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0. Introduction

Let M be a Riemannian manifold. A point oGilί is called a pole, if the
exponential mapping at o induces a global diffeomorphism. We write (M, ό) for
a Riemannian manifold with the pole o and denote by pM(x) the distance between
o and Λ G M , By the radial curvature at x^M—{o}, we mean the restriction
of sectional curvature to the planes which contain the tangent vector grad pM(x)
(At x — o, the radial curvature means simply the sectional curvature at o.)
Let KM(t) (ΐ^O) be the maximum of the values of radial curvature atΛiGMΛ
varying over the points such that ρM(x)=t. It is easily seen that KM is a con-
tinuous function on [0, °o).

The purpose of the present paper is to prove the following

Theorem. Let {M, o) be a Riemannian manifold with a pole. Suppose that
that there exists a Cι-function y=y(t) which satisfies the inequality:

on (0, oo) (resp. [0, oo)),

and is positive {resp. nonnegative) on [a, °°) for some a^0. Then ρ2

M is a strictly

convex function on {x^M:

We recall that a C2-function/is said to be strictly convex if the Hessian of/,
denoted by D2f, is positive definite.

Corollary. Let {M, o) be a Kaehler manifold with a pole. Suppose that
there is a C^function y=y(t) which satisfies the same conditions as in Theorem.
Then M is a Stein manifold.

Our results are generalizations of a result due to H. Wu, who asserts that
PM is strictly convex everywhere on M if KM^0 (cf. Proposition 1.17 in [2]).

According to our Theorem, if KM(t)^—-, then p2

M is strictly convex everywhere
1on M, since y(t)=— satisfies the assumption of the Theorem.
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1. Riemannian manifolds with a pole and models

In this section, we recall several results in Greene and Wu [2].

Theorem 1 (Hessian Comparison Theorem). Let (M,o) and (N,p) be
Riemannian manifolds with a pole. Let γ f : [0, b]->M and γ2: [0, b]->N be normal

geodesies {i.e. \jx\ = | γ 2 | = 1 ) with Ύi(0)=o and j2(0)=p. Suppose we have

each radial curvature at 7 2 (ί)> every radial curvature at Ύι(t)for all ί e ( 0 , ft].

If f is a nondect-easing C2-function on (0, ft], then

D*f(pN)y2(t)(X2, X 2 ) £

for all ^ e M φ ) and X2(=Ny2(t) with \XX\ = \X2\ and ζXu γ 1 ( φ = <Z2, γ2(ί)>.

REMARK. This theorem was obtaind at first by Siu and Yau (cf. p. 227 in
[5]) with additional assumptions that M and N are negatively curved and of
the same dimension, and then by Greene and Wu in the case: dimiV^dimM
(cf. Theorem A in [2]). M. Itoh gives a simple proof without any restriction
on the dimensions of M and N (cf. [1]).

We say (M,o) dominates (Nyp) if each radial curvature at x^ every radial
curvature at y for arbitrary x^M and y^N with

Corollary 1. Let (M,o) and (N,p) be Riemannian manifold with a pole.
Suppose (M,o) dominates (N,o). If p2

N is strictly convex on {x^N:
for some α^O, then so is p2

M on {x^M:

Proof. We know D2pM(o)=2g(o)f where g is the Riemannian metric on M.
Hence this is an immediate consequence of Theorem 1 by taking t2

A Riemannian manifold with a pole {N,p) is called a (Riemannian) model
if every linear isometry Φ: Np-+Np is realized as the differential of an isometry
φ:N->N. Let g be the Riemannian metric of a model (N,p). Since exp^:
NP->N is a diffeomorphism, e x p ^ can be written as txpf g=dr2-\-f(r)2dθ2 in a
geodesic polar coordinate system, where r=ρN. We remark that, by the de-
finition of a model, f(r) depends only on r but not on the angular coordinates
Θ, and the radial curvature of N at x^N is a function of r{x). We put K(t)=
radial curvature of N at any x^N such that r(x)=^t. We call K: [0, oo)-+R
the radial curvature function of the model (Nyp). Then, it is a classical fact that
/satisfies the classical Jacobi equation:

f"+K f= 0 on [0, oo) with /(0) = 0, /'(0) = 1 .

Conversely, by Proposition 4.2 in [2] and the proof of it, we have the following

Lemma 1. Given a continuous function K on [0, oo) wch that the solution
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f:f"+K f=0, with /(0)=0,/ /(0)=l is positive on (0, oo), then, there exists a
model whose metric is C1 at the pole and C2 elsewhere, and whose radial curvature
function outside the pole is K\ this model is unique up to isometry.

Lemma 2. Let (N, p) be a model and, r andf be as above. Then, f is posi-
tive if and only if r2 is strictly convex.

Proof. By the Proposition 2.20 in [2], we have D2r=[f'lf] H on N— {/>},
where H=g—dr®dr and g is the Riemannian metric on N. Hence D2rz=2
dr(g)dr+2r[f'lf]H. Therefore / ' is positive if and only if r2 is strictly convex.

2. Review of a classical Jacobi equation

Let K be a continuous function on [0, oo) and/ be the solution: f"-{-K f=0
with/(0)=0, / ' (0)=l . On the positivity of/, we have the following

Lemma 3 (Theorem 7.2 in [4] or [6]). Let K and f be as above. Then
f is positive on (0, oo) if and only if there is a Cι-function y=y(t) on (0, oo) such
thaty'+y2+K^Q on (0, oo).

Using this lemma, we prove the following

Lemma 4. Let K and f be as above. If there is a ^-function y=y(t) on
(0, oo) (resp. [0, oo)) such that y'+f+K^0 on (0, oo) (resp. [0, oo)) and j>>0
on [α, oo) (resp. y^0 on [a> °°)) for some α(0^α<oo) . Then f is positive on
(0, oo) andf is positive on [α, oo).

Proof. Let y=y{t) be as above, defined on (0, oo). We put w(ί)=exρ \

Xy(s) ds, where c is any positive constant. Then u is positive on (0, oo) and
satisfies an inequality: u"+K-u^Q on (0, oo). Let /, (0<ί<oo) be the family
of solutions: f'/+K fs=0 withfs(s)=0J's(s)=l. We fix any s>0. Then for
t(=(s9 oo), we get

0 <£ Γ {^r)(/^
Js

= \t

s{«r)f's(r))'-{fs(r)u'(r)Y}dr

= u(t)f's{t)-u(sψs(s)-fs(t)u'(t)+Us)u'(s) .

Hence we have

(1) O^u(t)f's(t)-u(s)-fs(t)u'(t)

for any ίe( ί , oo). Since u>0 and u'=y u, we see

y(t)fs(t)<m)
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By the continuity of solutions on initial conditions,we have

y(t)f(t) = lkay(t)fs(t)^limfs(t) =f\t).
sf0 * > 0

By Lemma 3., we know/(£) is positive on (0, oo). Thusy>0 on [α, °°) implies
f'(t)>0 on [α, oo). Similaly, in the case where3; is defined on [0, <*>), we have
(1). Taking s=0y we obtain

Since/ is positive on (0, oo), y^O on [a, 00) implies f'(f)>0 on [α, 00).

Corollary 2 ([6]). Let K and f be as above. If K satisfies an inequality:

K+(s)ds<j- on (0, <*>)> where j £ + = max {Ky 0}, or an inequality: ί \ K)

K(t\

^—~^y then f and/' are positive on (0, oo).

K+(s)ds+j-. For the latter,

t *t

set y(t)=2 \™ K(s)ds.

REMARK. In Lemma 3, if K^0 and K^βO near 00, it is easily verified that
/ > 0 on (0, 00) implies/'>0 on (0, 00).

3. Proof of Theorem and Corollary

Let (M,o) be a Riemannian manifold with a pole. Let y be a (^-function
in Theorem. Then by Lemma 4 and Lemma 1, there exists a model (N,p) whose
metric is C1 at p and C2 elsewhere, and whose radial curvature function outside
the pole p is KMf where KM is a continuous function on [0, 00) defined in Intro-
duction. Moreover {N,p) is dominated by (M, 0) and, by Lemma 2, r\r=pN)
is strictly convex on {x^N:r(x)^a). Therefore (M, 0) and (N,p) satisfy
all the conditions of Corollary 1. That is, ρ2

M is strictly convex on

As for the proof of Corollary, we note that, in general, a (strictly) convex
C2-function on a Kaehler manifold is a (strictly) plurisubharmonic C2-function.
Let (M, 0) be a Kaehler manifold with a pole. Let y be a (^-function in Corol-
lary. Then by Theorem we can see that PM is strictly plαrisubharmonic outside
a compact set. Since M is diffeomorphic to Cm (m=dimcM), the arguments in
[3] (p. 87) shows that M is a Stein manifold.
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