Kasue, A. Osaka J. Math. 18 (1981), 109-113

ON RIEMANNIAN MANIFOLDS WITH A POLE

ATSUSHI KASUE

(Received June 11, 1979) (Revised March 15, 1980)

0. Introduction

Let M be a Riemannian manifold. A point $o \in M$ is called *a pole*, if the exponential mapping at *o* induces a global diffeomorphism. We write (M, o) for a Riemannian manifold with the pole *o* and denote by $\rho_M(x)$ the distance between *o* and $x \in M$. By the *radial curvature* at $x \in M - \{o\}$, we mean the restriction of sectional curvature to the planes which contain the tangent vector grad $\rho_M(x)$ (At x = o, the radial curvature means simply the sectional curvature at o.) Let $K_M(t)$ $(t \ge 0)$ be the maximum of the values of radial curvature at $x \in M x$ varying over the points such that $\rho_M(x) = t$. It is easily seen that K_M is a continuous function on $[0, \infty)$.

The purpose of the present paper is to prove the following

Theorem. Let (M, o) be a Riemannian manifold with a pole. Suppose that that there exists a C^1 -function y=y(t) which satisfies the inequality:

 $y' + y^2 + K_M \leq 0$ on $(0, \infty)$ (resp. $[0, \infty)$),

and is positive (resp. nonnegative) on $[\alpha, \infty)$ for some $\alpha \ge 0$. Then ρ_M^2 is a strictly convex function on $\{x \in M : \rho_M(x) \ge \alpha\}$.

We recall that a C^2 -function f is said to be *strictly convex* if the Hessian of f, denoted by $D^2 f$, is positive definite.

Corollary. Let (M, o) be a Kaehler manifold with a pole. Suppose that there is a C¹-function y=y(t) which satisfies the same conditions as in Theorem. Then M is a Stein manifold.

Our results are generalizations of a result due to H. Wu, who asserts that ρ_M^2 is strictly convex everywhere on M if $K_M \leq 0$ (cf. Proposition 1.17 in [2]). According to our Theorem, if $K_M(t) \leq \frac{1}{4t}$, then ρ_M^2 is strictly convex everywhere on M, since $y(t) = \frac{1}{2t}$ satisfies the assumption of the Theorem.

A. KASUE

1. Riemannian manifolds with a pole and models

In this section, we recall several results in Greene and Wu [2].

Theorem 1 (Hessian Comparison Theorem). Let (M, o) and (N, p) be Riemannian manifolds with a pole. Let $\gamma_i: [0, b] \rightarrow M$ and $\gamma_2: [0, b] \rightarrow N$ be normal geodesics (i.e. $|\dot{\gamma}_1| = |\dot{\gamma}_2| = 1$) with $\gamma_1(0) = o$ and $\gamma_2(0) = p$. Suppose we have each radial curvature at $\gamma_2(t) \geq$ every radial curvature at $\gamma_1(t)$ for all $t \in (0, b]$. If f is a nondecreasing C²-function on (0, b], then

$$D^{2}f(\rho_{N})_{\gamma_{2}(t)}(X_{2}, X_{2}) \leq D^{2}f(\rho_{M})_{\gamma_{1}(t)}(X_{1}, X_{1})$$

for all $X_1 \in M_{\gamma_1(t)}$ and $X_2 \in N_{\gamma_2(t)}$ with $|X_1| = |X_2|$ and $\langle X_1, \dot{\gamma}_1(t) \rangle = \langle X_2, \dot{\gamma}_2(t) \rangle$.

REMARK. This theorem was obtaind at first by Siu and Yau (cf. p. 227 in [5]) with additional assumptions that M and N are negatively curved and of the same dimension, and then by Greene and Wu in the case: dim $N \leq \dim M$ (cf. Theorem A in [2]). M. Itoh gives a simple proof without any restriction on the dimensions of M and N (cf. [1]).

We say (M, o) dominates (N, p) if each radial curvature at $x \leq \text{every radial}$ curvature at y for arbitrary $x \in M$ and $y \in N$ with $\rho_M(x) = \rho_N(y)$.

Corollary 1. Let (M, o) and (N, p) be Riemannian manifold with a pole. Suppose (M, o) dominates (N, o). If ρ_N^2 is strictly convex on $\{x \in N : \rho_N(x) \ge \alpha\}$ for some $\alpha \ge 0$, then so is ρ_M^2 on $\{x \in M : \rho_M(x) \ge \alpha\}$.

Proof. We know $D^2 \rho_M^2(o) = 2g(o)$, where g is the Riemannian metric on M. Hence this is an immediate consequence of Theorem 1 by taking t^2 as f(t).

A Riemannian manifold with a pole (N, p) is called a (Riemannian) model if every linear isometry $\Phi: N_p \to N_p$ is realized as the differential of an isometry $\phi: N \to N$. Let g be the Riemannian metric of a model (N, p). Since $\exp_p:$ $N_p \to N$ is a diffeomorphism, $\exp_p^* g$ can be written as $\exp_p^* g = dr^2 + f(r)^2 d\Theta^2$ in a geodesic polar coordinate system, where $r = \rho_N$. We remark that, by the definition of a model, f(r) depends only on r but not on the angular coordinates Θ , and the radial curvature of N at $x \in N$ is a function of r(x). We put K(t) =radial curvature of N at any $x \in N$ such that r(x) = t. We call $K: [0, \infty) \to R$ the radial curvature function of the model (N, p). Then, it is a classical fact that f satisfies the classical Jacobi equation:

 $f'' + K \cdot f = 0$ on $[0, \infty)$ with f(0) = 0, f'(0) = 1.

Conversely, by Proposition 4.2 in [2] and the proof of it, we have the following

Lemma 1. Given a continuous function K on $[0, \infty)$ such that the solution

 $f: f''+K \cdot f=0$, with f(0)=0, f'(0)=1 is positive on $(0, \infty)$, then, there exists a model whose metric is C^1 at the pole and C^2 elsewhere, and whose radial curvature function outside the pole is K; this model is unique up to isometry.

Lemma 2. Let (N, p) be a model and, r and f be as above. Then, f' is positive if and only if r^2 is strictly convex.

Proof. By the Proposition 2.20 in [2], we have $D^2r = [f'/f] H$ on $N - \{p\}$, where $H = g - dr \otimes dr$ and g is the Riemannian metric on N. Hence $D^2r_z = 2$ $dr \otimes dr + 2r[f'/f]H$. Therefore f' is positive if and only if r^2 is strictly convex.

2. Review of a classical Jacobi equation

Let K be a continuous function on $[0, \infty)$ and f be the solution: $f''+K \cdot f=0$ with f(0)=0, f'(0)=1. On the positivity of f, we have the following

Lemma 3 (Theorem 7.2 in [4] or [6]). Let K and f be as above. Then f is positive on $(0, \infty)$ if and only if there is a C¹-function y=y(t) on $(0, \infty)$ such that $y'+y^2+K \leq 0$ on $(0, \infty)$.

Using this lemma, we prove the following

Lemma 4. Let K and f be as above. If there is a C^1 -function y=y(t) on $(0, \infty)$ (resp. $[0, \infty)$) such that $y'+y^2+K \le 0$ on $(0, \infty)$ (resp. $[0, \infty)$) and y>0 on $[\alpha, \infty)$ (resp. $y \ge 0$ on $[\alpha, \infty)$) for some $\alpha(0 \le \alpha < \infty)$. Then f is positive on $(0, \infty)$ and f' is positive on $[\alpha, \infty)$.

Proof. Let y=y(t) be as above, defined on $(0, \infty)$. We put $u(t)=\exp\int_{c}^{t} xy(s) ds$, where c is any positive constant. Then u is positive on $(0, \infty)$ and satisfies an inequality: $u''+K \cdot u \leq 0$ on $(0, \infty)$. Let $f_s (0 \leq s < \infty)$ be the family of solutions: $f'_s + K \cdot f_s = 0$ with $f_s(s)=0, f'_s(s)=1$. We fix any s>0. Then for $t \in (s, \infty)$, we get

$$0 \leq \int_{s}^{t} \{u(r)(f_{k}''(r) + K(r)f_{s}(r)) - f_{s}(r)(u''(r) + K(r)u(r))\} dr$$

=
$$\int_{s}^{t} \{(u(r)f_{s}'(r))' - (f_{s}(r)u'(r))'\} dr$$

=
$$u(t)f_{s}'(t) - u(s)f_{s}'(s) - f_{s}(t)u'(t) + f_{s}(s)u'(s) .$$

Hence we have

(1) $0 \leq u(t)f'_s(t) - u(s) - f_s(t)u'(t)$

for any $t \in (s, \infty)$. Since u > 0 and $u' = y \cdot u$, we see

$$y(t)f_s(t) < f'_s(t)$$
.

A. KASUE

By the continuity of solutions on initial conditions, we have

$$y(t)f(t) = \lim_{s \to 0} y(t)f_s(t) \leq \lim_{s \to 0} f'_s(t) = f'(t)$$

By Lemma 3., we know f(t) is positive on $(0, \infty)$. Thus y > 0 on $[\alpha, \infty)$ implies f'(t) > 0 on $[\alpha, \infty)$. Similally, in the case where y is defined on $[0, \infty)$, we have (1). Taking s=0, we obtain

$$u(0)+f(t)y(t)u(t) \leq u(t)f'(t) .$$

Since f is positive on $(0, \infty)$, $y \ge 0$ on $[\alpha, \infty)$ implies f'(t) > 0 on $[\alpha, \infty)$.

Corollary 2 ([6]). Let K and f be as above. If K satisfies an inequality: $\int_{t}^{\infty} K^{+}(s)ds \leq \frac{1}{4t} \text{ on } (0, \infty), \text{ where } K^{+} = \max \{K, 0\}, \text{ or an inequality: } \left(\int_{t}^{\infty} K\right)^{2} \leq \frac{K(t)}{4}, \text{ then } f \text{ and } f' \text{ are positive on } (0, \infty).$

Proof. For the former case, set $y(t)=2\int_t^{\infty} K^+(s)ds+\frac{1}{4t}$. For the latter, set $y(t)=2\int_t^{\infty} K(s)ds$.

REMARK. In Lemma 3, if $K \ge 0$ and $K \equiv 0$ near ∞ , it is easily verified that f > 0 on $(0, \infty)$ implies f' > 0 on $(0, \infty)$.

3. Proof of Theorem and Corollary

Let (M, o) be a Riemannian manifold with a pole. Let y be a C^1 -function in Theorem. Then by Lemma 4 and Lemma 1, there exists a model (N, p) whose metric is C^1 at p and C^2 elsewhere, and whose radial curvature function outside the pole p is K_M , where K_M is a continuous function on $[0, \infty)$ defined in Introduction. Moreover (N, p) is dominated by (M, o) and, by Lemma 2, $r^2(r=\rho_N)$ is strictly convex on $\{x \in N : r(x) \ge \alpha\}$. Therefore (M, o) and (N, p) satisfy all the conditions of Corollary 1. That is, ρ_M^2 is strictly convex on $\{x \in M :$ $\rho_M(x) \ge \alpha\}$.

As for the proof of Corollary, we note that, in general, a (strictly) convex C^2 -function on a Kaehler manifold is a (strictly) plurisubharmonic C^2 -function. Let (M, o) be a Kaehler manifold with a pole. Let y be a C^1 -function in Córollary. Then by Theorem we can see that ρ_M^2 is strictly plurisubharmonic outside a compact set. Since M is diffeomorphic to C^m $(m=\dim_C M)$, the arguments in [3] (p. 87) shows that M is a Stein manifold.

112

Bibliography

- [1] M. Itoh: Some geometrical aspects of Riemannian manifolds with a pole, to appear.
- [2] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Mathematics Lecture Notes No. 699, Springer-Verlag, 1979.
- [3] R.E. Greene and H. Wu: Analysis on noncompact Kaehler manifolds, Proc. Symp. Pure Math. Vol. 30, Parts 2, (1977), 69-100.
- [4] P. Hartman: Ordinary differential equations, John Wiley, 1964.
- [5] Y.H. Siu and S.T. Yau: Complete Kaehler manifolds with non-positive curvature of faster than quadratic decay, Ann. of Math. 105 (1977), 225-264.
- [6] A. Wintner: On the nonexistence of conjugate points, Amer. J. Math. 73 (1951), 368-380.

Department of Mathematics University of Tokyo Hongo, Tokyo 113 Japan