbol{q}_{\nu}(t, s)\right| & \leqq C_{\nu}\langle\xi\rangle^{\omega-\nu-1} \exp \left[\frac{C(t-s)}{t+\langle\xi\rangle^{-\omega}}\right] \tag{4.24}\\
& \leqq C_{\nu} e\langle\xi\rangle^{\omega-\nu-1},
\end{align*}
$$

and finally get (4.7) for all $\nu \geqq 0$. Q.E.D.
Now, we shall state the main theorem of the present paper.
Theorem 4.2. Let \boldsymbol{L} and \boldsymbol{L}_{0} be the operators of the form (2.3) and (2.1), respectively. Let $\boldsymbol{N}(t)$ and $\tilde{\boldsymbol{N}}(t)$ be the perfect diagonalizers for L and \boldsymbol{L}_{0}, respectively, and let $\boldsymbol{E}_{1}(t, s)$ be the fundamental sclution for \boldsymbol{L}_{1} of (2.6).

Then, the fundamental sulutions $\boldsymbol{E}(t, s)$ and $\boldsymbol{E}_{0}(t, s)$ for \boldsymbol{L} and \boldsymbol{L}_{0} can be found in the forms

$$
\left\{\begin{array}{l}
\boldsymbol{E}(t, s)=\boldsymbol{N}(t) \boldsymbol{E}_{1}(t, s) \boldsymbol{N}^{*}(s)+\boldsymbol{R}_{\infty}(t, s), \tag{4.25}\\
\sigma\left(\boldsymbol{R}_{\infty}(t, s)\right)(x, \xi) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right) \quad\left(0 \leqq s \leqq t \leqq T_{0}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\boldsymbol{E}_{0}(t, s)=\tilde{\boldsymbol{N}}(t) \boldsymbol{E}_{1}(t, s) \tilde{\boldsymbol{N}}^{\sharp}(s)+\tilde{\boldsymbol{R}}_{\infty}(\dot{i}, s) \tag{4.26}\\
\sigma\left(\tilde{\boldsymbol{R}}_{\infty}(t, s)\right)(x, \xi) \in \mathscr{B}_{t, s}\left(S^{-\infty}\right)\left(0 \leqq s \leqq t \leqq T_{0}\right)
\end{array}\right.
$$

respectively, where $N^{*}(s)$ and $\tilde{N}^{*}(s)$ are the parametrices of $\boldsymbol{N}(s)$ and $\tilde{N}(s)$, respectively.

Furthermore, both $\boldsymbol{E}(t, s)$ and $\boldsymbol{E}_{0}(t, s)$ are represented as the sums of Fourier integral operators with phase functions $\phi_{j}(t, s), j=1, \cdots, m$ and symbols of class

$$
\begin{equation*}
\bigcap_{0<\varepsilon<1} S[0, M+\varepsilon,-M-\varepsilon] . \tag{4.27}
\end{equation*}
$$

Proof. It is easy to see that

$$
\boldsymbol{N}(t) \boldsymbol{E}_{1}(t, s) \boldsymbol{N}^{\sharp}(s)+\left(I-\boldsymbol{N}(s) \boldsymbol{N}^{*}(s)\right)
$$

is an approximate fundamental solution for \boldsymbol{L}. Then, noting $\sigma\left(I-\boldsymbol{N}(s) \boldsymbol{N}^{\sharp}(s)\right)$ $\in \mathscr{B}_{s}\left(S^{-\infty}\right)$ and solving the integral equation as in (3.35) we get (4.25). Since by Lemma 4.1, $\boldsymbol{E}_{1}(t, s)$ is the sum of Fourier integral operators with phase func-
tions $\phi_{j}(t, s)$ and symbols of class stated in (4.27), the rest of the proof for \boldsymbol{L} is clear. Similarly we get for \boldsymbol{L}_{0}.

Theorem 4.3. The Cauchy problem

$$
\left\{\begin{array}{l}
\boldsymbol{L} U=0 \text { on }\left[s, T_{0}\right] \tag{4.28}\\
\left.U\right|_{t=s}=\Psi \in H_{\sigma},\left(0 \leqq s \leqq T_{0}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\boldsymbol{L}_{0} U=0 \text { on }\left[s, T_{0}\right] \tag{4.29}\\
\left.U\right|_{t=s}=\Psi \in H_{\sigma},\left(0 \leqq s \leqq T_{0}\right)
\end{array}\right.
$$

have the unique solutions $U(t, s)$ and $U_{0}(t, s)$ in the form

$$
\begin{equation*}
U(t, s)=\boldsymbol{E}(t, s) \Psi, U_{0}(t, s)=\boldsymbol{E}_{0}(t, s) \Psi \tag{4.30}
\end{equation*}
$$

respectively, where H_{σ} is the usual Sobolev space for real σ. Furthermore, for any $\varepsilon>0$ we have

$$
\begin{equation*}
\left\|\gamma_{M+\varepsilon} U\right\|_{\sigma},\left\|\gamma_{M+\varepsilon} U_{0}\right\|_{\sigma} \leqq C_{\varepsilon}\|\Psi\|_{\sigma} \quad\left(0 \leqq s \leqq t \leqq T_{0}\right) \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U\|_{\sigma-(M+\varepsilon)_{\omega}},\left\|U_{0}\right\|_{\sigma-(M+\varepsilon)_{\omega}} \leqq C_{\varepsilon}^{\prime}\|\Psi\|_{\sigma} \quad\left(0 \leqq s \leqq t \leqq T_{0}\right) \tag{4.32}
\end{equation*}
$$

where $\gamma_{M+\mathrm{e}}=\gamma_{M+\mathrm{e}}\left(t, s, X, D_{x}\right)$ is defined by

$$
\gamma_{M+\varepsilon}(t, s, x, \xi)=(\eta(s, \xi) / \eta(t, \xi))^{M+\varepsilon}
$$

Remark. From (4.32) we see that $\boldsymbol{M} \omega$ denotes the supremum of regularity loss of the solution. It should be noted that in Kumano-go [7] the constant \boldsymbol{M} is determind as a sufficiently large number depending on \boldsymbol{L}, and that constants C_{ε} and C_{ε}^{\prime} are independent of t and s for $0 \leqq s \leqq t \leqq T_{0}$.

Proof. Since $\gamma_{M+\varepsilon} E(t, s)$ is the sum of Fourier integral operators with symbols of class $S[0,0,0]$, we have (4.31) for $0 \leqq s \leqq t \leqq T_{0}$ and $U(t, s)$. Since

$$
\begin{aligned}
\left\|\gamma_{M+\varepsilon} U\right\|_{\sigma} & \geqq 2^{-(M+\varepsilon)}\left\|\eta\left(s, D_{x}\right)^{M+\varepsilon} U\right\|_{\sigma} \\
& \geqq 2^{-(M+\varepsilon)}\|U\|_{\sigma-(M+\varepsilon)_{\omega}},
\end{aligned}
$$

we get (4.32) for $0 \leqq s \leqq t \leqq T_{0}$ and $U(t, s)$. The rest of the proof is done similarly.
5. The higher order case. In this section we consider a single higher order operator of the following type:

$$
\left\{\begin{array}{l}
L=D_{t}^{m}+\sum_{k=1}^{m} a_{k}\left(t, X, D_{x}\right) D_{t}^{m-k} \tag{5.1}\\
a_{k}(t, x, \xi)=\sum_{j=0}^{k} \eta(t)^{(k-j)(l+1)-k} a_{k, j}(t, x, \xi) \\
a_{k, j}(t, x, \xi) \in S[k-j, 0] \text { on }[0, T] \times R_{x}^{n} \times R_{\xi}^{n}
\end{array}\right.
$$

and consider the Cauchy problem

$$
\begin{cases}L u=\varphi(t) & \text { on }\left[s, T_{0}\right], \tag{5.2}\\ \left.D_{t} u\right|_{t=s}=\psi_{j} & (j=0, \cdots, m-1) .\end{cases}
$$

Set

$$
\begin{equation*}
P(\lambda)=\lambda^{m}+a_{1,0} \lambda^{m-1}+\cdots+a_{m, 0} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(\lambda)=a_{1,1} \lambda^{m-1}+a_{2,1} \lambda^{m-2}+\cdots+a_{m, 1} . \tag{5.4}
\end{equation*}
$$

Theorem 5.1. Let the roots $\mu_{1}(t, x, \xi), \cdots, \mu_{m}(t, x, \xi)$ of $P(\lambda)=0$ be real valued and satisfy (0.3) for a constant $c>0$.

Then, the equation $L u=\varphi$ can be reduced to a system $L U={ }^{t}(0, \cdots, 0, \varphi)$, where \boldsymbol{L} has the form (2.3) with $\lambda_{j}(t, x, \xi)=\eta(t)^{l} \mu_{j}(t, x, \xi), j=1, \cdots, m$. The constant \boldsymbol{M} of (4.10) is given by

$$
\begin{equation*}
M=\max _{1 \leqq k \leqq m} \lim _{R \rightarrow \infty} \sup _{\substack{x, t \leq \xi \in \xi^{(\omega) \geq R} \\ 0 \leqq t \leq R^{-1}}}\left\{J_{k}(t, x, \xi)\right\}+l(m-1) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{k}(t, x, \xi)=\frac{g_{m} G\left(\mu_{k}\right)-\eta\left((t) \partial_{t} \mu_{k}+l \mu_{k}\right) P^{\prime \prime}\left(\mu_{k}\right) / 2}{P^{\prime}\left(\mu_{k}\right)}, \\
& P^{\prime}=\partial_{\lambda} P \quad \text { and } \quad P^{\prime \prime}=\partial_{\lambda}^{2} P .
\end{aligned}
$$

Remark. It is easily verified that the differential operator of the form (0.11) satisfies (5.1).

Proof. I (Reduction to first order system). Let

$$
\boldsymbol{H}(t)=\left[\begin{array}{ccc}
h\left(t, D_{x}\right)^{1-m} & & \tag{5.6}\\
& h\left(t, D_{x}\right)^{2-m} & 0 \\
0 & & \ddots \\
& & 1
\end{array}\right]
$$

where $h(t, \xi)$ is the symbol defined in Lemma 1.4, and set

$$
U=\boldsymbol{H}(t)\left[\begin{array}{c}
u \tag{5.7}\\
D_{t} u \\
\cdots \cdots \\
D_{t}^{m-1} u
\end{array}\right] .
$$

Then, $L u=\varphi$ is reduced to a first order system $\boldsymbol{L}_{0} U=\Phi$, where

$$
\begin{align*}
\boldsymbol{L}_{0} & =\boldsymbol{D}_{t}-\boldsymbol{A}(t), \\
\sigma(\boldsymbol{A}(t)) & =\left[\begin{array}{cccc}
(m-1) h_{t} h^{-1}, & h & & \\
& (m-2) h_{t} h^{-1}, & h & 0 \\
0 & \ddots \ddots & \ddots & \\
-a_{m} h^{1-m}, & -a_{m-1} h^{2-m}, & \cdots, & -a_{2} h^{-1}, \\
h_{i} h^{-1}, & h
\end{array}\right] \tag{5.8}
\end{align*}
$$

and $\Phi={ }^{t}(0,0, \cdots, 0, \varphi)$.
By Lemma 1.2, 1.4, Proposition 1.6 and its Corollary we have $\sigma(\boldsymbol{A}(\boldsymbol{t})) \in$ $S[1, l]$.

II (Principal and sub-principal part). We set

$$
\sigma\left(A_{1}(t)\right)=\left[\begin{array}{cccc}
0, & & & h \\
\ddots & & 0 \\
0 & & \ddots & 0 \\
& & \ddots & 0 \\
-\eta^{l} a_{m, 0}\langle\xi\rangle^{1-m},-\eta^{l} a_{m-1,0}\langle\xi\rangle^{2-m}, \cdots,-\eta^{l} a_{1,0}
\end{array}\right]
$$

and

$$
\sigma\left(\boldsymbol{A}_{0}(t)\right)=\frac{1}{\eta}\left[\begin{array}{ccc}
-i(m-1) l & & 0 \\
0 & -i(m-2) l & \\
\ddots \ddots, & \\
-a_{m, 1}\langle\xi\rangle^{1-m},-a_{m-1,1}\langle\xi\rangle^{2-m}, \cdots, & -a_{1,1}
\end{array}\right]
$$

Then, we have

$$
\left\{\begin{array}{l}
\sigma\left(\boldsymbol{A}_{1}(t)\right) \in S[1, l] \tag{5.9}\\
\sigma\left(\boldsymbol{A}_{0}(t)\right) \in S[0,-1] \\
\sigma\left(\boldsymbol{A}(t)-\boldsymbol{A}_{1}(t)-\boldsymbol{A}_{0}(t)\right) \in S[-1,-(l+1)-1]
\end{array}\right.
$$

This follows from

$$
\begin{aligned}
& a_{k} h^{1-k}-\eta^{l} a_{k, 0}\langle\xi\rangle^{1-k}-\eta^{-1} a_{k, 1}\langle\xi\rangle^{1-k} \\
= & \sum_{j=2}^{k} \eta^{(k-j)(l+1)-k} a_{k, j} h^{1-k} \in S[-1,-(l+1)-1]
\end{aligned}
$$

and

$$
-(m-j) h_{t} h^{-1}-i(m-j) l \eta^{-1} \in \mathcal{H}^{\omega} .
$$

III (Diagonalizer). The diagonalizer $\boldsymbol{N}_{0}(t)$ of \boldsymbol{L}_{0} is given by

$$
\sigma\left(N_{0}(t)\right)=\left[\begin{array}{ccc}
1 & , \cdots, & 1 \tag{5.10}\\
\mu_{1} /\langle\xi\rangle & , \cdots, & \mu_{m} /\langle\xi\rangle \\
\cdots \cdots & & \\
\left(\mu_{1} /\langle\xi\rangle\right)^{m-1} & , \cdots, & \left(\mu_{m} /\langle\xi\rangle\right)^{m-1}
\end{array}\right]
$$

To prove this it is enough to show that

$$
\begin{equation*}
\text { the }(j, k) \text {-element of } \sigma\left(\boldsymbol{N}_{0}\right)^{-1} \sigma\left(\boldsymbol{A}_{1}\right) \sigma\left(\boldsymbol{N}_{0}\right)=\delta_{j, k} \eta^{l} \mu_{k} \tag{5.11}
\end{equation*}
$$

where $\delta_{j, k}=1$ if $j=k,=0$ if $j \neq k$. And, this follows from

$$
\begin{aligned}
\text { the }(j, k) \text {-element of } \sigma\left(A_{1}\right) \sigma\left(N_{0}\right) & =\eta^{l} \mu_{k}\left(\mu_{k} /\langle\xi\rangle\right)^{j-1} \\
& \text { for } j=1, \cdots, m-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { the }(m, k) \text {-element of } \sigma\left(A_{1}\right) \sigma\left(N_{0}\right) \\
& =-\eta^{l}\langle\xi\rangle^{1-m}\left\{a_{m, 0}+a_{m-1,0} \mu_{k}+\cdots+a_{1,0} \mu_{k}^{m-1}\right\} \\
& =\eta^{l} \mu_{k}\left(\mu_{k} \mid\langle\xi\rangle\right)^{m-1}
\end{aligned}
$$

and

$$
\sum_{v=1}^{m} q_{j, v}\left(\mu_{k} \mid\langle\xi\rangle\right)^{v-1}=\delta_{j, k},
$$

where $q_{j, \nu}$ is the (j, ν)-element of $\sigma\left(\boldsymbol{N}_{0}\right)^{-1}$.
IV (Computation of $\boldsymbol{M})$. We have

$$
\begin{aligned}
& \text { the }(j, k) \text {-element of } \eta \sigma\left(A_{0}\right) \sigma\left(\boldsymbol{N}_{0}\right)=-i(m-j) l\left(\mu_{k} /\langle\xi\rangle\right)^{j-1} \\
& \text { for } j=1, \cdots, m-1
\end{aligned}
$$

and

$$
\text { the }(m, k) \text {-element of } \eta \sigma\left(\boldsymbol{A}_{0}\right) \sigma\left(\boldsymbol{N}_{0}\right)=-G\left(\mu_{k}\right)\langle\xi\rangle^{1^{-m}}
$$

We define polynomials $Q_{j}(\lambda)$ of $\lambda(j=1, \cdots, m)$ by

$$
\begin{equation*}
Q_{j}(\lambda)=\sum_{\nu=1}^{m} q_{j, \nu}\langle\xi\rangle^{1-\nu} \lambda^{\nu-1} \tag{5.12}
\end{equation*}
$$

Then we have

$$
Q_{j}\left(\mu_{k}\right)=\delta_{i, k} .
$$

Thus we have

$$
Q_{j}(\lambda)=\prod_{k \neq j}\left(\lambda-\mu_{k}\right) /\left(\mu_{j}-\mu_{k}\right)
$$

and

$$
\partial_{\lambda} Q_{k}\left(\mu_{k}\right)=\frac{1}{2} P^{\prime \prime}\left(\mu_{k}\right) / P^{\prime}\left(\mu_{k}\right)
$$

Since $q_{j, m}=\langle\xi\rangle^{m-1} / P^{\prime}\left(\mu_{k}\right)$, we have

$$
\begin{align*}
& \text { the }(k, k) \text {-element of } \eta \sigma\left(N_{0}\right)^{-1} \sigma\left(A_{0}\right) \sigma\left(\boldsymbol{N}_{0}\right) \tag{5.13}\\
& \begin{aligned}
= & -i \sum_{\nu=1}^{m-1} q_{k, \nu}(m-\nu) l\left(\mu_{k} /\langle\xi\rangle\right)^{\nu-1}-q_{k, m} G\left(\mu_{k}\right)\langle\xi\rangle^{m-1} \\
= & -i l m \sum_{\nu=1}^{m} q_{k, \nu}\left(\mu_{k}\langle\langle\xi\rangle)^{\nu-1}+i l \sum_{\nu=1}^{m} \nu q_{k, \nu}\left(\mu_{k} /\langle\xi\rangle\right)^{\nu-1}\right. \\
& -G\left(\mu_{k}\right) / P^{\prime}\left(\mu_{k}\right) \\
= & -i l m+i l\left\{\partial_{\lambda}\left(\lambda Q_{k}(\lambda)\right)\right\}_{\lambda=\mu_{k}}-G\left(\mu_{k}\right) / P^{\prime}\left(\mu_{k}\right) \\
= & -i l(m-1)-\left(G\left(\mu_{k}\right)-\frac{i}{2} l \mu_{k} P^{\prime \prime}\left(\mu_{k}\right)\right) / P^{\prime}\left(\mu_{k}\right) .
\end{aligned}
\end{align*}
$$

We also have

$$
\begin{equation*}
\text { the }(k, k) \text {-element of } \sigma\left(\boldsymbol{N}_{0}\right)^{-1} \sigma\left(\boldsymbol{N}_{0, t}\right) \tag{5.14}
\end{equation*}
$$

$$
\begin{aligned}
& =\mu_{k, t} \sum_{\nu=2}^{m} q_{k, \nu}(\nu-1) \mu_{k}^{\nu-2}\langle\xi\rangle^{1-\nu} \\
& =\mu_{k, t} \partial_{\lambda} Q_{k}\left(\mu_{k}\right) \\
& =-\frac{i}{2}\left(\partial_{t} \mu_{k}\right) P^{\prime \prime}\left(\mu_{k}\right) / P^{\prime}\left(\mu_{k}\right)
\end{aligned}
$$

V (End of the proof of Theorem 5.1). If we set

$$
\begin{equation*}
L=D_{t}-N_{0}^{*} A N_{0}+N_{0}^{*} N_{0, t} \tag{5.15}
\end{equation*}
$$

then we have

$$
\boldsymbol{N}_{0} L \equiv L_{0} \boldsymbol{N}_{0} \quad \bmod \mathscr{B}_{t}\left(S^{-\infty}\right)
$$

By (5.9) and (5.11) we have

$$
\boldsymbol{L}=\boldsymbol{D}_{\boldsymbol{t}}-\mathscr{D}+\boldsymbol{B}
$$

where

$$
\sigma(\mathscr{D})=\eta^{l}\left[\begin{array}{ccc}
\mu_{1}(t, x, & \xi) & 0 \\
0 & \ddots & 0 \\
& \mu_{m}(t, x, \xi)
\end{array}\right]
$$

and $\sigma(\boldsymbol{B}) \in S[0,-1]$. We set

$$
\begin{aligned}
& c_{k}(t, x, \xi) \\
& =\text { the }(k, k) \text {-element of } \sigma(\boldsymbol{B}) \\
& -\left\{i l(m-1)+\left(G\left(\mu_{k}\right)-\frac{i}{2}\left(\eta \partial_{t} \mu_{k}+l \mu_{k}\right) P^{\prime \prime}\left(\mu_{k}\right)\right) / P^{\prime}\left(\mu_{k}\right)\right\} / \eta
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sigma\left(\boldsymbol{N}_{0}^{\ddagger} A_{1} \boldsymbol{N}_{0}\right)-\sigma\left(\boldsymbol{N}_{0}\right)^{-1} \sigma\left(A_{1}\right) \sigma\left(\boldsymbol{N}_{0}\right) \in S[0,0], \\
& \sigma\left(\boldsymbol{N}_{0}^{\ddagger} A_{0} \boldsymbol{N}_{0}\right)-\sigma\left(\boldsymbol{N}_{0}\right)^{-1} \sigma\left(A_{0}\right) \sigma\left(\boldsymbol{N}_{0}\right) \in S[-1,-1]
\end{aligned}
$$

and

$$
\sigma\left(\boldsymbol{N}_{0} \boldsymbol{N}_{0, t}\right)-\sigma\left(\boldsymbol{N}_{0}\right)^{-1} \sigma\left(\boldsymbol{N}_{0, t}\right) \in S[-1,-1]
$$

we have by (5.13) and (5.14)

$$
\lim _{R \rightarrow \infty} \sup _{\substack{x, t \leq \xi \leq \omega_{2} \geq R \\ 0 \leqq t \leq R^{-1}}}\left\{\eta(t, \xi) c_{k}(t, x, \xi)\right\}=0
$$

Thus the M of (4.10) is given by (5.5).
Theorem 5.2. Let L satisfy the condition of Theorem 5.1. Then the solution u of the Cauchy problem (5.2) with $\varphi(t) \in \mathscr{B}_{t}(\mathcal{S})$ and $\psi_{j} \in \mathcal{S} j=0,1, \cdots, m-1$, exists uniquely in $\left[s, T_{v}\right]$ and it is given by

$$
\begin{align*}
u(t, x)= & \sum_{j=0}^{m-1} E_{0}^{1, j+1}\left(t, s, X, D_{x}\right) \psi_{j} \tag{5.16}\\
& +i \int_{s}^{t} E_{0}^{1, m}\left(t, \sigma, X, D_{x}\right) \varphi(\sigma) d \sigma
\end{align*}
$$

where $E_{0}^{1, j}$ is the $(1, j)$-element of the fundamental solution \boldsymbol{E}_{0} of the operator

$$
\boldsymbol{D}-\left[\begin{array}{ccc}
0, & 1 & 0 \tag{5.17}\\
0 & 0, & 1 \\
-a_{m},-a_{m-1}, \cdots, & -a_{2},-a_{1}
\end{array}\right]
$$

The regularity loss caused by $E_{0}^{1, k}$ in the sense of Remark to Theorem 4.3 is equalt to

$$
\begin{equation*}
m_{k}=\omega(M-l(m-1)-k+1) . \tag{5.18}
\end{equation*}
$$

Proof. An approximate fundamental solution of (5.17) is given by

$$
\begin{align*}
\tilde{\boldsymbol{E}}_{0}= & \boldsymbol{H}(t) \boldsymbol{N}_{0}(t) \boldsymbol{E}(t, s) \boldsymbol{N}_{0}^{*}(s) \boldsymbol{H}^{*}(s) \tag{5.19}\\
& +\left(I-\boldsymbol{H}(s) \boldsymbol{N}_{0}(s) \boldsymbol{N}_{0}^{*}(s) \boldsymbol{H}^{*}(s)\right),
\end{align*}
$$

where $\boldsymbol{E}(t, s)$ is the fundamental solution of \boldsymbol{L} of (5.15). Using $\tilde{\boldsymbol{E}}_{0}$ we can construct the fundamental solution \boldsymbol{E}_{0} as in the proof of Theorem 3.1. By (5.19) we have

$$
\begin{align*}
& \sigma\left(E_{0}^{1, k}(t, s)\right)(x, \xi) \tag{5.20}\\
& \in \bigcap_{0<\varepsilon<1} S[1-k, M+\varepsilon-l(m-1),-M-\varepsilon-l(k-m)] .
\end{align*}
$$

Thus, we have (5.18).

References

[1] S. Alinhac: Paramétrix et propagation des singularités pour un problème de Cauchy a multiplicité variable, Soc. Math. France Astérisque 34-35 (1976), 3-26.
[2] L. Blutet de Monvel: Hypoelliptic operators with double characteristics and related pseudo-differntial operators, Comm. Pure Appl. Math. 27 (1974), 585-639.
[3] Chi Min-You: On the Cauchy problem for a class of hyperbolic equations with data given on the degenerate parabolic line, Acta Math. Sinica 8 (1958), 521-529.
[4] H. Kumano-go: Oscillatory integrals of symbols of pseudo-differential operators and local solvability theorem of Nirenberg and Treves, Katada Symp. on Partial Diff. Equations, (1972), 166-191.
[5] H. Kumano-go: A calculus of Fourier integral operators on R^{n} and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equation 1 (1976), 1-44.
[6] H. Kumano-go: Fundamental solutions for operators of regularly hyperbolic type, J. Math. Soc. Japan 29 (1977), 339-406.
[7] H. Kumano-go: Fundamental solution for a hyperbolic system with diagonal principal part, Comm. Partial Differential Equation 4 (1979), 959-1015.
[8] G. Nakamura: A parametrix of a certain linear hyperbolic partial differential
equation with variable multiplicity, unpublished.
[9] G. Nakamura and H. Uryu: Parametrix of certain weakly hyperbolic operators, to appear.
[10] O.A. Oleinik: On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569-586.
[11] K. Shinkai: The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84.
[12] C. Tsutsumi: The fundamental solution for a degenerate parabolic pseudo-differential operator, Proc. Japan Acad. 49 (1974), 11-15.
[13] H. Uryu: The Cauchy problem for weakly hyperbolic equations and systems, Master thesis (1978), (in Japanese).
[14] A. Yoshikawa: Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation I, II, III, Hokkaido Math. J. 6 (1977), 313-344; 7 (1978), 1-26, 127-141.
[15] A. Yoshikawa: Fundamental solutions to the Cauchy problem of some weakly hyperbolic equation, Proc. Japan Acad. 53 (1977), 103-107.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591
Japan

