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The notion of purity in abelian groups is one of the most important types
in abelian groups. Many authors defined the concept of purity in modules
over non-commutative rings and generalized some of well known results in
pure injective abelian groups to the case of modules (cf. [4], [9], [10], [18], [19]
and [23]).

In [10], the author gave a complete structure of pure injective modules
over bounded Dedekind prime rings by using essentially abelian techniques
and recently Talwar generalized these results to the case of modules over bounded
hereditary noetherian prime rings. In case not bounded, it seems to me that
we can not adopt the techniques used in abelian groups to study pure injective
modules over hereditary noetherian prime rings. In this paper, we show how
some results on pure injecrtive abelian groups can be carried over the case of
modules over hereditary noetherian prime rings with enough invertible ideals,
using the adjoint theorem which was used in [18] and from the point of view of
localizations. More precisely; let F be a non trivial right additive topology on
R and let Fι be the left additive topology corresponding to F (cf. [11]). Let
Fnι be the set of all left ideals containing a finite interection of elements in Fh

each of which has at most n as the length of composition series of its factor
module. A submodule N of a right /2-module M is said to be Fn-pure if
MJ f]N=NJ for every J^F". If N is ί^-pure for every natural number n>
then it is called Fω-pure.

If R=Z is the ring of integers, p is a prime number and Fp is the topology
of all powers of p, then .FJ-purity and i^-purity a r e equivalent to pn-puήty and
^>ω-ρurity in the sense of [15], respectively. If Fo is the topology of all ideals
of Z, then FS-purity is equivalent to the ordinary purity.

In Section 1, we shall summarize some elementary properties on these
purities F* (a<ω), F°°-ρurities and Z?Fn-purities which were defined in [12]
and [13] .

In Section 2, we shall give characterizations of .F*-ρure projective modules
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and i^Λ-pure injective modules which are essentially a special case of the moie
general results (cf. [18] and [23])

In Section 3, we shall give more detailed properties concerning with im-
pure injective modules by using the results in Sections 1, 2 and some results in
[1]. Firstly any jF"-pure injective module is a direct sum of an injective module
and an .FΛ-reduced, i^-pure injective modαle. ^"-reduced and Fa-pure in-
jective modules are characterized as a direct summand of a compact and Fa-
reduced modules. We shall also discuss relationships between .Fω(.Fn)-pure
injective modules and F°°(EFnypure injective modules (Theorems 3.5 and 3.6).
An appendix contains some results on F°° and EFn-pure injective modules
which need in Section 3.

1. We say that a ring R has enough invertible ideals if every non zero
ideal of R contains an invertible ideal of R. Throughout this paper, R will be
a hereditary noetherian prime ring with enough invertible ideals, Q will be the
two-sided quotient ring of R and K=Q/R^0. By a module we shall un-
derstand a unitary right i?-module. In place of ®Rf Hom^, Ext# and TorΛ,
we shall just write ®, Horn, Ext and Tor, respectively. Since R is hereditary
TorM=0=Extn for all n>\ and so we shall use Ext for Ext1 and Tor for Tor^
A right additive topology F on R is called trivial if all modules are F-torsion or
F-torsion-free. By the same way as in [11, p. 548], F is non trivial if and only
if it consists of essential right ideals of R.

From now on, F denotes a fixed non trivial right additive topology on i?.
Let / be an essential one-sided ideal of R. Then Rjl is an artinian module by
Theorem 1.3 of [2]. So the length of the composition series of the module
Rfl is finite. We call it the length of I. For any positive integer n, let Fn be
the set of all right ideals containing a finite interection of elements in JF, each of
which has at most n as the length. Then Fn induces a preradical on R in the
sense of [20]. For a convenience, we let Fω= \JnF

n. Clearly F=Fω.

From now on, a denotes a fixed natural number n or ω unless otherwise stated.

Let M be a module. An element m of M is said to be Fa-torsion if O(m)=
{r^R\mr=0) G F r t and we denote the submodule of all .F"-torsion elements
in M by MF<*. So, under this notation, /"-torsion means F-torsion and
MF—MF*> is the i^-torsion submodule of M. In a similar way we can define
the concepts of LΛ-torsion elements and L*-torsion submodule for any left module

and any non-trivial left additive topology L on R.
Let / be an essential right ideal of R. Define I*={q^Q\qI<^R}.

Similarly *J={q^Q\Jq^R} for any essential left ideal / of R. We put
QF= U/*(/e-F), the ring of quotients of R with respect to F. The family
Fj of left ideals of R such that QFJ^QF is a left additive topology on R. We
call it the left additive topology corresponding to F. We let QF«=
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and ρ F =U*y (J^F*). Then QF»=QF* and KF«=QF«jR=KF» by the

same way as in Lemma 1.1 of [13]. The exact sequence 0-^R->QF*->KF*-*0
yields the exact sequences:

0 -> Tor(M, KF«) -> Ml^M®OF« -> M®KF« -* 0 ,

i*
Hom(KF«, M) -> Hom(£F*, M) -£ M -> Ext(iί>, M),

where iΛ*(m)=m®l and ίJ(/) = /(l) (weM and/eHom(OF«, M)).

Lemma 1.1. (1) Tor(M, i£»)^M F * .
(2) I

Proof. As in Lemma 1.2 of [13].
We write Im ί* by Mi 7* in case α=rc and Π« Imz* by MFω. If α = ω ,

then we denote it by MF°°; it is the maximal ^-divisible submodule of M and
is the maximal F-injective submodule of M. These are proved by the same
way as in Lemma 2.5 of [11] and Lemma 1.1 of [12]. If MF*=Oy then M is
said to be F*-reduced. Similarly, if MF°°=0, then we say that Mis F-reduced.
An exact sequence

(E) 0 - > L - > M - > i V - > 0

of modules is said to be F*-pure if MJ Π L=LJ for every J^F*. A module G
is F*-pure injective if it has the injective property relative to the class of i^-pure
exact sequences. Similarly we can define the concept of impure projective
modules. Following [12], (E) is called F°°-pure (cf. also [6]) if the induced
sequence 0->LF^>MF->NF-+0 is splitting exact. If (E) is F'-pure, then the
induced sequence 0-»Ext(i£F, L)-^Ext(i£F, M)-*Ext(.R^, iV)->0 is splitting
exact by the same way as in Lemma 1.3 of [12]. (E) is said to be EFn-pure if the
induced sequence 0->Exp(i£>, L)->Έxt(KFny M)->Έxt(KFn, N)-+0 is splitting
exact. In an obvious way, we can define the concepts of EFn-pure and F°°-
pure injective modules.

In the remainder of this section we shall summalize some elementary pro-
perties on these putities and injectivities which need in this paper (these results
are implicitly known in [11], [12] and [13]).

Lemma 1.2. The following conditions of a short exact sequence (E): 0->
L->M-*iV->0 are equivalent:

(1) (E) is F*-pure.
(2) For any finitely generated F*-torsion module T, the natural homomor-

phism Hom(T, M)-^Hom{Ty N)-+Q is exact.
(3) For any Ff-torsion left module T, the natural homomorphism 0

T-*M®T is exact.
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Proof. As in Lemma 2.2 of [13].

Lemma 1.3. Let 0->L->M->N->0 be F*-pure. Then the induced seque-

nce 0-^LF*->MF*->NF<*->0 is exact.

Proof. This follows from Lemmas 1.1 and 1.2.

Lemma 1.4. The following implications hold:

(impurity) ^ ^ (F -purity)

^ ^ (i^-purity)

(£,Fn-pure injectives) N.

. . . x 'ϊ' ^ ^ (F°°-pure injectives)
(i^-pure injectives) ' π^ * J

(Fω-pure injectives)

Proof. The lemma follows from the definitions and from the similar

method as the proof in (1) of Lemma 2.1 of [13].

Lemma 1.5. Let M be any module. Then
(1) MFnΏ.MFmΏ.MF°° for any n<m<ω.
(1 *) (Fn-reduced)=>(Fm-reduced)^(F-reduced).

(2) For any non-trivial right additive topologies Fu F2 on R such that JFXC

F2, we have MFΐ^MF? and MF^ΏMFt
(2*) (Frreduced)^(F2-reduced) and (F«λ-reduced)^(F%-reduced).

Proof. (1) The commutative diagram with exact rows

0 -> R -* QFn -> KFn -* 0

II i i"

yields the commutative diagram with exact rows:

H o m ( ρ Λ M) -» M -* Ext(KFn, M)

ί ί ί
Hom{QFmy M)-+ M-* Ext(KFn,t M).

From this diagram, we get MFnΏ.MFm. Similarly we have MFmΏ.MF°°, and
the proof of (2) is also similar to one of (1).
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Lemma 1.6. Let G be a module. Then

(1) The following are equivalent:

(a) G is Fn-reduced and EFn-pure injective.

(b) G is Fn-reduced and F°°-pure injective.

(c) G^Ext(KFny G), where the isomorphism is the connecting homomorphism

induced by the exact sequence 0->R->QFn->KFn->0.

(2) G is F-reduced and F°°-pure injective if and only if G^Ext(KFy G).

Proof. (1) As in Lemma 2.4 of [13].

(2) Let G be an F-reduced module. Then G is F°°-purt injective if and

only if it is F-cotorsion in the sense of [19] (cf. Proposition 1.4 of [12]). Thus

the assertion follows from Proposition 5.2 of [19].

Let Fo be the right additive topology consists of all essential right ideals
oϊR.

Lemma 1.7. A module is F^-pure injective if and only if it is pure injective

in the sense of [23].

Proof. Any finitely presented module over hereditary noetherian prime

rings is a direct sum of a projective module and of forms Rjl (I^F0) by Theorem

2.1 of [2] and Theorem 3.1 of [3]. So the lemma follows from Proposition 3

of [23] and Lemma 1.2.

2. Let Mod-i? (i?-Mod) be the category of right (left) modules and let E

be the class of all i^-pure exact sequences. Then by Lemma 1.2, it is a proper

class and projectively closed in the sense of [18]. Let O be the set of finitely

generated projective modules and of finitely generated i^-torsion modules,

and let π~ι(O) denote the class of all those short exact sequences of Mod-i? for

which the objects in O are relative projectives. Then we have E=7Γ~1(O).

Further any finitely generated torsion module is a direct sum of cyclic modules

by Theorem 3.1 of [3]. Thus we have the following proposition which is a

special case of Proposition 2.3 of [18] (cf. also Proposition 1 of [23]).

Proposition 2.1. (1) For any module M there is an F*-pure exact sequence

0->L^>P->M->0 such that P is an FΛ-pure projective module.

(2) A module is F*-pure projective if and only if it is a direct summand of a

direct sum of a projective module and of modules Rjl

Next we shall study i^-pure injective module. To this purpose, we shall

use a result of [18], which is essentially Theorem 7.2 of [14]. We define the

functor S: i?-Mod^ Mod-i? to be Homz( , R\Z), and define the functor

T: Mod-i?-^i?-Mod to be Homz( , R/Z), where Z is the ring of integers and
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R is the field of reals.1} Since RjZ is an injective cogenerator as ^-modules,
S and T are both exact and faithful. Further we have the duality formula:

(*) Hom(M, S(P))^Homz(M®P, RjZ)^Hom(P, T(M)),

where M eMod-7? and P&R-Mod. Let E ; be the class of all i^-pure exact
sequences. Then it is a projectively closed proper class of i?-Mod with enough
Erprojectives by Proposition 2.1. Let T~\Eι) be the class of those short
exact sequences of Mod-i? which are carried into Ej by T. By Lemma 1.2
and (*), we have E=T'\Ei). Thus, by the abjoint theorem (cf. [18, p. 161]),
we have

Proposition 2.2. (1) For any module M there is an F*-pure exact sequence

0->M->G->N->0 such that G is an F*-pure injective module.

(2) A module is F*-pure injective if and only if it is a direct summand of

Homz(Py RjZ) for some F*-pure projective module P.

3. In this section we shall give some detailed properties on i^-pure in-
jective modules by using the results in §§1 and 2. For any module M we
define its F°ί-topology by taking the subgroups of Mof the form MJ ( / ε F f ) as
a subbase of open neighborhoods of 0. Under this topology R becomes a
topological ring such that F" is the set of all open left ideals, and M becomes a
topological module (cf. [21, p 143-144] for the definition of topological modules).
M is Hausdorff if and only if 0= n M / ( / G f / ) . We define Λ2rF?=limMjMJ
(J^Ff). Then ήF* becomes a topological ring and lίlF<f is a topological
i?Fa>-module by the similar way as in §4 of [19]. M is said to be F"-complete
if it is Hausdorίf and complete in its Ff-topology. Let j M : M->MFf be the
canonical map. Then Ker jM= f)MJ ( / G F * ) , and M is incomplete if and
only if j M is an isomorphism (cf. Proposition 4.2 of [19]).

Lemma 3.1. (1) Let P be a F*-torsion module. Then Homz(P, RjZ) is
Ff-complete and so it is Fa-reduced.

(2) Let P be a projective left module. Then Homz(P, RjZ) is an injective
module.

Proof. (1) Let / be any element of Ft Then 0->R^*J->*JIR-> 0 be a
projective resolution of *//i?. We have the exact sequence 0->Tor(*//i?, P)->

/3®1
P • *J®P->*JIR®P-*0. By the same way as in Proposition 2.2 of [17],
we get Ker(β®l)GP[J]= {p<=P\Jp=0}. Since * / / e l > we have Ker(/3®1)
2P[J] and therefore Tor(*//#, P) = Ker(β® I) = P[J]. Furthermore, we
have the following commutative diagram by Proposition 5.2' of [1, Chap. II]:

1) To study compact modules, the field R of reals is more useful than the field Q of
rationals. So we used here R instead of Q which was used in [18].
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Horn (*/, (?) « Homz(*J®P, R\Z)

\β* s |(/3®1)*
Hom(R, G) at Homz(R®P, RjZ)

, where G=Honiz(P, RjZ). From this diagram we get the isomorphism s2:
Hom(i?, G)/Im/3* (=Ext(/*/i?, G))c*Hom^i?®P, Rlz)βm(β®l)*. Fur-
thermore a mapping γ : Hom z(l?®P, RjZ)jlm{β® l)*->Homz(Ker(/3® 1),
Λ/Z)givenby γ([/+Im(/8®l)*])=/|Ker(i8®l), the restricted map of / to
Ker(/3®1), (/eHom^jRφP, ^A^))> is an isomorphism, because RjZ is Z-in-
jective. Thus we have an isomorphism Hom(i?, G)/Im /3*^Hom z(Ker(β® 1),
R/Z) ( = Hom^PIJΓ], Λ/Z)). By Proposition 3.2 of [19], G/G/ is naturally
isomorphic to Hom(Λ, G)/Im yS*. Thus the mapping δ: G/GJ-^Hom^Pf/],
Λ/Z), given by ${[g+GJ])=g\P[J] is an isomorphism. Hence we have G =
Hom^limPL/], Λ/ZJβlimHomiPf/], Λ/Z)^HmG/G/=O f f (/Gί 1?) and
the isomorphism G^όF« is the natural map. Hence G is F?-comρlete.

(2) This is well known (cf. Theorem 3.25 of [16]).

In abelian groups, a reduced abelian group is pure injective if and only
if it is complete in the Z-adic topology (cf. Theorems 38.1 and 39.1 of [5]).
For modules over a noetherian ring 5, L. Fuchs proved that a pure injective
module is complete in its S-adic topology (cf. Theorem 7.1 of [4]). In our
case we have the following

Theorem 3.2. Let G be an F*-pure injective module. Then G — Έ (&Ήy

where E is injective and H is F"-reduced, F*-pure injective and F°ι-complete.

Proof. By Propositions 2.1, 2.2 and Lemma 3.1, we have G@Gr=D®My

where D is injective, and M is jF*-reduced, FΛ-pure injectrve and Fr-complete.
In particular, ΠM/=0 (/Gί 1 *). Since D is a fully invariant submodule of
DΘM, we have D = (G nβ)0(G'ΠZ>) (cf. Lemma 9.3_of [5]). So G i l D is
also injective. Thus we get G^(GΓΊ#)ΘG, where G=G/GΓlD. Let x=
(d> m) be any element of G, where dG:D and tnE M. Then the mapping
/: G^>M given by /(^)=m (x=[%-{-Gf)D]) is a monomorphism. So G is an
Fα-reduced, because ΠMJ=0 (cf. Lemma 1.1). Thus we have G = E®H,
where E = Gf)D is injective and H^G is jF°*-reduced, F*-ρure injective.
Similarly G'=E'®H\ where £" is injective and H' is PΛ-reduced, FΛ-pure
injective. Thus we have (E®E')®(H®H') = D®M. E+E' and D are both
the unique maximal injective submodules of the module. So it follows that
E@Ef=D and hence H®H'^M. Therefore H is incomplete.
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REMARK. If G is F-reduced and F"-ρure injective, then 0= Π G / ( / G F / ) .

Let n and a be any pair such that n<a<ω. Then, by the definition,
any FM-ρure injective module is FΛ-pure injective. Next we shall give a neces-
sary and sufficient condition for an F*-pure injective module G to be Fw-ρure
injective. By Theorem 3.2 we may assume that G is F*-reduced.

Proposition 3.3. Let n and a be any pair such that n<a (<ω) and let
G be an FΛ-reduced and Fa-pure injective module. Then G is Fn-pure injective if
and only if it is Fn-reduced.

Proof. The necessity is evident from Theorem 3.2. To prove the suffi-
ciency we suppose that G is F"-pure injective and F*-reduced. Then, by
Proposition 2.2, we get

(**) G®Gf == Hom^Pi, Λ/ZJΘHom^P* R/Z),

where G' is a module, Pλ is a projective left module and P 2 is a direct sum of
the forms RjJ ( / e F ? ) . By Lemmas 1.4, 1.5 and 1.6, we have the commu-
tative diagram with exact row and column:

G & Έxt(KF«, G)

II I
F , )

0

Thus G^Έxt(KFn, G). Applying Ext(KF«, ) to the equality (**), we have
GθExt(jK>, G')^Ext(KF», Homz(P2, RjZ))^Hom^Tor(KF«, P2), R\Z) by
Proposition 5.1 of [1, Chp. VI]. Tor(i£F«, P2) is F?-pure projective by Lemma
1.1 and Proposition 2.1. Hence G is FM-pure injective by Proposition 2.2,

For any left module M we regard it as a discrete ablian group, then it is
well known that G=Hom z(M, R/Z) is a compact abelian group (cf. (19.1) of
[8, p. 64)]. If M is an F?-torsion module, then we can easily check that G is a
topological module, where R is equipped with its F?-topology. Thus, in this
case, G is a compact module. In [23], Warfield proved that a module over a
ring is pure injective if and only if it is a direct summand of a compact module
by using the Bohr compactification (cf. Theorem 2 of [23]). For local theory,
we have the following

Theorem 3.4. Let G be an F-reduced module. Then G is F"-pure injective

if and only if it is a direct mmmand of a compact and F*-reduced module, where

R is equipped with its F *-topology.

Proof. Assume that G is FΛ-pure injective and F-r educed. Then, by
Proposition 2.2, we have Hom^P, R/Z)=G®G\ where P is an Ff-pure pro-
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jective module and G' is a module. Since G^Έxt(KF«> G) by Lemmas 1.4,
1.6 and Theorem 3.2, applying Έxt(KF<*> ) to the equality we get:

G&Ext(KF«, G')^Έ*ϊ{KF«y Homz(P, RIZ))^llomz(Ύor(KF«y P), i?/Z).

Thus G is a direct summand of a compact and FΛ-reduced module by Lemma
3.1 and the above remark. To prove the sufficiency we let X be a compact
module with XF*—0. Then it suffices to prove that X is F*-pure injective.
Since any topological module is a topological module in the sense of [23], X is
Fo-pure injective by Theorem 2 of [23] and Lemma 1.7. So X is a direct
summand of Hom^P', R\Z), where P' is an Fo/-pure projective module. It
follows that X is a direct summand of Homz(Tor(i^/ΓΛ, P'), -R/^) by the same
way as in the proof of Proposition 3.3. Hence X is i^-pure injective by
Proposition 2.2.

In abelian groups, the following two properties hold:
(i) Any torsion-free, pure injective abelian group is cotorsion.

(ii) An abelian group is cotorsion if and only if it is an epimorphic image
of a pure injective abelian group.

In the remainder of this paper, we show how the results above can be
carried over the case of modules over any (pre) topology Fa. Let C(Fn) be
the category of Fn-reduced and EFn-pure injective modules, together with their
homomorphisms. Then C(Fn) is an abelian category (cf. Proposition 2.8 of
[13]). Similarly let C(F°°) be the abelian category of F-reduced and F°°-pure
injective modules with their homomorphisms. An object in C(Fn) is said to
be C(Fn)-projective if it is projective in the category C(Fn). We can define
C(-F°°)-projective objects in the same way. Some properties about C{Fn) (C(F°°))-
projectives are given in Porposition A.5 and its remark in the appendix.

Theorem 3.5. (1) Any C(F°°)-projective object in C(F°°) is Fω-pure injective.
(2) Any C(Fn)-projectίve object in C(Fn) is Fn-pure injective.

Proof. (1) Let G be a C(P°°)-projective object in C(F°°) and we cansider
a diagram of a form

0->L-*M->iV->0

1/
G ,

where the upper row is an Pω-pure exact sequence. By Lemma 1.3, the induced
sequence 0->LF->MF->NF->0 is exact. So the sequence 0-»L/LF-»M/MF->
N/NF->0 is also exact. Further it is i^-pure, since iV/ΛfF is P-torsion-free.
By the remark to Proposition A.5 in the appendix, G is F-torsion-free. Hence
we get the following commutative diagram with exact rows:
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» M

-* M\M,F

0 —-> Ext (KF, LILF) > Ext (KF, M\MF)

Ext (KF, G)

where/is the map induced from/ and the bottom row splits by the same way
as in Lemma 1.3 of [12]. By Lemma 1.6, G^Ext(i^F, G). So G is Fω-pure
injective.

(2) Let G be C(.Fn)-projective. To prove that it is ί^-pure injective it
suffices to prove that Ext(i£F«, Σ ® ^ ) *s ^"-pure injective by Proposition A.5.
By (1) and the remark to Proposition A.5, Έxt(KFy Σ ® ^ ) *s Fω-pure injective.
we have Ext(KF, Σ Φ ^ Φ ^ ^ H o m ^ P , R/Z), where P is an i^-pure projective
module and X is a module. By Proposition 3.5a of [1, Chap. VI] and Lemma
1.1, we have Ext(.K>, E x t ^ , Σ©^))—Ext(.K>, Σ ® ^ ) Thus, applying
Ext(jK>, ) to the isomorphism above we get Ext(i£F», Σθ^)ΘExt(ic:F», X)^
Ext(i^F«, Homz(P, RIZ))^Homz(Ύor(KF«, P), R/Z). Hence Ext(i^F«, Σ ® # )
is FΛ-pure injective by Proposition 2.2.

Theorem 3.6. (1) A module is F°°-pure injective if and only if it is an epi-

morphic image of an Fω-pure injective module.

(2) A module is EFn-pure injective if and only if it is an epimorphic image of
an Fn-pure injective module.

Proof. (1) Assume that G is F°°-ρure injective, then G = E(GF°°)(&
Ext(i£F, G) by Proposition A.4 (E(GF°°) denotes the injective hull of GF°°).
From an exact sequence Σ ® ^ " * ^ " ^ w e derive the exact sequence
Ext(ί:F, Σ ® # ) ^ E x t ( ί : F , G)->0. We let H=E(GF~)®Ext(KFi Σ ® Λ ) ,
which is Pω-pure injective by the remark to Proposition A.5 and Theorem 3.5.
Then we have an exact sequence H->G-*0. Sufficiency follows from Theorem
1, Lemma 3 of [6] and Lemma 1.4.

(2) The proof of the necessity proceeds just like that of (1). To prove

the sufficiency, assume that there is an exact sequence H->G-^0y where H is
.FΛ-pure injective. Applying Ext(ίΓF, ) to this we get the exact sequence 0->

/*
, H)J-^Έxt(KFy G)->0. Έxt(KF, H) and Ext(ίΓF, G) are ele-

ments in C(F°°) by Lemmas 1.1, 1.6 and Proposition 3.5a of [1, Chap. VI].
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So it follows that K e r / ^ e C ^ 0 0 ) , because C(F°°) is an abelian category. Since
H is .F^-pure injective, it is .F°°-pure injective and thus G is also F°°-pure
injective by Lemma 3 of [6]. We can write H=E(HF°°)ξBΈxt(KFy H) and
G=E(GF°°)®Έxt(KFy G) by Proposition A.4. Since E(HF°°) is the unique
maximal injective submodule of H> we have 0 = Γ\Έxt(KFy H)J (J^F") by
Theorem 3.2 and so 0 = Π(Kerf*)J. Thus Ker/* and Έxt(KFyH) are both
i^-erduced by Lemma 1.1. Hence these are both elements in C(Fn) by
Lemma 1.6. Therefore Έxt(KF, G) is also an element in C(Fn) and hence G
is E!FM-ρure injective.

Appendix

We shall present, in this appendix, some results on EFn ( F°°)-pure injective
modules which are obtained by modifying the methods used in the correspon-
dence ones in modules over Dedekind prime rings or are implicitly known in
[12] and [13].

For any module M, we let /„: M-^E(MFn) be an extension of the inclusion
map MFn->E(MFn) and δn: M->Ext(jK>, M) be the connecting homomor-
phism induced by 0^R^OF«->KFn-+0. We define a map gn: M->E(MFn)(B
Έxt(KF», M) by gn(nή={fn(m)> &n{m)) f°Γ every m^M. Similarly we get a
map £00: M-*E(MF°°)®Ext(KF, M).

Proposition A.l. Let M be any module. Then

(1) S)^M^E(MFn)@Ext(KFny M)->Cokergn->0 is exact and EFn-pure.
E(MFn)®Ext(KFny M) is EFn-pure injective and Cokergn is injective (cf. [13,
Lemma 2.5]).

(2) 0-^Mg-^E(MF°°)φExt(KFy M)->Cokerg^O is exact and F°°-pure.
E(MF°°)®Ext(KFy M) is F°°-pure injective and Cokerg^ is injective ([12, Theo-
rem 1.5]).

Proposition A.2. Let M be a module. Then
(1) M\MFn is Ftt-reduced (cf. [13, Corollary 2.7]).
(2) M/MF00 is F-reduced (cf. [12, Lemma 1.1]).

Proposition A.3. Let M be a module. Then
(1) Ext(KFny M)^Ext{KFny M/MF") (cf. [13, Lemma 2.6]).
(2) Ext(KFy M)^Ext(KFy M/MF00).

The proof of (2): From the exact sequence 0-+MFoo->M->M/MFoo->0,
we get the exact sequence Ext(i£F, MF°°)->Ext(i^F, M)->Έxt(KFy M/MF°°)->0.
But Ext (KFy MF°°)=Qy since KF is F-torsion and MF°° is an F-injective
module. Thus Ext(^F, M ) ^ E x t ( ^ F , MjMF~).
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Proposition A.4. Let G be a module. Then
(1) G is an EFn-pure injective module if and only if G^E(GF")®

Ext(KF», G).
(2) G is an F°°-pure injective module if and only if G^E(GF°°)(BExt (KF, G).

Proof. (1) Sufficiency is clear from Lemma 1.6 and Lemma 1.5 of [13].
To prove the necessity let G be EFn-pure injective. Then from Proposition A.I,
we have the following splitting exact sequence 0->G-^E(GFn)®Έxt(KFnyG).
Write G®X=E(GFn)®Ext(KFn, G). Since Ext(^», G) is reduced, E(GFn)
is the maximal injective submodule of G ®X and so it is a fully invariant sub-
module of G®X. This means that E(GFn)=(Gf]E(GFn))®(X ΓiE(GFn)).
But GFn Π l = 0 and thus E{GFn) n l = 0 . It follows that E(GFn)^G and so
E(GFn)=GFn. Hence G/GFn is also EFn-purt injective, and it is F*-reduced
by Proposition A.2. By Lemma 1.6 and Proposition A.3, we have G/GF*1^
Έxt(KFn, G). Therefore Gs*E(GF*)(BΈxt(KF*9 G). The proof of (2) is simi-
lar to one of (1).

Proposition A.5. Let G be a module. Then the following conditions are
equivalent'.

(1) G is C(Fn)-projective.
(2) G is isomorphic to a direct summand of Ext(KFn, Σ θ i ? ) .
(3) G is isomorphic to a direct summand of Π $FJ
(4) G is isomorphic to Ext(KFny M), where M is an F-torsion-free module.

(5) G is isomorphic to a direct summand of Ext (KFn, 2 Θ Λ F » ) (cf. Theorem

2.9 of [13]).

REMARK. The corresponding results to Proposition A.5 also hold for
the category C(F°°). Further a module G is QjF^-projective if and only if
G<=C(F°°) and G is F-torsion-free (cf. Remark to Theorem 2.9 of [13]).
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