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1. Introduction

Orey and Taylor [5] and Koéno [3] studied the set of times where the local
growth rate of a standard Brownian motion is higher than a given function.
In this paper we shall discuss such a problem for an N-parameter Wiener pro-
cess.

Let (2, B, P) be a complete probability space and RY be the set of points of
RY with all components nonnegative. We shall write t=<¢,, «:, ty> or simply
t=<t,) for a point ¢ of RY. An N-parameter Wiener process {w(?): t€R} is
to be a separable real valued Gaussian process with mean 0 and covariance

E[‘ZU(S)‘ZO(t)] = HM=IIV Sﬂ-/\fﬂ' y §= <sl‘-> ’ t = <tll-> .

We consider {w?(t): t&RY}; the process with values in R? determined by making
each component an N-parameter Wiener process, the components being in-
dependent. For s=<su>, t=<t,> of RY with 5,<t#,, increments are defined as
follows: for w?()=/(w\(£), **-, w4(t))

w;A((s, 2)) = wi(t)— Di<uan W<ty +*, S+, 1))
A+ 2 icn, <gn WiKhyy *00y Sy 0y Sugy *00y EyD)— 0"
+(—=1)aw,(s) , i=1,,d,
and

w'(A(s, 1)) = (wi(A(s, 7)), -+, wa(A(S, 1))

where A(s, £) denotes the product of N one-dimensional intervals (su, t.). We
call such a set an “4nterval”. For a given constant ¢>>1, we consider a class O
of intervals A(s, ¢) in (0, 1)V with

0< max (fp—su)<a min (fp—sy) .
IS M N 1S <N

Let ¢ be a positive, non-increasing, continuous function defined on (0, 1. Our
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subject is the random time set

E($, o) = {t(0,1)": A, €0, t€A,, 14,] |0 as ntoo
lw?(A, @)II>[A,1?$(1A,1)}

where ||-|] denotes the d-dimensional Euclidean norm and || denotes the N-
dimensional Lebesgue measure. The aim of this paper is to obtain information
about the size of E(¢, ) by examining its Hausdorff measure. For this sake,
we consider a nonnegative, non-decreasing, continuous function % defined on

[0, 1] with #(0)=0. The Hausdorff A-measure of a subset 4 of R" is defined by

(1.1) h-m(A) = lim inf Sveus h(d(U))
00 us

where the infimum extends over all countable covers U; of 4 by open balls U of
diameter d(U)<38. Our result is the following.

Theorem. Let ¢ be a positive, non-increasing, continuous function defined
on (0, 1] satisfying

(1.2) [ amogver(e) exp {—g()/2hdn = oo,

+0
(1.3) [ amgmeee) exp {—gi)/2har < oo

+0
and h be a nonnegative, non-decreasing, continuous function defined on [0, 1] satisfy-
ing h(0)=0 and
(1.4) A(x)[xN 1 oo as x{0.
Then

h-m(E(¢, w)) =0  or oo aus.

according as the integral

(1.5) [ aregvrestn) exp {—a()2d ) d
+0
converges or diverges.

Koéno [3] obtained this result in the one-parameter case under an additional
condition on ¢ ([3] p. 259, (1.8)), which is, in this paper, removed by Lemma
4.1 and Lemma 4.2.

The paper is arranged as follows. In Section 2 we collect general lemmas
that we need. Section 3 deals with the proof for the case that the integial (1.5)
converges. Our arguements go similarly as in [3]. Sections 4, 5 and 6 deal
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with the proof for the divergent case. In Section 4 we prepare some lemmas
relating to ¢ and 4. In Section 5 we make an arguement similar to that in [3]
to make a preparation for a method of Jarnik [2]. In Section 6 we estimate
the Hausdorff measure of E(¢, ) by the method of Jarnik and complete the
proof.

Finally the author wishes to express his gratitude to Prof. T. Sirao for
suggesting that the result might be obtained without the condition of [3] and
to Prof. N. Kono for his advice on the whole of the paper.

2. Preliminary lemmas
In this section we shall state some results that we need to prove the theorem.

Lemma 2.1. Let U be a normal random variable in R® with mean 0 and
identity covariance matrix. Then

P(||U|| = a)~c,a* % exp (—ad*/2) .

This estimate is well known and we do not prove it (see Orey-Pruitt [4]

p. 141).

Lemma 2.2. Let (U, V) be a normal random variable in R* with mean 0.
Assume that

E[UzV}]: p8ij, l’]: 1, 2) '"id)
where p is a constant and S;; is the Kronecker symbol.

(1) There exists a positive constant c,, independent of p, such that if |p|<<(ab)7},
then

P(|Ullza, IVIIZb)<cP([|Ul|Za)P(|| V]| =) .
(i1) There eixsts a positive constant c,, independent of p, such that
P(|Ul|=a, IV|I=Za)<c, exp {—(1—p?)a?8}P(||U||=a)

for all a>0.
(iii) There exists a positive constant cs, independent of p, such that if a>b>v""
and (1—=27)b> | p|a for some 0<y<<1/4, then

P(|Ul|=a, [IV||=b)<c; exp (—Y*4)P(I|1U]|=a) .

Proof. The estimates (i), (ii) are due to Orey-Pruitt [4], so we prove only
(iii). In case p=0, U and V are independent of each other, so the estimate (iii)
is easily derived from Lemma 2.1. In case |p|=1, the condition (1—27)b>=|pla
does not hold for any a>b>v"'. Thus it suffices to show (iii) for 0<|p|<1.
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Now
P(llUl|=za, IV|Zb)<P@<||UI|<(1—7)b/pl, [IVI=b)
+P(IUN=(1—7)3/lpl) -
As for the first term of the right-hand side, if a<||x||<(1—9)b/|p| and [|y||=>b,
then ||y—px||>7vb. Therefore
P@<|IUIN<(1—7)/lpl, [IVII=b)
S(Zn)””(l—pz)“’/zg exp (—||x[[*/2)dx

a<IIx11<(1-Y)8/1p|

3 —(1—p2\"1 2
X SIIyllZ‘Yb exp {—(1—p")7llyll*/2}dy .

Since v6>1, by Lemma 2.1, there esists a positive constant K, independent of
p, such that

[y @450 exp {— (1= I3[}y

<K (vb)* % exp {—(1—p?) 'v%?/2}
<K, exp (—7v*4)(7b)* 2 exp (—V*/4) .

Again by v5>1, it is easily seen that K, exp (—¥%?/4)(vb)*~? is bounded by a
constant K, independent of p, 4, b and . Therefore

Pa<|IUII<(1A—7)b/ | pl, IV]I=0)

<K, exp (—v4)(2m) 2 Suxnza exp (—lxll2/2)dx

= K, exp (— 7Y%} 4)P(]|U|| = a) .
On the other hand, since 0<v<<1/4, ¥6>1, (1—7)b/|p| =1,

P(IUl=1—7)/lpl)
<K {(1—7)/|p}* 2 exp {—|p| (1 —7)%%2}
<K A(1—7)/(A—=27)}2{(1—27)b/ I p |} 2 exp {—|p|*(1—27)%/2}
X exp (—7b4)
<K, exp (=7 [4)P(IUl| =(1—-27)b/| p|)
<K, exp (—7¥*/4)P(||U||=a),

where K; and K, are constants independent of p, a, b, . Putting these
estimates together, we have the estimate of P(||U||>a, [|V||=b), and the proof
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is completed.

The following lemma is due to Kono [3] and we state it here in a form
convenient for our use. Now we begin with some preparations for the lemma.
Let (S, \) be a compact metric space and {X(¢): t=S} be a real valued con-
tinuous Gaussian process. Assume that

(2.1) E[X@#)] =0, EX@]=1, teS,
and that there exists a positive constant % such that
(2.2) E[(X(s)—X@))1<7\(s,2), stES.

We denote {X“(#): t=S} as the stochastic process in R’ whose components
are independent copies of {X(#): t¢&S}. Now assume that there exist a positive
constant ¢, and a positive integer » such that

(2.3) N(&; B, \)<c(d(B)j&)’, 0<&E<d(B),

holds for all closed balls B of S, where d(B) denotes the diameter of B and
N(€; B, \) denotes the minimal number of sets of diameter at most 26 which
cover B. Under these assumptions we have the following estimate.

Lemma 2.3. There exist two positive constants cs, c; such that

(2.4) P(sug X4 =a)<cesN((27%a®)7"; S, N)a’ "2 exp (—a?[2)

holds for all a>1cs, where constants cs, c; depend only on v.

Next we state two lemmas relating to Hausdorff measures. We give
another definition of A-measure. For a subset 4 of R, let us consider countable
covers B of A by cubes V. Let d'(V) denote the ]ength of side of cube V.

For a function £ satisfying (1.4) we define
(2.5) h-m'(4) = lim inf Xves; i(d'(V))
010 B
where the infimum extends over all countable covers B; of A by open cubes V
with d'(V) <.

Lemma 24. Let h be a nonnegative, non-decreasing, continuous function
defined on [0, 1], satisfying h(0)=0 and (1.4). For a subset A of R

N~Vhn(A) < h-m'(A) <h-m(A) .

Proof. This follows easily from the facts that if /4 satisfies (1.4), then for
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any 0<x<1
N™NER(NY2x) < h(x) <h(N%x)

and that for any cube V of d'(V)=34 there exist two balls U and U’ with
d(U)=8, d(U")=N"?, UcVcCU"

Finally we give a well-known condition for a set A to have zero /A-measure.
Lemma 2.5 ([6], Theorem 32, p. 59).

h-m'(4) = 0

if and only if there exists a sequence U,,i=1,2, -, of cubes with 2 h(d'(U;))<< oo,
such that any point of A belongs to infinitely many of U,.

It follows from Lemma 2.4 that in order to prove the theorem it is sufficient
to show

h-m'(E(¢p, 0)) =0 (or h-m'(E(¢p, ®)) = ) a.s.
if the integral (1.5) converges (or diverges). Thus, in the following, we take the
definition (2.5) as the definition of A-measure and we write simply k-m(A4), d(V)
for h-m’(A) and d'(V).
3. Proof (I)

In this section we shall assume that the integral (1.5) converges. In this
case our arguements closely follow Kéno [3].
Let i=(3,, -*-,iy). Define the time sets

K(n; i) = {(s, ) ERY X RY: 27" ' <¢;—s;<27",
27 K ty—su<a27", uEj,
W2 "<t (G 1)27"7, p =1, -, N},

the covering cubes
In; 7y = {t€RY: (1,—20)2"" "<t <(Gu+1)27""Y, p =1, -+, N}
and the events

Ejn;i)= {o:  sup

(S IER G i

)||wd(A(S, 1), w)|l|A(s, 1) 72> (aN 127N}

The parameters will be restricted to the following ranges:
3.1 0<g<2""'—-1, pu=1,-,N, j=1,-- N, n>3.

Furthermore let
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I(@) =(1m=3 Unn Uzt Ui Ims X(n5 4, j, o)
where X(r; 1, j, ) denotes the indicator function of E;(n;7) and for a set /

the empty set, if £=0,
&l = .
1, if £=1.
We shall show that
(3.2) h-m(I(0)) =0  with probability 1.

This suffices to prove the theorem for the case that the integral (1.5) converges,
since for all o,

E(¢, o)CI(w).

This fact is proved in the same way as in [3], so we do not repeat it. From
Lemma 2.5, in order to verify (3.2), it is sufficient to show that the sum

(3.3)  ZE[MdI(n; )X (n; 4, J, @,)] (= 2 P(E(n; ))h(dI(n; 1))

over all 7, j and # satisfying (3.1) converges. Now we estimate P(E;(n; 7)), using
Lemma 2.3. By definition it holds for all intervals A, A’ of RY that

(3.4) Elw(A)yn(A)] = [ANA/].
It is easily seen from this that

E[{w(A(s, 1)) | As, )| 72—a(A(s’, ) [ A(s', )| 7V2}7
SaN‘12N+n+3/2N1/2“(S’ t)_(s[’ t’)”ZN

holds for all (s, 2), (s',¢') of K;(n;7), where ||+|l,5 denotes the 2N-dimensional
Euclidean norm. Thus applying Lemma 2.3 to {w(A(s, 1)) | A(s, £)| 7Y% (s, t)E
K(n; i)} with ¢,=1, v=2N, n*=aV " 12¥***3/2N2 we have

P(Ej(n; i))SK1¢4N+d_2(aN_12_nN) eXp {_¢2(aN—12—nN)/2} s
since

N((27*a®) ™" Ki(n; 1), ||+ llon) < Kpa*™ .

Here K, and K, are positive constants independent of 7, j and n. Therefore
we get the bound

32 P(E (n; i))(d(I(n; i)
<Ky Ta2 VI ah 2 exp {— (a2 2bh(2a+1)277Y),

where K is a positive constant. This sum is seen to converge by comparison
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with the integral (1.5). Thus E(¢, ») has zero h-measure a.s. by Lemma 2.5.

4. Proof (II)

Now we start the proof of the theorem for the case that the integral (1.5)
diverges. The main part of the proof is how to construct a subset of E(p, »)
which has infinite A-measure. This part will be stated in Sections 5 and 6.
In this section we prepare some lemmas, first the next trapping lemma.

Lemma 4.1. It is sufficient to prove the theorem for ¢ satisfying
4.1) (2 log H(x))'
<¢(x)<(2 log H(x)+(4N+d+1) log log H(x))"?,

where
1
H(x) = S h(y"Ny™dy .

Proof. Set ¢y(x)=(2 log H(x))"?, ¢y(x) = (2 log H(x)+ (4N+d+1) log log
H(x))"?, and ¢*(x)=(d(x)V $:1(x)) Ax(x). Then ¢* is a positive, non-increas-
ing, continuous function satisfying (4.1). Since H(x)>3log 1/x for small x,
¢, satisfies (1.3), which implies that ¢* also satisfies (1.3). It is easily derived
from (4.2) below that ¢* satisfies (1.2). Now we show that

4.2) Lo 722 () exp (— *(%)[2)h(#N)ydx = oo

and furthermore that if A-m(E(¢p*, w))=cc a.s., then h-m(E(p, w))=co a.s.
As for (4.2), since we assume that (1.5) diverges, if $*<¢ near 0, then (4.2)
holds. On the other hand, if there exists a sequence x, | 0 such that ¢(x,)<<
$*(x,), then ¢*(x,)=¢b,(,) and

[ yregromrei(y) exp (— ()2 ™)y

=g ) exp (—¥(w)2) | Wy iy
=444 (w,) exp (—$E)2)H()

The right-hand side tends to oo as x, | 0, and it follows again that (4.2) holds.
Next we verify that h-m(E($, o))=co is derived from h-m(E(¢*, ®))= oo
with probability 1. Let ¢'(x)=¢(x)V ¢,(x). Then ¢p<¢’, and

4.3) E(¢', 0)CE(p, ») forall o.
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While E(¢,, 0) CE(¢p*, w) for all w, it is derived that
(4.4) E(@*, 0)—E(¢s, 0)CE(¢, 0) forall .

In fact, for any ¢ of E(¢*, 0)—E(¢,, »), there exists a sequence A, of Q such
that t€A,, |A,| | 0asn 1t o, and

2" (A, @)1> 1A, [V26*(1 A1)

Since ¢ does not belong to E(¢,, ), |A,| must belong to {x: ¢'(x) <¢y(x)} for
sufficiently large n. Then ¢*(|A,|)=¢'(|A,|), and this means that ¢ belongs
to E(¢*, ©). Thus (4.4) has been verified. Now ¢, is easily seen to satisfy

[ ammgamx(a) exp (— g2 Mdn <o
+0
so that the first part of the theorem shows that

h-m(E(¢s, 0)) =0, with probability 1.

By (4.3) and (4.4), h-m(E($, w))=oc0 is derived from k-m(E(¢p*, w))=co for
almost all . This completes the proof of the lemma.

Remark. From (4.1), particularly, we have
(4.5) (2 log log 1/x)2< (%) <(3 log 1/x)¥2.

Lemma 4.2. A function ¢ which satisfies (4.1) is slowly warying at 0,
that is, for any 8>0,

lim ¢(8)/g(x) = 1.
Proof. For a fixed 8>1,
H(gx) = 8 || HBy™)y *dy= B H )~ H(8™)).

It is derived from this that log H(x) is slowly varying. From (4.1), this fact
implies that ¢ is slowly varying at 0, and the proof is completed.

The following lemma is a simple variant of Lemma 5 in Koéno [3].

Lemma 4.3. For the proof of the theorem, it is sufficient to comsider h
satisfying the following:

(4.6) x7 1N %) exp (—P¥(x)[2)(xVN) s bounded for 0<x<1.
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5. Proof (III)

In this section we shall construct, for almost all w, a family {I} of cubes
and families J(J) of subcubes of I satisfying the following three conditions:
(i) for every J€I(), JcT and

leo(J, )I> 1 J12¢(1 ] 1) 5

where is J the closure of J.
(i) Any two cubes J;, J; of J(J) are disjoint; furthermore

max inf {|tu—sul: <t € Jyy s € Jod
1<p<yN
227 BNA(DRMAD) RN (A(J)) B (d(T2)} -
(i) SVea Md(J) =2 hd(I)).
In the following we shall use the next notations:
En - Z—n ) Bn = a18n+2¢—2(8n+2N) ) dn = [En+28;1] y
where [x] denotes the integral part of x and a, is a positive constant such that
(5.1) 4V¢, Doy 1N exp (—ayr[72)<1/2.
Let i=(3, ***, i), j=( ***, jn) and k=(k,, -+, ky). Define the events
A(n; k, 1, 5) (= A(n; ku, du, ju))
= {o: |lw*(A(s, 2), D)II> [A(s, )| V2p(E0r2")}

where s=<ku€,+1u8,), t=<ku€,+E,41+jub,>. The parameters will be restrict-
ed to the following ranges:

(5.2) 1<iy, ju<2a—1)/1+a)d,, w=1,--,N,
(5.3) 0<k<2"—1, p=1,--,N.

Let X(n; k) (=X(n; ku)) denote the indicator function of |J;; A(n;k,1,7),
where 7 and j run over the above range (5.2). Since the N-parameter Wiener
process has stationary increments, P(X(n; k)=1) does not depend on &, so we
denote it by p,. The next lemma gives information about the magnitude of p,.

Lemma 5.1.
54 2713% i P(A(ns k, 4, ) <p, < 20 ; P(A(ns &, 4, 7)),

where 3; ; means the summation over all i, j satisfying (5.2). In particular, there
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exist two positive constants c, ¢’ such that for sufficiently large n
eV TIHE, N )exp (—(Enea")/2)
Spnsc’¢4N+d_2(£n+2N) exp (_¢2(£n+2N)/2) .
Proof. Itis clea: that p,< 33 ; (A(n; &, 4,5)) and
(5.5) Pz 20 ; (A(n; k, 4, 7))
- Zi,i,i’,j’ P(A("; k’ i’ ]) ﬂA(n; k’ i” ]’)) ’

where i'=(i{, -+, #), j'=(j{, -, j&) and 23; ; » » means the summation over ¢/, §/,

satisfying (5.2) with 7/ 3=1,, or ji.== ju, for some p. To estimate the second term
of the right-hand side of (5.5), we put

X = w(AG, t)) A, £) |72,
Y = wA((s', t))|A(s', £')| V2,
where S:<kﬂ-en+iﬁ‘8n>) t=<kl"8n+8n+l+jl"8n>’ s'=<klﬁ8n+ili8n> and t'=<kl-"en+
Eu1tjid,>. Then by (3.4) '
I—E[XY]29—131¢_2(81:+2N) 2M=11v ( ltu—i0| 4 I]#—]ﬂ |) .
Using Lemma 2.2, (ii), we obtain
P(A(n; k, 1, )AN(n; k, 7', j'))
SCZ €xXp {_(1—E[XY]2)¢2(6n+2N)/8} P(A(n’ k) ia ]))
<c, exp {—a 2ﬂ=llv (|i#_i“ + |]'u-_]..“)/72}P(A(”; k, i’j)) .

Now let =231 (léu—iL| + | ju—ji|), then there are no more than (2r)*" ways
* of choosing ¢’ and j' to accomplish this. Thus we have

Ei,i,i’,j’ P(A(n; k, 1, j)NA(n; &, 7', j'))
<476, 3% ; {37 r* exp (—aw[I)}PA(n; k, i, j)) .
Therefore by (5.1)
23,7, P(A(n; k, 4, j)N A(n; &, 5, §"))
<2713 ;P(A(n; k, 4, §)) -

This and (5.5) yield (5.4).
The latter part of the lemma is easily derived from (5.4) by Lemma 2.1 and
the proof is completed.

In the following we consider sufficiently large # and choose #,, n, for each
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n, such that #,>n,>n and

(5.6) B(Eryr2) SN 2(Eny)Enas
B7)  Eursagss B N(E JHIV(E 1) 22
(5'8) 28N+nh(en+2)8n+2N < Em =;‘tf h(8n+2)em+2_ Npm < 28N+13h($”+2)€”+2" N

In fact, since A(x) | 0 and A(x)/xM 1 o as x | 0, we can choose #, so that (5.6)
and (5.7) hold. On the other hand, Lemma 5.1 and Lemma 4.3 show that
h(Epm+2)Emsz VP are bounded and that > pam A(Epr2)Emrz VP is seen to diverge
by comparison with the integral (1.5). This ensures us the existence of n,
satisfying (5.8). Set

bn,m = [2_12_151N8n+26m+2—1h_1/N(£n+2)h1/N(8m+2)]+1 ’ nlsmgnz ’

where [x] denotes the integral part of x. For &' (=(&i, -+, k%)) satisfying (5.3),
we define the random variables

Y(n, m; k') = Hv=:; H(q) (I_X(”; [kl,"zv_m]—*_q"‘))

Z(n, m; k) = TIEA(1—X(v; [R2"))),

where I, denotes the product over g(=(q,, ***, qn)) satisfying
(5.9) gu are integers with |gu| <b,, and > [gu| =1 .

Now for an open cube I, )(= ITu-1 (ku€,, (Ru+1)E,)), we define the families
of random subcubes of I, ;

ST p) = {X(m; k)Y, m3 B)Z(n, ms k) (s B)
: huly <kLEn<(kut-1)E,, p=1, =+, N}
m<m<mn,,
and
k) = Unysmsny Sn(Lne)
where I(m; k' )=11p-Y (Ri€pn+Emio RiEmtEms1) and for a cube I

= { the empty set, if £=0,
- I , if E=1.

The aim of this section is to show that for almost all » there exists an integer
n(w) such that for all n>n(w) and k satisfying (5.3), {Z,,} and J(Z, ;) satisfy the
conditions (i), (ii), and (iii). By the definition of J,,(,4), (i) is clear. As for
(i), if Jy, €I, 1) and JiEF L4 s)s J2EIw(Las), m<m’, then the definitions
of Y and Z imply that



N-PARAMETER WIENER PROCESS 237

lg}é’; inf {|tu—su|:t=>EJ, s=<swE J}
an,mem
24—1(bn,m8m+bn,m’8m’)
227 NG(T, YhTN(A(L, 1)) TR (AT )R A(TR))} -

It remains to verify (iii) and to show the existence of n(w). For this sake, we
consider the radom variables

H(n; k) = 23U Md(])) .

If n is so large that

(5.10) B(Enis) =102,
(5.11) 20052, 2N NHEE, V) exp {— (&, ,2Y)/(4- 100} <1/4,
(5:12)  B(ENBE)=(V3V(1—2-10)F, for m=nN,

(5.13) 40, 2omon, Pu<<l/4,
then the following estimates hold.
Lemma 5.2.
(5.14) E[H(n; ] <2V0e, ),
(5.15) E[H(n; k)] =128"*%R(E, ) -

Lemma 5.3. There exists a positive constant M, independent of n, k such
that

(5.16) E[(H(n; K)—E[H(n; B)]Y1< Mn6,4(E,15)

Assuming these lemmas for a moment, we shall complete the proof of (iii).

By (5.14), (5.15) and (5.16),
P(|H(n; k)—E[H(n; k)]| >27'E[H(n; k)] for some k)<M'n"?,

for some positive constant M’. Then by the Borel-Cantelli lemma, for almost
all o there exists n(w) such that for any #>n(w) and % satisfying (5.3),

| H(n; k)—E[H(n; k)]| <27E[H(n; k)] .
Thus by (5.15) and (1.7)

H(n; k)>2"'E[H(n; k)]>2"V*%(E,,)
226N+8h(8”) — 26N+8h(d(l,,.,,)) )
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This verifies (iii). We shall denote, by €, the set of w for which there exists
n(w) such that I,, and J(,,) satisfy the conditions (i), (ii) and (iii) for all
n>n(w), k satisfying (5.3).

Now we return back to the proofs of Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2. First we prove (5.14). It is easily seen that for
H(n, m; k)=2}jes, 1, M),

ElH(n, m; ] Sy E[X0n; B)Ji(Ens)
<& Emss " H(Epso)Pm
where 2 denotes the summation over &’ satisfying
(5.17) Rub, <kiE,<(kut1)€,, n—1,-,N.
Thus by (5.8)

E[H(”a k)] < 2m=:f En+2N8m+2_Nh(8m+2)_pm
S28N+13h(8”+2) .

Next we verify (5.15). A simple calculation shows that
(518)  E[H(n, m; B> S h(En ) ELX(m; K)]{1— SU51 X(v; [ki2™)
— 2, 2 X(v; [ki27"]+qu)}]
= SN h(Emsa) {pu— St E[X(m; B)X(v; [12)
- E“=:; E(q) Pva} ’

where 23 denotes the summation over %’ satisfying (5.17) and ), denotes the
summation over ¢ satisfying (5.9). As for

2Nems 2Xg) Dy >

by (5.8), this sum is less than
(5.19) 2 by Sot by N5, <A7Ip, .
Now we estimate

Vo, B[ X(m; k)X (vs [Ri2])],
using Lemma 2.2, (iii) and Lemma 4.2. Put

X = wy(A(s, )| A(s, £)| 72,

Y = w(A(s, t)) | A(s', 27)| V2

where s=<kl:8m+lﬂ-6m>, t=<kl-/“5m+8m+l+]#8m>’ SI:<[kl\“2v—m]8v+il:-8v>7 U=
(kL2 ™6, A€y +ii8>, m<v<m—1. Then
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(5.20) 0<E[XY]<(V3/2)", if v=m—1,
O0<LE[XY]<(V/320 /3N = if v<m—2.
We consider the next two cases:
(A) m<v<m
(B) m<v<m—1
where =m—10 log $(&,.,"). In the case (A), since
E[XY]p(Emsz")b(Ers2") <1
by (4.5) and (5.20), an application of Lemma 2.2, (i) shows
P(A(m; k', 3, )N A(v; k*, 7", j) SclP(A(m; k', 4, j)P(A(v; k¥, 7', j")
where k*=([kj2""™], -+, [k%2"""]). Thus by Lemma 5.1,
E[X(m; K)X(v; K< 3, T o B(AGm; k', 3, ) 1 Aws k%, 1, 1)

<c, 2% ;P(A(m; k', 1, §)) 2 i P(A(v; k*, 7, §'))
S‘I'clpmp’u ’

where 37, ; and 33 » denote the summations over 7, j and ¢', j* satisfying (5.2)
respectively. Therefore by (5.13), we have

(5.21) 2h-r E[X(m; k") X(v; k*)]
S4Clpm 2‘0:;; P\; £4_lpm .
In the case (B), since it is derived from (5.12) and (5.20) that
(1-2- 10—z)¢(8v+2N)2E[XY]¢(5m+2N) ’

an application of Lemma 2.2, (iii) to X and Y with v=107% a=®(¢,.."), b=
P(Eyv+,") shows

P(A(m; k', 1, j)) NA(v; k*, 7', j))
<cs exp {—¢%(Evs2")[(4- 109} P(A(m; k', 1, J)) -
Thus
E[X(m; k') X(v; k*)]
<20 2 P(Am; k', 4, )N A(vs k¥, 1, §"))
Szcaal_m‘l)m(nglv) exXp {—¢2(8v+2N)/(4' 104)}Pm .

Since we may assume that m is so large that
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log ¢(Em+2") <P (Ems2")

we have
(5.22) <y <m-1 E[X(m; k") X(v; k*)]
S20‘-’3“1—21\"1’“\’Jrz(‘gﬁuw) €xp }"¢2(5;§+2N)/ (4- 104)}1’»”
<471p,, (by (5.11)) .

Putting (5.18), (5.19), (5.21) and (5.22) together, we obtain
E[H(n, m; k)] =47'€,45"€psz” "h(Emi2)Pm -
Hence
E[H(n; k)] =476,12" 2Zen, Ensz" H(Emr2)pm =22V *h(Ey12) , (by (5.8)).
This completes the proof.

Proof of Lemma 5.3. The outline of the proof is similar to that of Kéno’s
lemma (Lemma 8 in [3]).
Now put

X*(n, m; k') = X(m; k')Y(n, m; k')Z(n, m; k')
—E[X(m; k") Y(n, m; k') Z(n, m; k')] .

Then it is clear that

(5.23) E[(H(n; k)—E[H(n; k)])’] = Xn-22 20 F(Ens2) E[X*(n, m; k)]

+ 2 man2 2 g7 BH(Epi2) E[X *(n, m; k') X*(n, m; k)]

+2 2n15m<m’5n2 Ek’ Ek” h(8m+2)h(£m’+2)E[X*(n’ m; k,)X*(n’ m’; k”)]
where > and >V~ denote the summations over 2’ and &” satisfying (5.17) re-

spectively and >3 ,» denotes the summation over k', k” satisfying (5.17) and
ki=+ki/ for some p. Using (5.6) and (5.8), we have

(5.24) Dlman? 2 B(Epi2) E[X*(n, m; k')

< 2nat 2o H(Enio) E[X(m; k)]

S 2onai} Ensd Emiz " (Ems2)Pm

< 28N+13n—2h2( Eur2)Cnia?
As for the second term in the right-hand side of (5.23), note that X*(n, m; k')
and X*(n, m; k") are independent if |kL—E{/|>4b, , &, Ex' for some . There-
fore
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zk’,k” h2(8m+2)E[X*(n’ m; kI)X*(n) ms; k”)]
< Y K(Epi2) E[X(m; k) X(m; k)]
S 8an,alNEnNen1Nem—Nh2(8m+2)1)m2 ’
where 2V denotes the summation over k' and k" satisfying (5.17) such that
|ku—Fki | <4b, 4 €46, 7", p=1, -+, N and k; =k’ for some v. Thus there exists
a positive constant K, independent of n, such that
(5.25) Dmanz 2w g7 B(Epil) E[X*(n, m; k') X*(n, m; k)]
< E'r‘nz=n1 8an,n,NEnNenlNem—ZNhZ(Em“l'Z)PmZ
S8an,n,.N‘SnI+2N“;n—l~2N( 2m=23 Em+2—Nh(8m+2)Pm)z
It remains to estimate the third term in the right-hand side of (5.23). We d»
this, by considering the following three cases:
(1) for some p,
ki€ —(RiA-1)E,>4b, 4 &,
or
ki€u— (ki +1)E >4, 4 bE, .
(i) The condition of (i) does not hold but for some p.

ki€ —(R1LA-1)E,20
or
ki p— (Rl +1)E,,>0.
(iif) Neither condition of (i) nor of (ii) hodls, that is,
RiEn <RI E . <(Ri +-1)E < (Ru+1)E, , p=1,+,N.

In the case (i), X*(n,m; k') and X*(n,m’; k") are independent, so we have
E[X*(n,m; k') X*(n,m'; k”)]=0. In the case (ii), X(m; k') and X(m'; k") are
independent, so we have

E[X*(n, m; k" X*(n, m"; K| <E[X(m, R")X(m'; K")|=Ppmbw -
In the case (iii), we further subdivide the case as follows:

(A) m'—m>10 log (En+s") ,
(B) m'—10 log ¢(Epss¥)<m<m'—1.

The same arguements employed in the proof of Lemma 5.2 show that
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E[X*(n, m; ) X*(n, m'; K| <E(|X(m; k") X(m'; k") <4, DD
in the case (A) and

E[X*(n, m; k) X*(n, m"; k)]
<E[X(m; k) X(m'; K')]
SZc:<lal-2N¢4N(8m+2N) CXP {“¢2(em+2N)/(4. 102)}Pm’ ’

in the case (B). Putting these estimates together, in the case (A), we have

2 D2 B(Epr2)(Epr 12) E| X * (1, my )X *(n, m'; k)]

<8, 4, N,V E, N E WV Em TV H(E o) (Emr+2)Dm D
+4¢,E,NEm " Vh(E m+2)W(Em? +2)Dm P

< (8D, 4, V€N, N A 401E,VE, N)ETVE TV R(E i 2)N(Epnt 42)
X 8,8 M (E s (-

and by (5.6), (5.8),

(5.26) 2 3%ar S S s YH(Enr 1) E[X*(m, ms K\ X¥(m, m'; B)]
S1{,”_2h2(£n+2)6ﬂ+21v 4

where K’ is a positive constant independent of 7, k and 24, denotes the summa-
tion over m and m’ satisfying the condition (A). In the case (B),

202 Wi 2)H(Epr 12 E[X*(m, m; k') X*(n, m'; k)]
< 8an ,nlNenNEnlNgm - Ngm’ - Nh(8m+2)h (gm’+2)Pum'
2050, PN (E ) €xp {— Ene) (4 10D} E, 6 H(E W (Ems P

Since log ¢(Epr+2") < p*(Ep2), We have by (5.6), (5.8) and (5.11)

(5.27) 2k D D MEmsd)h(Epr 1) ELX*(n, ms k)X *(n, m'; K")]
S8an,nlNEnNgnlN( E:tz-ml 8m+2— Nh(8m+2)Pm)2
+2_Ien+2Nh(8n1+2) Etn::f €m+2_Nh(€m+2)Pm
SK””-zhz(enz)gﬁzN ’

where 2Yp, denotes the summation over m and m’ satisfying the condition (B)
and K” is a positive constant independent of #, k.

Putting (5.23), (5.24), (5.25), (5.26) and (5.27) together, we have the bound
for the variance of H(n; k) and the proof has been completed.
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6. Proof (IV): The method of Jarnik

We shall complete the proof of the theorem by showing that for almost all
o and any fixed M>0, there exists a subset of E(¢, ») having more than M
h-measure; our arguements follow Jarnik [2] (see also Ké6no [3]).

In the following we shall consider 0 €Q, fixed. ILet n, be an integer
sufficiently large such that n,>n(w) and

(6.1) h(E,,)E4, N =2MTM .
Define the systems of random cubes

3(1 = U k 8(1 no,k)

where the union extends over all % satisfving (5.3), and inductively

X, = Uregn. (), m=2,3,-.

Set F= (\m>1 |JI€S,I. Then F is easily seen to be included in E(¢, ») and by
the condition (i) in Section 5, F is compact. The aim of this section is to
show that F' has more than M h-measure. Since M is taken arbitrarily, this
suffices to prove the theorem. For this sake, we consider a covering U; of F by
cubes U of d(U)<<6. We may assume that U; is finite, since F is compact.
Moreover if 8 is less than the minimum of distances between cubes of &, it is
sufficient to consider only the coverings, every cube of which intersects F. Since

max d(I)— 0, as m?t oo,

1€l
for any W of U, there exists an integer » >1 such that ¥ intersects a cube J of
Q, and I, I, of J(J). Let v be the minimum of such integers. Then there
exists a cube W’ such that d(W')<d(W)and WN JCW’'CJ. By replacing W
with W’, we obtain a covering I’ of F. Now we prepare some terminologies
after Jarnik [2] and Kono [3].

DErFINITION 6.1.  An open cube W is called to be of degree v(v>1), if and
only if there exists a cube J of J, such that J includes W and W intersects at
least two cubes of J(J).

DEFINITION 6.2. An open cube W is called normal if and only if the degree
of W is determined.

ReMARK. The degree of a cube is uniquely determined if it can be de-
termined.
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DEFINITION 6.3. A point p is said to attach to a normal cube W of degree
v if and only if there exists a cube I of J,,, such that p belongs to I and I
intersects W. ,

DEFINITION 6.4. A system U of normal cubes is called a normal estimating
system if and only if any point of F attaches to some cube of U.

DEFINITION 6.5. The degree of a normal estimating system is the maximum
degree of its cubes.

DEFINITION 6.6. A normal estimating system U is called irreducible if
and only if 11 does not contain any proper normal estimating subsystem.

Now, for a normal estimating system Il of degree v, set

20 MAd(W))+27 "2 3% H(d(W)), ~ of »>1,

A= 1 prov-s S\weu h(d(W)), i ov=1,

where >Y) denotes the summation over all W of 1 of degree less than v, and
>V denotes the summation over all W of 1 of degree v. Since any covering of
F by normal cubes is a normal estimating system, it is derived from the defini-

tion of k-m(F) that

(6.2) h-m(F)> lim inf A*(11)
aloun

where the infimum extends over all irreducible estimating systems U of F by
cubes W of d(W)<8. We prepare the next two key lemmas in the method of
Jarnik.

Lemma 6.1. For a normal cube W of degree v which is included in a cube
Jof 3y,
d(W)Z 275N a( N~V (@()) (X" dI))}
where 2" denotes the summation over all cubes I of J(J) which intersect W.
Proof. For any I and I’ neighboring with each other, by the condition

(ii) in Section 5, we can construct two cubes between I and I’, contained in W,
with sides longer than

2R ING( YRR (d( )R (D)
and
2'12_15’”d(])h_I/N(d(]))hlm(d(]/))
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respectively. This means that the volume of W is more than

27ENRA() N2 (D))

Since W is a cube, its side is longer than

27 (YN A )Y WA
and this completes the proof.

Lemma 6.2. For an irreducible normal estimating system N of degree v
(v>1), there exists an irreducible normal estimating system W1’ of degree less than v,
such that

(6.3) A¥W)<A¥W) .

Proof. The proof of this lemma goes exactly as in Jarnik [2], but we state
its outline for completeness.

It is sufficient to show the existence of a normal estimating system of degree
less than » which satisfies (6.3).

Each cube of degree » of 1 1s included in a cube of J,, so included in one
cube (uniquely determined) of J,_;. Let J,, -+, J, be the totality of such cubes
of &,_,, and set

W = [U—{WeU: of degree (v—1) or », WC J; for some J;}]
U {]1) '")Jr} .

Then W' is a normal estimating system of degree (v—1). It remains to show
that 0’ satisfies (6.3). Before doing this, note that a cube W of 1 to which a
point p of F N J; attaches is of degree (v—1) or ». In fact, if Wis of degree m
(<v—1), then there exists J' of J,, which includes J;. Thus any point of
FN J(CF NJ') attaches to W. This implies that

N—{W'cU; of degree v, W'C J;}

is a normal estimating system. This contradicts the irreducibility of I. There-
fore W must be of degree (v—1) or ».

Now we shall estimate the contribution of cubes of degree (v—1) or », in-
cluded in J;, to A¥(1). Let W, «++, W, be the totality of cubes of 11, of degree
(v—1), included in J;. Suppose that J(J:)={U,, -+, Uy, Ups, +++, Uz} and U;
intersects some W, if 1<j<k, does no W, if k+1<j<a. By the condition (iii)
of Section 5,

23-1 W(d(U;)) 22" h(d(]) -

Now we consider the next two cases:
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) 235-1 h(d(U;) = 2°V"h(d(]3)) »
(2) kst BA(U ) Z 2"V h(d(] ) -
In the case (1), by Lemma 6.1
d(W,) 227275 d( J )™M (d(J) 2w MUY

where 3,y denotes the summation over all U; which intersect W,. On the
other hand, it is easily derived from (1.5) that

-

20 h(x, YNy =R, x,)YY) for x,>0.
Using this, we have
(6.4) 201 h(d(W,)) > h({ 23,1 d(W,)N} ) 227" h(d(] ) -

In the case (2), any point of F N U; (k+1<j<a) attaches to a cube V' of degree
v, included in U;. Let V, ---, V, be the totality of cubes of U, of degree v,
included in U;. Again by Lemma 6.1

d(V ) 2272 BN a(U)h™ ™ (d(U;)) {2 MAI))}H™ s

where X, denotes the summation over all 7 of J(U,) which intersect V,. Thus
220-1 h(d(V ) 2 h({ 220-1 d(V o))"}V 227V "h(d(U)) -

Summing these estimates over j, k+1<j<a, we have

(6.5) 2IWd(V)) =Zh(d(]?)

where the summation in the left-hand side extends over all cubes of 11, of degree
v, included in J;. Putting (6.4) and (6.5) together, we obtain (6.3) and the
proof of the lemma has been completed.

Now we are on the last stage in the proof of the theorem. Lemma 6.2 and
(6.2) tell us that

(6.6) A*(W1)>M, for any irreducible normal estimating system of degree 1

implies h-m(F)>M. For an irreducible normal estimating system of degree
1, by Lemma 6.1 and the condition (iii) in Section 5, we have

A¥(U)>27"8 Styen h(d(W))
> 278 Slwees, HR A A S HAD)})
278 3 e, W2 (YA {1280 HAD)})
2725 3 je g, h(d(])
_>_ Z—GN_78”0Nh(6nO)
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where 2)’ denotes the summation over all T of J(J) which intersect W. Since
we have chosen 7, so large that (6.1) holds, from the above we can derive (6.6).
Thus we have verified the theorem.

RemARK. With respect to the conditions (1.2) and (1.3), note the following.
If ¢ satisfies (1.2), then ¢ is a lower function for the uniform modulus of con-
tinuity in the sense of Orey-Taylor [5] ([7]). This implies that E(¢, ») is not
empty a.s. On the other hand, if ¢ satisfies (1.3), then ¢ is an upper function for
the local two-sided growth in the sense of Jain-Taylor [1] ([7]). An application
of the Fubini theorem shows that E(¢, ) has zero Lebesgue measure a.s. Thus
the size of E(¢, w) comes into question.
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