RIBBON KNOTS AND RIBBON DISKS

Kouhei ASANO, Yoshiniko MARUMOTO and
Takaaki YANAGAWA

(Received October 23, 1979)

For a ribbon knot, we will define, in $\S 1$, the ribbon disk pair associated with it. On the other hand, J.F.P. Hudson and D.W. Sumners gave a method to construct a disk pair [2], [13]. In §1 and 2, we will generalize their construction and show that a ribbon disk pair is obtained by our construction and vice versa.

In [10], C.D. Papakyriakopoulos proved that the complement of a classical knot is aspherical. As an analogy of this, we will prove, in §3, that the compelment of a ribbon disk is aspherical, and it follows from this fact that the fundamental group of a ribbon knot complement has no element of finite order. In the final section, we will calculate the higher homotopy groups of a higherdimensional ribbon knot complement, and in Theorem 4.4 we show that a ribbon n-knot for $n \geqq 3$ is unknotted if the fundamental group of the knot complement is the infinite cyclic group. This result is proved independently by A. Kawauchi and T. Matumoto [5].

Throughout the paper, we work in the piecewise-linear category although the results remain valid in the smooth category.

1. Preliminaries

1.1. By S^{n} we denote an n-sphere, and by B^{n} or D^{n} an n-disk. By ∂M, int M and $\mathrm{cl} M$ we denote the boundary, the interior and the closure of a manifold M respectively. In this paper, every submanifold in a manifold is assumed to be locally flat. If $\partial M \neq \emptyset$, by $\mathscr{D} M$ we mean the double of M, i.e. $\mathscr{D} M$ is obtained from the disjoint union of two copies of M by identifying their boundaries via the identity map. For a subcomplex C in a manifold $M, N(C ; M)$ is a regular neighbourhood of C in M. By a pair (M, W) we denote a manifold M and a proper submanifold W in M, i.e. $W \cap \partial M=\partial W$. An n-disk pair is a pair (M, W) such that M is a disk and W an n-disk. Two pairs $\left(M_{1}, W_{1}\right)$ and $\left(M_{2}, W_{2}\right)$ are equivalent if there exists a homeomorphism from M_{1} to M_{2} which maps W_{1} to W_{2}, and we will identify two equivalent manifold pairs. Let $\mathscr{D}(M, W)=(\mathscr{D} M, \mathscr{D} W)$ and $\partial(M, W)=(\partial M, \partial W)$. We denote the unit interval [0, 1] by I, and the Eu-
clidean n-space by R^{n}. Let R_{t}^{n-1} be the hyperplane in R^{n} whose n-th coordinate is t, R_{+}^{n} the half space of R^{n} whose n-th coordinate is non-negative, and $R_{-}^{n}=$ $\operatorname{cl}\left(R^{n}-R_{+}^{n}\right)$.

An n-knot K^{n} will mean an embedded n-sphere in an ($n+2$)-sphere S^{n+2}. An n-knot is unknotted if it bounds an ($n+1$)-disk in S^{n+2}. For a proper disk D^{n} in a manifold $M,\left(M, D^{n}\right)$ is unknotted, or D^{n} is unknotted in M, if there exists an $(n+1)$-disk D^{n+1} in M such that $D^{n+1} \cap \partial M$ is an n-disk in ∂D^{n+1} and $\operatorname{cl}\left(\partial D^{n+1} \cap\right.$ int $M)=D^{n}$. For terminologies in halnde theory, we refer the readers to [11], and for knot theory, to [14].
1.2. Let $S_{0}^{n}, S_{1}^{n}, \cdots, S_{m}^{n}$ be mutually disjoint n-spheres in a q-manifold M^{q} for $n \geqq 1, q \geqq 3$. Suppose that an embedding $\beta: B^{n} \times I \rightarrow M^{q}$ satisfies

$$
\beta\left(B^{n} \times I\right) \cap\left(S_{0}^{n} \cup \ldots \cup S_{m}^{n}\right)=\beta\left(B^{n} \times \partial I\right) .
$$

Then we call β or $\beta\left(B^{n} \times I\right)$ a band compatible with $S_{0}^{n} \cup \ldots \cup S_{m}^{n}$.
Let $\beta_{1}, \cdots, \beta_{m}$ be bands compatible with $S_{0}^{n} \cup \cdots \cup S_{m}^{n}$ such that
(1) $\beta_{i}\left(B^{n} \times I\right) \cap \beta_{j}\left(B^{n} \times I\right)=\emptyset$ if $i \neq j$, and
(2) $\bigcup\left\{S_{i}^{n} ; 0 \leqq i \leqq m\right\} \cup \bigcup\left\{\beta_{j}\left(B^{n} \times I\right) ; 1 \leqq j \leqq m\right\}$ is connected.

Then

$$
\left(\bigcup\left\{S_{i}^{n} ; 0 \leqq i \leqq m\right\}-\cup\left\{\beta_{j}\left(B^{n} \times \partial I\right) ; 1 \leqq j \leqq m\right\}\right) \cup \bigcup\left\{\beta_{j}\left(\partial B^{n} \times I\right) ; 1 \leqq j \leqq m\right\}
$$

is an n-sphere, and denoted by

$$
\mathscr{F}\left(S_{0}^{n}, \cdots, S_{m}^{n} ; \beta_{1}, \cdots, \beta_{m}\right)
$$

Suppose that $M^{q}=S^{n+2}$ and there exist mutually disjoint ($n+1$)-disks B_{0}^{n+1}, $B_{1}^{n+1}, \cdots, B_{m}^{n+1}$ with $\partial B_{i}^{n+1}=S_{i}^{n}$ for $0 \leqq i \leqq m$. Then

$$
K^{n}=\mathscr{F}\left(S_{0}^{n}, \cdots, S_{m}^{n} ; \beta_{1}, \cdots, \beta_{m}\right)
$$

is called a ribbon n-knot of type $\left(\beta_{1}, \cdots, \beta_{m}\right)$.
Our definition of a ribbon n-knot is equivalent to that of [19].
Remark 1.3. In 1.2 , it is easily seen that we can deform isotopically each band so that

$$
\beta_{i}\left(B^{n} \times I\right) \cap S_{j}^{n}= \begin{cases}\beta_{i}\left(B^{n} \times\{0\}\right) & \text { if } j=0, \\ \beta_{i}\left(B^{n} \times\{1\}\right) & \text { if } j=i, \text { and } \\ \emptyset & \text { otherwise }\end{cases}
$$

Thus we assume that each band of a ribbon n-knot satisfies this condition.
1.4. Let D^{n+3} be obtained from the disjoint union of $S^{n+2} \times I$ and B^{n+3} by
identifying $S^{n+2} \times\{1\}$ and ∂B^{n+3}. Let K^{n} be a ribbon n-knot of type $\left(\beta_{1}, \cdots\right.$, β_{m}), then we can construct an ($n+1$)-disk L^{n+1} in D^{n+3} which bounds $K^{n} \times\{0\}$ as follows: Let $D_{i}^{n+1}=\left(S_{i}^{n} \times[0,3 / 4]\right) \cup\left(B_{i}^{n+1} \times\{3 / 4\}\right)$ in $S^{n+2} \times I$ for $0 \leqq i \leqq m$, where B_{i}^{n+1} and S_{i}^{n} are as in 1.2. For $1 \leqq j \leqq m$, let $\bar{\beta}_{j}: B_{n} \times I \times I \rightarrow S^{n+2} \times I$ be the product of β_{j} and a map from I into I which takes t to $t / 2$, i.e.

$$
\bar{\beta}_{j}(x, y, t)=\left(\beta_{j}(x, y), t / 2\right)
$$

for $x \in B^{n}$ and $y, t \in I$. Then

$$
\begin{aligned}
L^{n+1}= & \left(\cup\left\{D_{i}^{n+1} ; 0 \leqq i \leqq m\right\}-\cup\left\{\bar{\beta}_{j}\left(B^{n} \times \partial I \times I\right) ; 1 \leqq j \leqq m\right\}\right) \\
& \cup \bigcup\left\{\bar{\beta}_{j}\left(\partial B^{n} \times I \times I\right) \cup \bar{\beta}_{j}\left(B^{n} \times I \times\{1\}\right) ; 1 \leqq j \leqq m\right\}
\end{aligned}
$$

is an $(n+1)$-disk and bounds $K^{n} \times\{0\}$ in D^{n+3}. Note that the section of L^{n+1} by $S^{n+2} \times\{t\}$ is
(1) $K^{n} \times\{t\} \quad$ if $0 \leqq t<1 / 2$,
(2) $\left(\bigcup\left\{S_{i}^{n} ; 0 \leqq i \leqq m\right\} \cup \bigcup\left\{\beta_{j}\left(B^{n} \times I\right) ; 1 \leqq j \leqq m\right\}\right) \times\{1 / 2\} \quad$ if $t=1 / 2$,
(3) $\left(S_{0}^{n} \cup \ldots \cup S_{m}^{n}\right) \times\{t\} \quad$ if $1 / 2<t<3 / 4$,
(4) $\left(B_{0}^{n} \cup \ldots \cup B_{m}^{n}\right) \times\{3 / 4\} \quad$ if $t=3 / 4$,
(5) \emptyset
if $3 / 4<t \leqq 1$. (See Fig. 1.)

$t=0$

$t=1 / 2$

$t=5 / 8$

$t=3 / 4$

Fig. 1
We call L^{n+1} in D^{n+3} the ribbon ($n+1$)-disk associated with a ribbon n-knot K^{n}, or $\left(D^{n+3}, L^{n+1}\right)$ the ribbon $(n+1)$-disk pair associated with K^{n}.

The double $\mathscr{D}\left(D^{n+3}, L^{n+1}\right)$ of a ribbon ($n+1$)-disk pair is an $(n+1)$-knot in the $(n+3)$-sphere $\mathscr{D} D^{n+3}$. Since $\mathscr{D}\left(D_{0}^{n+1} \cup \ldots \cup D_{m}^{n+1}\right)$ is a trivial $(n+1)$-link and each $\mathscr{D}\left(\beta_{i}\left(B^{n} \times I \times I\right)\right)$ is a band, $\mathscr{D} L^{n+1}$ is a ribbon $(n+1)$-knot. Then we say that $\partial\left(D^{n+3}, L^{n+1}\right)$ is an equatorial knot of $\mathscr{D}\left(D^{n+3}, L^{n+1}\right)$. (See [19].)
1.5. We will generalize the construction of $(n+1)$-disk pairs in [2] and [13], for $n \geqq 1$. Let D_{0}^{n+1} be an unknotted ($n+1$)-disk in B^{n+3}. Adding m 1-handles $h_{1}^{1}, \cdots, h_{m}^{1}$ to B^{n+3} such that $h_{i}^{1} \cap D_{0}^{n+1}=\emptyset$ for each i, we obtain an $(n+3)$-disk with m 1-handles, say V. We take mutually disjoint oriented 1 -spheres $\alpha_{1}, \cdots, \alpha_{m}$ on ∂V such that α_{i} intersects the belt sphere of h_{i}^{1} at only one point, $\alpha_{i} \cap h_{j}^{1}=\emptyset$ for $i \neq j$ and that ∂D_{0}^{n+1} bounds an $(n+2)$-disk in $\partial V-\alpha_{1} \cup \ldots \cup_{\alpha_{m}}$. Then we call $\left\{\alpha_{i}\right\}$ a system of standard curves, or simply standard, on ∂V. Let Δ_{0} be a proper

2-disk in $N\left(\partial D_{0}^{n+1} ; \partial V\right)$ such that Δ_{0} intersects ∂D_{0}^{n+1} at only one point, then we call Δ_{0} a meridian disk of ∂D_{0}^{n+1} in ∂V and $\alpha_{0}=\partial \Delta_{0}$ a meridian of ∂D_{0}^{n+1} in ∂V, where we give an orientation to α_{0}.

Let u_{i} be a simple closed curve in $\partial V-\partial D_{0}^{n+1}$ for $1 \leqq i \leqq m$ such that there exists an ambient isotopy of ∂V which carries u_{i} to α_{i} for all i. Then we add m 2-handles $h_{1}^{2}, \cdots, h_{m}^{2}$ to V along u_{1}, \cdots, u_{m} such that $h_{i}^{2} \cap D_{0}^{n+1}=\emptyset$ for each i. By the handle cancelling theorem, h_{i}^{2} cancels h_{i}^{1} for each i, i.e. $V \cup h_{1}^{2} \cup \ldots \cup h_{m}^{2}$ is an $(n+3)$-disk D^{n+3}. In general, D_{0}^{n+1} is not unknotted in D^{n+3}, so we rewrite D_{0}^{n+1} in D^{n+3} as L^{n+1}. We say that the pair $\left(D^{n+3}, L^{n+1}\right)$ is of S-type.

Let $\Delta_{0 i}$, for $1 \leqq i \leqq m$, be mutually disjoint meridian disks of ∂D_{0}^{n+1} in ∂V, and γ_{i} a band in ∂V compatible with α_{i} and $\alpha_{0 i}=\partial \Delta_{0 i}$ such that
(1) $\gamma_{i}\left(B^{1} \times I\right) \cap \gamma_{j}\left(B^{1} \times I\right)=\emptyset$ for $i \neq j$, and
(2) $\quad \gamma_{i}\left(B^{1} \times I\right) \cap N\left(\partial D_{0}^{n+1} ; \partial V\right)=\gamma_{i}\left(B^{1} \times\{0\}\right)$ for $1 \leqq i \leqq m$.

Then there exists an ambient isotpoy of ∂V which carries v_{i} to α_{i} for $1 \leqq i \leqq m$, where $v_{i}=\mathscr{F}\left(\alpha_{i}, \alpha_{0 i} ; \gamma_{i}\right)$ for each i. Thus the $(n+3)$-manifold obtained from V by adding m-handles with v_{i}, for $1 \leqq i \leqq m$, as the attaching spheres is an $(n+3)$ disk which contains D_{0}^{n+1} as a proper ($n+1$)-disk, then this disk pair is said to be of S^{*}-type. Clearly, a disk pair of S^{*}-type is of S-type.
1.6. Let C_{0} be a bouquet of $m+11$-spheres $e_{0}^{1}, e_{1}^{1}, \cdots, e_{m}^{1}$. Let z_{i} be the element of $\pi_{1}\left(C_{0}\right)$ represented by e_{i}^{1} for $0 \leqq i \leqq m$. By C denote the 2 -dimensional cell complex obtained from C_{0} by attaching 2-cells $e_{1}^{2}, \cdots, e_{m}^{2}$ such that ∂e_{i}^{2} is an element $w_{i}=w_{i}\left(z_{0}, z_{1}, \cdots, z_{m}\right)$ of $\pi_{1}\left(C_{0}\right)$ with $w_{i}\left(1, z_{1}, \cdots, z_{m}\right)=z_{i}$ for $1 \leqq i \leqq m$. Then we call C a cell complex of S-type.

In 1.5, $\operatorname{cl}\left(V-N\left(D_{0}^{n+1} ; V\right)\right)$ has a 1-dimensional spine. Hence, by the assumption on the attaching spheres u_{i} of h_{i}^{2}, we have the following:

Proposition 1.7. Let $\left(D^{n+3}, L^{n+1}\right)$ be an $(n+1)$-disk pair of S-type for $n \geqq$ 1. Then $\operatorname{cl}\left(D^{n+3}-N\left(L^{n+1} ; D^{n+3}\right)\right)$ collapses to a cell complex of S-type.
1.8. Under the notation in 1.5 , for a closed curve c in $\partial V-\partial D_{0}^{n+1}$, we can choose an element $w \in \pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$ such that, by choosing an arc l in $\partial V-\partial D_{0}^{n+1}$ spanning c and a base point, w is represented by $c \cup l$. Then we say that w is represented by c. We remark that the choice of $w \in \pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$, represented by c, depends on the choice of l. But, in this paper, our argument does not depend on the choice of l. Let $w \in \pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$ be represented by two simple closed curves c_{1} and c_{2} in $\partial V-D \partial_{0}^{n+1}$. If $n \geqq 2$, then there exists an ambient isotopy of ∂V which carries c_{1} to c_{2} and keeps ∂D_{0}^{n+1} fixed, but this is false for $n=1$.

2. Ribbon disks and disk pairs of S-type

Lemma 2.1. Let $w=w\left(z_{0}, z_{1}, \cdots, z_{m}\right)$ be a word in F, the free group on
$z_{0}, z_{1}, \cdots, z_{m}$. Then $w\left(1, z_{1}, \cdots, z_{m}\right)=z_{i}$ in F if and only if there exist a word t_{j} in F and an integer ε_{j} such that

$$
w=\left(\prod_{j}\left(t_{j} z_{0} t_{j}^{-1}\right)^{\varepsilon}\right) z_{i}
$$

Proof. The sufficiency is trivial. To prove the necessity, suppose $w(1$, $\left.z_{1}, \cdots, z_{m}\right)=z_{i}$. Then there exists a word w_{j} in F which does not contain the letter z_{0} for $1 \leqq j \leqq r$ such that

$$
\begin{aligned}
& w=w_{1} z_{0}^{\mathrm{g} 1 w_{2}} z_{0}^{z_{2}{ }_{2} \cdots w_{r} z_{0}^{\mathrm{e} r} w_{r+1}} \text { and } \\
& w_{1} w_{2} \cdots w_{r} w_{r+1}=z_{i} \text { in } F
\end{aligned}
$$

where ε_{j} is an integer for $1 \leqq j \leqq r$. Let $t_{j}=w_{1} w_{2} \cdots w_{j}$, then it is trivial that the required result holds.

Lemma 2.2. Let $D_{0}^{n+1}, V, \alpha_{i}$ and u_{i} be as in 1.5. Then there exist mutually disjoint meridian disks $\Delta_{0 i j}$ of ∂D_{0}^{n+1} in ∂V, and a band $\gamma_{i j}$ in ∂V compatible with α_{i} and $\widetilde{\alpha}_{i j}=\partial \Delta_{0 i j}$ for $1 \leqq i \leqq m$ and $1 \leqq j \leqq r(i)$ such that
(1) $\gamma_{i j}\left(B^{1} \times I\right) \cap \gamma_{k l}\left(B^{1} \times I\right)=\emptyset$ if $(i, j) \neq(k, l)$,
(2) $\gamma_{i j}\left(B^{1} \times I\right) \cap N\left(\partial D_{0}^{n+1} ; \partial V\right)=\gamma_{i j}\left(B^{1} \times\{0\}\right)$,
(3) $\gamma_{i j}\left(B^{1} \times I\right) \cap \alpha_{k}=\emptyset$ if $i \neq k$, and
(4) there exists an ambient isotopy of ∂V which keeps ∂D_{0}^{n+1} fixed and carries u_{i} to the simple closed curve

$$
\mathscr{F}\left(\alpha_{i}, \tilde{\alpha}_{i 1}, \cdots, \tilde{\alpha}_{i r(i)} ; \gamma_{i 1}, \cdots, \gamma_{i r(i)}\right)
$$

for $1 \leqq i \leqq m$. (See Fig. 2.)

Fig. 2
Proof of Lemma 2.2. For $n=1$, the assertion is easily shown by the modification as in Fig. 3.

Fig. 3
Suppose $n \geqq 2$. Let $F=\pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$, then F is the free group on $z_{0}, z_{1}, \cdots, z_{m}$, where z_{i} is represented by α_{i} for $0 \leqq i \leqq m$. Let $w_{i}=w_{i}\left(z_{0}, z_{1}, \cdots, z_{m}\right)$ be an element in F represented by u_{i} for $1 \leqq i \leqq m$. Then $w_{i}\left(1, z_{1}, \cdots, z_{m}\right)=z_{i}$ for each i. By Lemma 2.1, there exist a word $t_{i j}$ in F and an integer $\varepsilon_{i j}$ for $1 \leqq i \leqq m$ and $1 \leqq j \leqq r(i)$ such that

$$
x_{i}=\left(\prod_{j}\left(t_{i j} z_{0} t_{i j}^{-1}\right)^{\varepsilon_{i j}}\right) z_{i}
$$

We note that w_{i} is represented by a simple closed curve \tilde{u}_{i} on $\partial V-\partial D_{0}^{n+1}$ of the form

$$
\mathscr{F}\left(\alpha_{i}, \widetilde{\alpha}_{i 1}, \cdots, \widetilde{\alpha}_{i r(i)} ; \gamma_{i 1}, \cdots, \gamma_{i r(i)}\right)
$$

where $\tilde{\alpha}_{i j}$ and $\gamma_{i j}$ satisfy the required conditions (1), (2) and (3). By 1.8 , there exists an ambient isotopy of ∂V which keeps ∂D_{0}^{n+1} fixed and carries u_{i} to \tilde{u}_{i} for all i. This completes the proof.

Using Lemma 2.2, we have the following Proposition 2.3:
Proposition 2.3. For $n \geqq 1$, an ($n+1$)-disk pair of S-type is of S^{*}-type. (The authors should like to thank Prof. F. Hosokawa for pointing out a simpler proof than their original one.)

Proof. Let $\left(D^{n+3}, L^{n+1}\right)$ be an $(n+1)$-disk pair of S-type constructed in 1.5. We will use the notations $D_{0}^{n+1}, V, \alpha_{i}, u_{i}$ and h_{i}^{2} in 1.5 , and notation in Lemma 2.2. By Lemma 2.2, we may assume that the attaching sphere u_{i} of h_{i}^{2} is

$$
\mathscr{F}\left(\alpha_{i}, \widetilde{\alpha}_{i 1}, \cdots, \tilde{\alpha}_{i r(i)} ; \gamma_{i 1}, \cdots, \gamma_{i r(i)}\right)
$$

for $1 \leqq i \leqq m$. If $r(i)=1$ for all i, then there is nothing to prove. Hence we assume $r(i) \geqq 2$ for some i. The 2-handle h_{i}^{2} can be regarded as an embedding of $B^{2} \times B^{n+1}$ in D^{n+3} such that

$$
h_{i}^{2}\left(B^{2} \times B^{n+1}\right) \cap V=h_{i}^{2}\left(\partial B^{2} \times B^{n+1}\right)=N\left(u_{i} ; \partial V-\partial D_{0}^{n+1}\right) .
$$

For some $q \in$ int B^{n+1}, we may assume $h_{i}^{2}\left(\partial B^{2} \times q\right)=u_{i}$. Then we can define an embedding $g_{i}: B^{2} \rightarrow D^{n+3}$ by $g_{i}(x)=h_{i}^{2}(x, q)$ for $x \in B^{2}$. The number of connected components of $\alpha_{i}-\cup\left\{\gamma_{i j}\left(B^{1} \times\{1\}\right) ; 1 \leqq j \leqq r(i)\right\}$ is equal to $r(i)$, and denote the connected components by $U_{1}, \cdots, U_{r(i)}$. We take a point P_{j} in ∂B^{2} so that $g_{i}\left(P_{j}\right)$ $\in U_{j}$ for $2 \leqq j \leqq r(i)$. Then there exist mutually disjoint proper simple arcs Γ_{j} in B^{2} such that one end point of Γ_{j} is P_{j} and the other in $g_{i}^{-1}\left(U_{1}\right)$ for $2 \leqq j \leqq r(i)$.
(See Fig. 4.) Let $W_{j}=N\left(\Gamma_{j} ; B^{2}\right)$ for $2 \leqq j \leqq r(i)$, then W_{j} is a 2 -disk. We can regard $h_{i}^{2}\left(W_{j} \times B^{n+1}\right)$ as a 1-handle on V whose core is $h_{i}^{2}\left(\Gamma_{j} \times q\right)$. Let \tilde{V} be obtained from V by attaching 1-handles $h_{i}^{2}\left(W_{j} \times B^{n+1}\right)$ to V for $2 \leqq j \leqq r(i)$, then \tilde{V} is an $(n+3)$-disk with $m+r(i)-1$ 1-handles. Obviously $\operatorname{cl}\left(B^{2}-\bigcup\left\{W_{j} ; 2 \leqq j \leqq\right.\right.$ $r(i)\})$ has $r(i)$ connected components, say $W_{1}, \cdots, W_{r(i)}$. (See Fig. 4.) Then

$$
\begin{aligned}
h_{i}^{2}\left(B^{2} \times B^{n+1}\right)= & \bigcup\left\{h_{i}^{2}\left(W_{j} \times B^{n+1}\right) ; 2 \leqq j \leqq r(i)\right\} \\
& \cup\left\{h_{i}^{2}\left(W_{k} \times B^{n+1}\right) ; 1 \leqq k \leqq r(i)\right\}
\end{aligned}
$$

Hence $h_{i}^{2}\left(W_{k} \times B^{n+1}\right)$ can be regarded as a 2-handle on \tilde{V}, for $1 \leqq k \leqq r(i)$, whose core is $h_{i}^{2}\left(W_{k} \times q\right)$, thus the attaching sphere is $h_{i}^{2}\left(\partial W_{k} \times q\right)$. By choosing a system of standard curves $\left\{c_{k}\right\}$ on \tilde{V} suitably, it follows that $h_{i}^{2}\left(\partial W_{k} \times q\right)$ is $\mathscr{F}\left(c_{k}, \widetilde{\alpha}_{i k} ; \gamma_{i k}\right)$ for $1 \leqq k \leqq r(i)$. (See Fig. 5.) For any i with $r(i) \geqq 2$, repeat the above. Then it follows that $\left(D^{n+3}, L^{n+1}\right)$ is of S^{*}-type, and this completes the proof.

Fig. 4

Fig. 5
Theorem 2.4. Suppose $n \geqq 1$. Then a ribbon ($n+1$)-disk pair is of S-type, and conversely an $(n+1)$-disk pair of S-type is a ribbon disk pair.

Proof. Suppose that $\left(D^{n+3}, L^{n+1}\right)$ is a ribbon $(n+1)$-disk pair, for $n \geqq 1$, constructed in 1.4. In order to prove that $\left(D^{n+3}, L^{n+1}\right)$ is of S-type, it suffices to show that (D^{n+3}, L^{n+1}) is obtained from (V, D_{0}^{n+1}), as in 1.5 , by adding 2-handles on V. We will find V in D^{n+3} such that L^{n+1} is unknotted in V.

Let $\left(D^{n+3}, L^{n+1}\right)$ be associated with a ribbon n-knot of type $\left(\beta_{1}, \cdots, \beta_{m}\right)$. We
will use the notation in 1.2 and 1.4. Let Δ^{n+1} be an $(n+1)$-disk, then there exists an embedding $f_{i}: \Delta^{n+1} \times I \rightarrow D^{n+3}$, which is a collaring of D_{i}^{n+1} in D^{n+3}, i.e. $f_{i}\left(\Delta^{n+1}\right.$ $\times I) \cap L^{n+1} \subset f_{i}\left(\Delta^{n+1} \times 0\right)=D_{i}^{n+1}, f_{i}\left(\Delta^{n+1} \times I\right) \cap \partial D^{n+3}=f_{i}\left(\partial \Delta^{n+1} \times I\right)$ and $f_{i}\left(\Delta^{n+1} \times\right.$ $I) \cap \operatorname{Im} \bar{\beta}_{j}=\bar{\beta}_{j}\left(B^{n} \times 0 \times I\right)$ for $0 \leqq i \leqq m, 1 \leqq j \leqq m$. Let N_{i} be a regular neighbourhood of $f_{i}\left(\Delta^{n+1} \times\{1\}\right)$ in D^{n+3} for $0 \leqq i \leqq m$ such that $N_{i} \cap f_{i}\left(\Delta^{n+1} \times I\right)=f_{i}\left(\Delta^{n+1}\right.$ $\times[1 / 2,1])$ and $N_{i} \cap \bar{\beta}_{j}\left(B^{n} \times I \times I\right)=\emptyset$ for $1 \leqq j \leqq m$. We note that there exists a homeomorphism $g_{i}: \Delta^{n+1} \times D^{2} \rightarrow N_{i}$ for each i. Let $V=\operatorname{cl}\left(D^{n+3}-\bigcup\left\{N_{i} ; 0 \leqq i \leqq\right.\right.$ $m\}$), then V is homeomorphic to an $(n+3)$-disk with $(\mathrm{m}+1) 1$-handles. Remark that $\left\{g_{i}\left(p \times \partial D^{2}\right) ; 0 \leqq i \leqq m\right\}$ is a system of standard curves on V, where $p \in$ int D^{n+1}. Then D^{n+3} is obtained from V by adding 2-handles $\left\{N_{i}\right\}$ with the attahcing spheres $\left\{g_{i}\left(p \times \partial D^{2}\right)\right\}$. Let $U=\bigcup\left\{f_{i}\left(\Delta^{n+1} \times[0,1 / 2]\right) ; 0 \leqq i \leqq m\right\} \cup \bigcup\left\{\bar{\beta}_{j}\left(B^{n} \times\right.\right.$ $I \times I) ; 1 \leqq j \leqq m\}$, then U is an $(n+2)$-disk in V such that $L^{n+1} \subset \partial U$ and $\operatorname{cl}(\partial U-$ L^{n+1}) is an $(n+1)$-disk in ∂V. This implies that L^{n+1} is unknotted in V, hence (D^{n+3}, L^{n+1}) is of S-type.

Let (D^{n+3}, L^{n+1}) be an ($n+1$)-disk pair of S-type. By Proposition 2.3, we may assume that (D^{n+3}, L^{n+1}) is of S^{*}-type. Suppose that $\left(D^{n+3}, L^{n+1}\right)$ is constructed as in 1.5, and we will use the notation in 1.5, i.e. D^{n+3} is obtained from V by adding 2-handles with the attaching spheres $v_{i}=\mathscr{F}\left(\alpha_{i}, \alpha_{0 i} ; \gamma_{i}\right)$. Then we can "pull back" v_{i} along the band γ_{i} until v_{i} is deformed to coincide with α_{i}.

The 1 -handle h_{i}^{1}, as in 1.5 , is homeomorphic to $B^{n+2} \times I$, and we write $h_{i}^{1}=$ $\left(B^{n+2} \times I\right)_{i}$ for convenience. We may assume that $h_{i}^{1} \cap N\left(\alpha_{i} ; V\right)=\left(B_{+}^{n+2} \times I\right)_{i}$ and $\alpha_{i} \cap\left(B_{+}^{n+2} \times\{1 / 2\}\right)_{i}$ is one point for $1 \leqq i \leqq m$, where B_{+}^{n+2} is an $(n+2)$-disk in B^{n+2}. Without loss of generality, we can assume that the band γ_{i} attaches to α_{i} in a regular neighbourhood, in α_{i}, of $\left(B_{+}^{n+2} \times\{1 / 2\}\right)_{i} \cap \alpha_{i}$, hence int $\left(\gamma_{i}\left(B^{1} \times I\right) \cap \alpha_{i}\right) \supset$ $\left(B_{+}^{n+2} \times\{1 / 2\}\right)_{i} \cap \alpha_{i}$ for each i. Let $\theta_{i}: B^{n} \times I \times I \rightarrow V$ be an embedding such that $\theta_{i}\left(B^{n} \times I \times I\right) \cap \partial V=\theta_{i}\left(B^{n} \times I \times 0\right), \theta_{i}\left(B^{n} \times I \times I\right) \cap D_{0}^{n+1}=\theta_{i}\left(B^{n} \times 0 \times I\right)$ and $\theta_{i}\left(B^{n}\right.$ $\times I \times I) \cap\left(B_{+}^{n+2} \times\{1 / 2\}\right)_{i}=\theta_{i}\left(B^{n} \times\{1\} \times I\right) \subset\left(\partial B_{+}^{n+2} \times\{1 / 2\}\right)_{i}$ for $1 \leqq i \leqq m$. Let $D_{i}^{n+1}=\operatorname{cl}\left(\left(\partial B^{n+2} \times\{1 / 2\}\right)_{i} \cap\right.$ int $\left.V\right)$ for $1 \leqq i \leqq m$. By choosing θ_{i} suitably, we can deform D_{0}^{n+1} by an ambient isotopy $\left\{\varphi_{t}\right\}$ of V, which is a "pull back" of v_{i} along the band γ_{i}, such that φ_{0} is the identity map of V and $\varphi_{1}\left(D_{0}^{n+1}\right)$ is

$$
\begin{aligned}
& \left(\bigcup\left\{D_{i}^{n+1} ; 0 \leqq i \leqq m\right\}-\bigcup\left\{\theta_{j}\left(B^{n} \times \partial I \times I\right) ; 1 \leqq j \leqq m\right\}\right) \\
& \quad \cup \bigcup\left\{\theta_{j}\left(\partial B^{n} \times I \times I\right) \cup \theta_{j}\left(B^{n} \times I \times\{1\} ; 1 \leqq j \leqq m\right\} .\right.
\end{aligned}
$$

Let $B_{-}^{n+2}=\operatorname{cl}\left(B^{n+2}-B_{+}^{n+2}\right)$, then we can assume that $\left(B_{-}^{n+2} \times\{1 / 2\}\right)_{i}$ does not intersect 2-handles $\left\{h_{j}^{2}\right\}$ in V, hence $D_{1}^{n+1}, \cdots, D_{m}^{n+1}$ are unknotted in $D^{n+3}=V \cup h_{1}^{2} \cup$ $\cdots \cup h_{m}^{2}$, thus $\varphi_{1}\left(D_{0}^{n+1}\right)$ is a ribbon $(n+1)$-disk in D^{n+3}. This completes the proof.
A. Omae [9] proved that the boundary pair of a 3-disk pair of S-type is a ribbon 2-knot for a special case, and L.R. Hitt [1] announced that he proved that the boundary pair of an $(n+1)$-disk pair of some type is a ribbon n-knot and the converse.

By Proposition 1.7, Lemma 2.1, the proof of Lemma 2.2 and Theorem 2.4,
we have the following:
Corollary 2.5. Let $\left(D^{n+3}, L^{n+1}\right)$ be a ribobn ($n+1$)-disk pair for $n \geqq 1$, then $\mathrm{cl}\left(D^{n+3}-N\left(L^{n+1} ; D^{n+3}\right)\right)$ collapses to a cell complex of S-type. Conversely, let C be a cell complex of S-type. Then there exists a ribbon ($n+1$)-disk pair (D^{n+3}, L^{n+1}) for $n \geqq 1$ such that C is a spine of the exterior of L^{n+1} in D^{n+3}.

In [19], the third author proved the following Proposition 2.6, and we can give an alternative proof by using Theorem 2.4:

Proposition 2.6. For $n \geqq 2$, every ribbon n-knot has an equatorial knot.
Proof. Let K^{n} be a ribbon n-knot, and (D^{n+3}, L^{n+1}) the ribbon $(n+1)$-disk pair associated with K^{n}. By Theorem 2.4, $\left(D^{n+3}, L^{n+1}\right)$ is of S-type. Hence there exists an unknotted $(n+1)$-disk D_{0}^{n+1} in V, an $(n+3)$-disk with m 1-handle, such that (D^{n+3}, L^{n+1}) is obtained from $\left(V, D_{0}^{n+1}\right)$ by attaching m 2-handles h_{1}^{2}, \cdots, h_{m}^{2} to $V-D_{0}^{n+1}$. (See 1.5.) We can realize V in R^{n+3} so that
(1) V is a regular neighbourhood of W in R^{n+3}, where W is a bouquet of m 1-spheres in R_{0}^{n+2}, and $V \cap R_{0}^{n+2}=N\left(W ; R_{0}^{n+2}\right)$,
(2) the pair (V, D_{0}^{n+1}) is symmetric with respect to R_{0}^{n+2}, and
(3) $D_{0}^{n+1} \cap R_{0}^{n+2}$ is an n-disk, say \tilde{D}_{0}^{n}, and $D_{0}^{n+1} \cap R_{\mathrm{e}}^{n+2}$ is an ($n+1$)-disk for $\varepsilon= \pm$.
Let $V_{0}=V \cap R_{0}^{n+2}$, then $\partial V_{0} \subset \partial V$. Hence we can choose a system of standard curves $\left\{\alpha_{i}\right\}$ on ∂V_{0} so that it is also standard on ∂V. A meridian α_{0} of ∂D_{0}^{n} in ∂V_{0} is a meridian of ∂D_{0}^{n+1} in ∂V. For the attaching sphere u_{i} of a 2-handle h_{i}^{2} on V, let w_{i} be an element of $\pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$ represented by u_{i} for $1 \leqq i \leqq m$. Since $\pi_{1}\left(\partial V_{0}-\partial D_{0}^{n}\right) \cong \pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$ by the isomorphism induced by the inclusion, we may regard $w_{i} \in \pi_{1}\left(\partial V_{0}-\partial D_{0}^{n}\right)$. By Lemma 2.1 and the proof of Lemma 2.2, there exist mutually disjoint simple closed curves $\tilde{u}_{1}, \cdots, \tilde{u}_{m}$ in $\partial V_{0}-\partial D_{0}^{n}$ which represent w_{1}, \cdots, w_{m}, and an ambient isotopy of V_{0} which carries \tilde{u}_{i} to α_{i} for all i. By 1.8, \tilde{u}_{i} and u_{i} are ambient isotopic in $\partial V-\partial D_{0}^{n+1}$, because \tilde{u}_{i} and u_{i} represent the same element w_{i} in $\pi_{1}\left(\partial V-\partial D_{0}^{n+1}\right)$. This means that we can choose the attaching sphere u_{i} of h_{i}^{2} in $V_{0}=V \cap R_{0}^{n+2}$. Then we can realize each 2-handle h_{i}^{2} in R^{n+3} so that it is symmetric with respect to R_{0}^{n+2}. Hence it follows that $V \cup \bigcup$ $\left\{h_{i}^{2} ; 1 \leqq i \leqq m\right\}$ is symmetric with respect to R_{0}^{n+2} and

$$
\left(\partial\left(V \cup \bigcup\left\{h_{i}^{2} ; 1 \leqq i \leqq m\right\}\right) \cap R_{+}^{n+3}, \partial D_{0}^{n+1} \cap R_{+}^{n+3}\right)=\left(D_{+}^{n+2}, L_{+}^{n}\right)
$$

is an n-disk pair of S-type. Then $\left(S^{n+2}, K^{n}\right)=\mathscr{D}\left(D_{+}^{n+2}, L_{+}^{n}\right)$ has the equatorial knot $\partial\left(D_{+}^{n+2}, L_{+}^{n}\right)$. This completes the proof.

3. Asphericity of ribbon disks

In this section, we will prove that the complement of a higher dimensional ribbon disk is aspherical which is an analogy to the case of classical knots [10].
3.1. Regarding S^{4} as a one point compactification of R^{4}, we may consider that a 2 -knot is in R^{4}. By Proposition 2.6, we can assume that a ribbon 2-knot K^{2} satisfies the followings:
(1) K^{2} is symmetric with respect to R_{0}^{3},
(2) $K^{2} \cap R_{+}^{4}$ has elliptic critical points only in R_{2}^{3}, and
(3) $K^{2} \cap R_{+}^{4}$ has hyperbolic critical points only in R_{1}^{3} (Fig. 6).

Deforming the above description, it is easily seen that K^{2} can be described as follows:
(1) all elliptic critical points occur at R_{2}^{3} or R_{-2}^{3}, and
(2) all hyperbolic critical points occur at R_{0}^{3} (Fig. 7).

Fig. 7
The latter description of a 2 -knot is called a splitting by S.J. Lomonaco [7], then using this splitting, he has stated the following in the proof of Theorem 3.2 in [7]:

Proposition 3.2. Let K^{2} be a ribbon 2-knot of type $\left(\beta_{1}, \cdots, \beta_{m}\right)$, and d_{i}^{3} a proper 3-disk in $N\left(\beta_{i} ; S^{4}\right)$ such that the intersection of d_{t}^{3} and $\beta_{i}\left(B^{2} \times I\right)$ is $\beta_{i}\left(B^{2} \times\right.$ $\{1 / 2\}$) and $\partial d_{i}^{3} \subset S^{4}-K^{2}$. Let $*$ be a base point in $S^{4}-K^{2}$, and l_{i} a simple arc in $S^{4}-K^{2}$ which spans the base point $*$ and ∂d_{i}^{3}, then we denote by $\left[\partial d_{i}^{3}\right]$ the element of $\pi_{2}\left(S^{4}-K^{2}\right)=\pi_{2}\left(S^{4}-K^{2}, *\right)$ represented by $l_{i} \cup \partial d_{i}^{3}$. Then $\pi_{2}\left(S^{4}-K^{2}\right)$ is generated by $\left[\partial d_{1}^{3}\right], \cdots,\left[\partial d_{m}^{3}\right]$ as a $Z \pi_{1}$-module, where $Z \pi_{1}$ is the integral group ring of $\pi_{1}=$ $\pi_{1}\left(S^{4}-K^{2}\right)$. (See Fig. 8.)

Fig. 8

The following Proposition 3.3 has been proved by the third author [20]:
Proposition 3.3. Let $\left(D^{n+3}, L^{n+1}\right)$ be the ribbon $(n+1)$-disk pair associated with a ribbon n-knot K^{n}, and $\left(S^{n+3}, K^{n+1}\right)=\mathscr{D}\left(D^{n+3}, L^{n+1}\right)$. If $n \geqq 2$, then $\pi_{1}\left(S^{n+2}\right.$ $\left.-K^{n}\right) \cong \pi_{1}\left(D^{n+3}-L^{n+1}\right) \cong \pi_{1}\left(S^{n+3}-K^{n+1}\right)$.

Lemma 3.4. Let $\left(D^{n+3}, L^{n+1}\right)$ be the ribbon $(n+1)$-disk pair associated with a ribbon n-knot K^{n}. If $n \geqq 2$, then the inclusion from $S^{n+2}-K^{n}$ into $D^{n+3}-L^{n+1}$ induces an onto-homomorphism $\pi_{2}\left(S^{n+2}-K^{n}\right) \rightarrow \pi_{2}\left(D^{n+3}-L^{n+1}\right)$ as $Z \pi_{1}$-modules.

Proof. Let N, T be regular neighbourhoods of L^{n+1} in D^{n+3} and K^{n} in S^{n+2} respectively, then in order to prove Lemma 3.4 it suffices to show the surjectivity of $\pi_{2}\left(S^{n+2}-\right.$ int $\left.T\right) \rightarrow \pi_{2}\left(D^{n+3}-\right.$ int $\left.N\right)$.

Let Σ^{2} be a 2-dimensional polyhedron in D^{n+3}-int N. By Theorem 2.4, D^{n+3}-int N consists of $0-, 1$ - and 2 -handles. By the general position arguments, we can assume that Σ^{2} does not intersect the cores of $0-, 1$ and 2 -handles. This implies that Σ^{2} is in the boundary collar of D^{n+3}-int N. Hence we can move Σ^{2} homotopically into $\partial\left(D^{n+3}-i n t N\right)$, and we denote the image of Σ^{2} in $\partial\left(D^{n+3}-\operatorname{int} N\right)$ by the same symbol Σ^{2}. Note that $\partial\left(D^{n+3}-\operatorname{int} N\right)=\left(S^{n+2}-\operatorname{int} T\right)$ $\bigcup_{f} B^{n+1} \times S^{1}$, where f is an identifying map of $\partial\left(B^{n+1} \times S^{1}\right)$ and $\partial\left(S^{n+2}-\right.$ int $\left.T\right)=$ ∂T. Again by the general position arguments, Σ^{2} does not intersect $p \times S^{1}$ in $\partial\left(D^{n+3}\right.$-int $\left.N\right)$, where $p \in$ int B^{n+1}, thus we can push Σ^{2} into S^{n+2}-int T. This fact and Proposition 3.3 follow the required result. This completes the proof of Lemma 3.4.

Lemma 3.5. For a ribbon 3-disk pair $\left(D^{5}, L^{3}\right)$, we have $\pi_{2}\left(D^{5}-L^{3}\right)=0$.
Proof. Let $\left(D^{5}, L^{3}\right)$ be associated with a ribbon 2-knot of type ($\beta_{1}, \cdots, \beta_{m}$). Then we will use the notation in 1.4 for $n=2$ and in Proposition 3.2. The 2sphere ∂d_{i}^{3} bounds the 3-disk $\left(\partial d_{i}^{3} \times[0,3 / 4]\right) \cup\left(d_{i}^{3} \times\{3 / 4\}\right)$ in $D^{5}-L^{3}$ for each i. It follows from this and Lemma 3.4 that $\pi_{2}\left(D^{5}-L^{3}\right)=0$.

The following Theorem 3.6 is a generalization of [18]:
Theorem 3.6. Let $\left(D^{n+3}, L^{n+1}\right)$ be a ribbon ($n+1$)-disk pair with $n \geqq 1$, then $D^{n+3}-L^{n+1}$ is aspherical.

Proof. By Corollary 2.5, there exists a cell complex C of S-type such that $D^{n+3}-L^{n+1}$ is homotopy equivalent to C. Again by Corollary 2.5, there exists a ribbon 3-disk pair $\left(D^{5}, L^{3}\right)$ such that $D^{5}-L^{3}$ is homotopy equivalent to C. It follows from Lemma 3.5 that $\pi_{2}(C)=0$. Let \tilde{C} be the universal covering space of C. Then $H_{i}(\tilde{C})=0$ for $i \geqq 3$, since \tilde{C} is 2 -dimensional. Thus, by Hurewicz theorem, \tilde{C} is aspherical, because $\pi_{2}(\widetilde{C}) \cong \pi_{2}(C)=0$. Therefore C is aspherical. This completes the proof.

Remark 3.7. A cell complex of S-type is a subcomplex of a contractible 2-complex, and it follows from the proof of Theorem 3.6 that a cell complex of S-type is aspherical. This gives a partial answer to a problem of J.H.C. Whitehead: Is any subcomplex of an aspherical 2-complex aspherical?

Corollary 3.8. Let K^{n} be a ribbon n-knot for $n \geqq 1$, then $\pi_{1}\left(S^{n+2}-K^{n}\right)$ has no element of finite order.

Proof. For $n=1$, the assertion is a special case of [10]. For $n \geqq 2$, this is true by Proposition 3.3, Theorem 3.6 and a result due essentially to P.A. Smith (p. 216 in [3]), namely: The fundamental group of an aspherical polyhedron of finite dimenion has no element of finite order.
T. Yajima characterized the knot groups of ribbon 2-knots in [16], then by Colrollary 3.8 and [16] we have the following:

Corollary 3.9. Let G be a finitely presented group having a Wirtinger presentation cf deficiency 1 with $G / G^{\prime} \cong Z$. Then G has no element of finite order.

4. Unknotting ribbon knots

Theorem 4.1. Let K^{n} be a ribbon n-knot for $n \geqq 3$, then we have $\pi_{i}\left(S^{n+2}-\right.$ $\left.K^{n}\right)=0$ for $2 \leqq i \leqq n-1$.

Proof. By Proposition 2.6, there exists a ribbon n-disk pair (D^{n+2}, L^{n}) such that $\mathscr{D}\left(D^{n+2}, L^{n}\right)=\left(S^{n+2}, K^{n}\right)$. Let $\left(D_{\mathrm{e}}^{n+2}, L_{\mathrm{e}}^{n}\right)$ be a copy of $\left(D^{n+2}, L^{n}\right)$ for $\varepsilon= \pm$, then $\mathscr{D}\left(D^{n+2}, L^{n}\right)$ is obtained from the disjoint union of $\left(D_{+}^{n+2}, L_{+}^{n}\right)$ and $\left(D_{-}^{n+2}, L_{-}^{n}\right)$ by identifying their boundaries via the identity map. Let $\left(S^{n+1}, K_{0}^{n-1}\right)=\partial\left(D_{+}^{n+2}\right.$, L_{+}^{n}), i.e. K_{0}^{n-1} is an equatorial knot of K^{n}. Let \tilde{X} be the universal covering space of $S^{n+2}-K^{n}, \tilde{X}_{\varepsilon}$ the lift of $D_{\varepsilon}^{n+2}-L_{\varepsilon}^{n}$ in \tilde{X} for $\varepsilon= \pm$, and \tilde{X}_{0} the lift of $S^{n+1}-K_{0}^{n-1}$ in \tilde{X}. By Proposition 3.3, all of $\tilde{X}_{+}, \tilde{X}_{-}$and \tilde{X}_{0} are also universal covering spaces. By the Mayer-Vietoris theorem, we have the following exact sequence:

$$
\cdots \rightarrow H_{j}\left(\tilde{X}_{+}\right) \oplus H_{j}\left(\tilde{X}_{-}\right) \rightarrow H_{j}(\tilde{X}) \rightarrow H_{j-1}\left(\tilde{X}_{0}\right) \rightarrow H_{j-1}\left(\tilde{X}_{+}\right) \oplus H_{j-1}\left(\tilde{X}_{-}\right) \rightarrow \cdots .
$$

By Theorem 3.6, $H_{j}\left(\tilde{X}_{\varepsilon}\right)=0$ for $j \geqq 1$ and $\varepsilon= \pm$. Therefore it follows that $H_{j}(\tilde{X})$ $\cong H_{j-1}\left(\tilde{X}_{0}\right)$ for $j \geqq 2$.

Suppose $n=3$, then $\pi_{2}\left(S^{5}-K^{3}\right) \cong H_{2}(\tilde{X}) \cong H_{1}\left(\tilde{X}_{0}\right)=0$. By induction on the dimension n, it is easily seen that the fact $H_{j}(\tilde{X}) \cong H_{j-1}\left(\tilde{X}_{0}\right)$ and $H_{1}\left(\tilde{X}_{0}\right)=0$ implies $H_{i}\left(\tilde{X}_{0}\right)=0$ for $1 \leqq i \leqq n-1$, and this implies the required result.
4.2. Addendum to Theorem 4.1. From the proof of Theorem 4.1, it follows that $\pi_{n}\left(S^{n+2}-K^{n}\right) \cong \pi_{n-1}\left(S^{n+1}-K_{0}^{n-1}\right)$ for $n \geqq 3$. Concerning $\pi_{n}\left(S^{n+2}-K^{n}\right)$ for a ribbon n-knot K^{n} with $n \geqq 3$, we can conclude the similar result to that in Proposition 3.2.

The following Proposition 4.3 is due to A. Kawauchi ([4] or p. 331 in [14]):
Proposition 4.3. For a 2 -knot $K^{2}, S^{4}-K^{2}$ is homotopy equivalent to S^{1} if and only if $\pi_{1}\left(S^{4}-K^{2}\right) \cong Z$.

Theorem 4.4. Let K^{n} be a ribbon n-knot for $n \geqq 3$. If $\pi_{1}\left(S^{n+2}-K^{n}\right) \cong Z$, then K^{n} is unknotted.

Proof. We can use the notation in the proof of Theorem 4.1. Note that, in the proof of Theorem 4.1, we have $H_{j}(\tilde{X}) \cong H_{j-1}\left(\tilde{X}_{0}\right)$ for $j \geqq 2$.

Suppose $n=3$ and $\pi_{1}\left(S^{5}-K^{3}\right) \cong Z$, then by Proposition 3.3 it follows that $\pi_{1}\left(S^{4}-K_{0}^{2}\right) \cong Z$, where K_{0}^{2} is an equatorial knot of K^{3}. By Proposition 4.3, we have $H_{i}\left(\tilde{X}_{0}\right)=0$ for all $i \geqq 1$. It follows from this that $H_{j}(\tilde{X})=0$ for $j \geqq 1$. Therefore $S^{5}-K^{3}$ is homotopy equivalent to S^{1}, hence by [6], [12] and [15], K^{3} is unknotted. Similarly, for $n \geqq 4$, it is easy to see that the assertion is true by induction on the dimension n. This completes the proof.

Recently A. Kawauchi and T. Matumoto [5] have obtained independently the same result as Theorem 4.4.

The following is obtained by Proposition 3.3 and Theorem 4.4:
Corollary 4.5. Let K^{n} be a ribbon n-knot for $n \geqq 4$, then any equatorial knot of K^{n} is unknotted if K^{n} is unknotted.

For $n=2$, Corollary 4.5 is false. For example, Kinoshita-Terasaka knot is an equatorial knot of the unknot [8]. The case $n=3$ still remains open.

Final Remark. In 1.2, 1.4 and 1.5, we defined a ribbon knot, a ribbon disk pair and a disk pair of S-type. It is easy to generalize our definition of ribbon knots to the case of links, i.e. ribbon links. Then the same generalizations are possible for ribbon disk pairs and "of S-type". In this generalized case, Theorems 2.4 and 3.6 remain valid.

References

[1] L.R. Hitt: Characterization of ribbon n-knots, Notices Amer. Math. Soc. 26 (1979), A-128.
[2] J.F.P. Hudson and D.W. Sumners: Knotted ball pairs in unknotted sphere pairs, J. London Math. Soc. 41 (1966), 717-722.
[3] W. Huerwicz: Beiträge zur Topologie der Defomationen IV, Proc. Akad. Amsterdam 39 (1936), 215-224.
[4] A. Kawauchi: On partial Poincaré duality and higher dimensional knots with $\pi_{1}=Z$, Master's thesis, Kobe Univ., 1974.
[5] A. Kawauchi and T. Matumoto: An estimate of infinite cyclic coverings and
knot theory, preprint.
[6] J. Levine: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
[7] S.J. Lomonaco, Jr.: The homotopy groups of knots, II. A solution to Problem 36 of R.H. Fox, to appear.
[8] Y. Marumoto: On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), 59-68.
[9] A. Omae: A note on ribbon 2-knots, Proc. Japan Acad. 47 (1971), 850-853.
[10] C.D. Papakyriakopoulos: On Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[11] C. Rourke and B. Sanderson: Introduction to piecewise-linear topology, Ergeb. der Math. 69, Springer, 1972.
[12] J.L. Shaneson: Embeddings of spheres in spheres of codimension two and h-cobordism of $S^{1} \times S^{3}$, Bull. Amer. Math. Soc. 74 (1968), 972-974.
[13] D.W. Sumners: Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240.
[14] S. Suzuki: Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), 241-371.
[15] C.T.C. Wall: Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge. Phil. Soc. 61 (1965), 659-664.
[16] T. Yajima: On a characterization of knot groups of some spheres in R^{4}, Osaka J. Math. 6 (1969), 435-446.
[17] T. Yanagawa: On ribbon 2-knots, The 3-manifold bounded by the 2-knots., Osaka J. Math. 6 (1969), 447-464.
[18] T. Yanagawa: On ribbon 2-knots II, The second homotopy group of the complementary domain, Osaka J. Math. 6 (1969), 465-473.
[19] T. Yanagawa: On cross sections of higher dimensional ribbon-knots, Math. Sem. Notes Kobe Univ. 7 (1979), 609-628.
[20] T. Yanagawa: Knot-groups of higher dimensional ribbon knots, to appear.

Kouhei Asano
Faculty of General Education
Kinki University
Higashi-Osaka 577, Japan
Yoshihiko Marumoto
Department of Mathematics
Faculty of Education
Saga University
Honjo-machi, Saga 840
Japan
Takaaki Yanagawa
College of General Education
Kobe University
Kobe 657, Japan

