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Let R be a ring with l(=t=0), T an automorphism of Ry and D a τ-deriva-
tion of R (i.e. D(ab)=D(a)τ(b)+a-D(b) for all a, b^R). Then a skew polyno-
mial ring A=R[t; T, D]=RφtR®t2Rφ- is well defined by at=tτ(a)+D(a)
(a^R). Then if R is a two-sided simple ring, every ideal of A is invertible.
On the other hand, as is well known, a (commutative) polynomial ring over a
Krull domain is also a Krull domain. Furthermore, if R is a (non-commutative)
Krull order in the sense of Marubayashi, then so is R[t] ([11]). This is the
case when τ=id and D=0. In this paper we define a new "Krull order", and
prove the following. If R is a Krull order then A is also a Krull order. Further
we obtain some results on the structure of the group of reflexive fractional ideals
of A. Any two-sided simple ring is a Krull order in our sense. In the case
when i? is a prime Goldie ring, R is a Krull order if and only if R is a maximal
order and the ascending chain condition on integral reflexive ideals holds.

As a matter of fact, we prove main results in a more general situation. Na-
mely we take some "positively filtered ring" instead of R[t T, D\ By virtue of this,
for example, if M is an invertible Λ-bimodule over a Krull order R then the
tensor ring T(M) is a Krull order. We believe this generalizatiln is proper for
this kind of study. However, if we assume R to be a prime Goldie ring, ar-
guments may become more brief. But this exclude the case when R is a two-
sided simple ring from our study. As is seen in §1, we take, as a starting point,
the set of ideals which have trivial dual modules. This may be a feature of
our study on Krull orders. Main results are analogous to those on a polynomial
ring over a unique factorization domain.

For the completeness of this paper, we need some arguments on the construc-
tion of a positively filtered ring. But we postpone these until the forthcoming
paper. However the case when A=R [t; r, D] is treated in 4. Appendix.
In all that follows, all rings are associative, but not necessarily commutative.
Every ring has 1(ΦO), which is preserved by homomorphisms, inherited by
subrings and acts as the identity operator on modules.

1. Preliminary results

Let A, B be rings. If M is a left (resp. right) ^4-module, we write AM
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(resp. MA). If N is a left A-y right 5-bimodule we write ANB, and we briefly
call N an ^4-B-module.

Let Q be a ring, and M an additive submodule of Q. We define the left
order of M (in Q) as Oι(M)={x^Q: xM^M}. Similarly we define the
tight order of M as Or(M)={x<=Q: Mx^M}. Then, {Λ G Θ : MxMdM}
= {x<Ξ:Q: Mx<^Oι(M)} = {x<=Q: xM<^Or{M)}y which is denoted by AT1.
Evidently M~ι is an Or(M)-O,(M)-submodule, M~ιM is an ideal of 0r(M), and
MM~ι is an ideal of O^M). Let i? be a subring of Q. By T(Q; R) (abbr. Γ(i?))
we denote the set of all ideals / satisfying the following conditions.

( i ) / is faithful as a left i?-module as well as a right i?-module.
(ii) If xI^P or Ix^R (*eQ) then x<=R.
Evidently T(R) satisfies the following.
(i) R^T(R).
(ii) If I(ΞT(R), and / ' is an ideal of R such that / c / ' then Γ(ΞT(R).

(Hi) If IUI2(ΞT(R) then IXI2^T{R), and so Iλ(M2^T{R) (by (ii)).

(iv) If/GT(i?) then Oι(I)=R=Or(I). Therefore if xl=θ OTIX=0(X<EΞQ)

then Λ:=0.

Proposition 1.1. Let A, B be subrings of Q, and M an A-B-submodule

of Q. Then the following conditions are equivalent.

(1) There are B-A-subtnodules M', M" of Q such that MM'(=T(A), M"M

(2) MM~ι^T{A), andM~ιM^T(B).
(3) Oι{M)=Or(MM-1)=A, and Or(M)=Oι(M~1M)=B. Further AM,

MBy MMj\ and BM~ιM are faithful modules.
(4) Oι(M)=Or(M-1)=A, and Or(M)=Oι(M-1)=B. Further AM, MBy

Ml 1 , and BM~ι are faithful modules.

Proof. The implication (2)==>(1) is trivial, and it is easy to see that (2)==>
(3), (3)-*(4). (l)-*(2) Evidently 0l(M)=Ay^nd0r(M)=B. ThereforeM'C
M'\ and F c l " 1 . Hence M M ' c M M " 1 , and M'fM^M~xM. Thus we
obtain (2). (4)-*(2) If M~ιMy<^B then M^MyM-^M'1, hence MyM~1^
Or{M~ι)=A. Therefore yM~ι^M"\ so y^Ot{M'ι)=B. On the other hand,
if zM~ιM^B then zM~ι^M~\ hence z^O^M-^B. If bM'1M=0 (b<=B)
then bM~1^Oι(M)=Ay and so δ M ' ^ O . Hence b=0. Thus ^M^M is fai-
thful. Similarly M'ιMB is faithful. Hence J l f W e Γ(fi). Symmetrically we
have MM~ι^:T{A). This completes the proof.

Let Λ £ be subrings of Q. By F(Q; A, B) (abbr. F(A B)) we denote the
set of all -4-B-submodules M satisfying the condition (1) of Proposition 1.1.
We put F(Q)= U AtBF(Q; A, B), where A, B run through all subrings of Q. In
the sequel, if M^F(Q;AJB) then we write AMB^F(Q), conveniently. Note
that T(Q; A)^F(Q; A} A), and that if AMB(=F(Q) then xM=0 or Mx=0(x(Ξ
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Q) implies #=0.

Proposition 1.2. Let AMB, SNC(ΞF(Q).
(i) BMAΛeF(Q), andMΊM.-ι<^T(A)for any /<= T(B).
(ii) AMNceF(Q).

Proof, (i) It follows from Proposition 1.1 that eMj1
 <BF(Q). Let /<Ξ T{E).

If MIM~ιx<=;A{x<=Q) then /M'^cM" 1 , and so IM^xM^M^M^B. There-
fore M^xMcB, hence ΛΓ^cΛί"1. Thus *E0 r (M"')=4. On the other
hand, yMIM~ιQA implies that M~ιyMIM~ιM&B, and so M~ιyM<^B. Hence
M~ly^M~\ and thereforey<=A. Thus MIM'^TiA). (ii) If xMN^MN
then M^xMNN'^M^MNN'^B, and so M~ιxM^B. Then xe^4 as in
(i). Thus O,{MN)=A, and similarly Or(MN)=C. Now,
MM-WNcMN, and so iV-W-'c(MM)-1. Therefore
(MN) (MN)-\ and N^M-'MN^M^iMN). Since NN^eTXB) and
M-'Me Γ(β), it follows from (i) that (ΛftV) (MTV)-1^ Γ(Λ) and (MΛ0-1(MΛ0e
Γ(C). By Proposition 1.1, we have AMNC<=F(Q).

If A e i ^ Q ) then ^ M j ^ ^ Q ) , and so ^(M'^i'eFiQ). Since MM~l<=,
AwehaveM^M-1)-1. Then M-'aCCM"1)-1)-1. On the other hand, ΛT'S
((M"1)"1)"1. Hence Λf-^pf 1 )- 1 )- 1 . We put M*=(M"1)-1. Then McJlί*
= M * * for any M<=F(Q).

Proposition 1.3. For any AMB<=F(Q), M*=-={x(=Q: Ix&M for some
I<=ΞT(A)) = {xeίQ: xjQM for some JεT(B)}.

Proof. If )(EM* then Λ Γ ^ c β , and so MM~ιx<^M, where
Conversely if Ix^M for some I(=T(A), then IxM~ι^MM'ι^A, so

1^^!. Hence Λie(M"1)"1=M*. Symmetrically we obtain the latter half.
Evidently, for any subring A or Q, T(Q; A)={I(=F(Q; A, A): I*=A}.

Proposition 1.4. Let AMB, BNC<ΞF(Q). Then (MN)'^^1]^-1)*, and
(M*N)*=(MN)*=(MN*)*.

Proof. Since N^M-^MN)-1, we have(Λ^-1M-1)*S((MΛ^)-1)*=(MΛO"1.
On the other hand, jce(MiV)"1 implies that MNx^A. and so Nx^M~\ Then
N-'NxQN-'M-1, hence ^(Ar 'Tkr 1 )* , because ofΛΓWe Γ(C). Thus (MΛ^)"1

^(iV^M-1)*. Using this, (MΛΓ)*=(fiV-1M-1)*)-1=-(iV-1M-1)-1. As (M*)"1

=M-1,wehave(M*ΛO*=(ΛΓ-1M-Vι=(M/V)*. Similarly(MiV*)*=(iV-1M-1)-1

If AMB(=F(Q) and ilf * = M , we call M a reflexive ^4-β-submodule of Q. By
.F*(ζ>; ^4, β) (abbr. F*(A, B)) we denote the set of all reflexive ̂ -P-submodules
of Q, and we put F*(Q)= (J A,BF*(Q; A, B), where A, B run through all sub-
rings of Q. By F, (Q; Λ) (abbr. F,(A)) we denote {MeF(Q; ̂ , A): M^A},
and we denote F,(Q; A)f]F*(Q; A, A) by ί f(Q; A) (abbr. Ff(.4)). If
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Fi(A) (resp. I^Ff{A)) we call / an integral ideal (resp. reflexive ideal) of A.
Let AMBy BNC£ΞF*(Q). We define MoN by (MN)*. Then, from Propo-

sition 1.2 and Proposition 1.4, we have the folllwing.

Theorem 1.5. The set of all reflexive submodules of Q, F*(Q) is a Brandt
groupoid. The set of identities of F*(Q) is the set of all subrings of Q.

Let Ay B be subrings of Qy and AMB an ^4-β-submodule of Q. If there are
J5-^-submodules AT, M" of Q such that MM'=A and M"M=By we call M an
invertible ^4-B-submodule of Q. Then it is easily seen that AMB^F*(Q\ A, B)
and M~1=^M/=M//. Here we note the following

Proposition 1.6. Let AMB, BNC^F*(Q). If AMB or BNC is an invertible
submodule then MoN=MN.

Proof. We first assume that BNC is invertible. If xMN^ C then xM^N"\
so NxM^NN~1=B. Therefore ΛfccAΓ"1, and so x^N~ιM~\ Thus (MN)"1

=N~1M~1. Similarly {MNγι^N-ιM~\ when AMB is invertible. Hence MoN
=(N~1M~1y1=M*N*=MNy when AMB or BiVc is invertible (cf. Proposition
1.4).

REMARK. Let AMB be invertible in Q. Then Q® AM^Qy q®m\-*qm (#e
Q, m^iM) (, and symmetrically M®BQ^Q). In fact, if \=Ί*im

/

imi {m\^.M"ι

y

) then the inverse of the homomorphism Q®AM—>Q is given by the map
ί φn'iQini (q^Q). As is well known, M is an invertible ^4-jB-bimodule,

that is, MB is finitely generated, protective, and a generator, and ^4^End B(M)
by the map induced by AM (cf. [3]).

Let A, B be subrings of Q. If there exists an ^4-B-submodule M E F * ( Q ;

A, B) we write A^B (in Q). Then " ~ " is an equivalence relation on the sub-
rings of Q.

If o /(/)=O r(/)=-4 holds for any ideal / of A such that both AI and IA

are faithful, we say that A is maxmial in Q.

Proposition 1.7. For any subring A of Q, the following conditions are
equivalent:

(1) A is maximal in Q.
(2) AIA^F(Q; A, A) for every ideal I of A such that both AI and IA are

faithful

Proof. The implication (2)=^(1) is trivial, and (1)=>(2) follows from Pro-
position 1.1 (3).

Proposition 1.8. Let ΛUBeF*(Q; A, B).
( i ) If A is maximal in Q then so is B.
I ii) There is a group isomorphism F*(Q A, A)^F*(Q By B)y MH-*( U'ιMU)*
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= tΓ1oMo[/(M<ΞJF*(Q; A, A)).
(iii) If A is a prime ring then so is B.

Proof, (i) Let Γ be an ideal of B such that BΓ, ΓB are faithful. Put /==
UΓU'1. It is easy to see that both AI and IA are faithful. Therefore, by as-
sumption, O /(/)=O r(/)=iί. It K / ' C J ' then UxU~ιI= UxU^UΓU~1^ UxΓU~ι

c UΓU~ι=I, and so UxU'^O^I^A. Then a t / ^ c £/-I, so xU~lU<^ U~ιU.
Hence * e β . Thus O7(7')=P. Similarly Or(Γ)=B. Hence B is maximal in £ .
(ii) This follows from Theorem 1.5. (iii) Let I,J be ideals of J3, and assume
that IJ=0. Then UIU'^UJU'^O, and so ί/JTΓ^O or UJU'^O. If
UIU~1=0 then [77=0, so 7=0. Hence £ is a prime ring.

Proposition 1.9. Let A, B be subrings of Q such that A~B in Q, and
assume that A is a prime ring and is maximal in Q. Let M be an A-B-submodule
of Q. Assume that there are elements u, v of Q such that OΦz/Mcΰ and 0=f=
Mv^A. Then AMB(=F(Q; A, B).

Proof. By Proposition 1.8, B is a prime ring, and is maximal in Q. Since
BuM and MvA are non-zero ideals of B and A respectively, we have Or(M)=B
and Oι(M)=A. Since M~~ι=>u, v, M~ιM and MM~ι are non-zero ideals of B
and A, respectively. Then, by Proposition 1.1 (3), M^F(Q; A, B).

Now we define a Krull subring of Q. A subring A of Q is said to be a Krull
subring ofQifA is maximal in Q and the ascending chain condition on reflexive
ideals of A holds. The following proposition follows from Proposition 1.8.

Proposition 1.10. Let A, B be suhings of Q such that A^B in Q. If A
is a Kfull subring of Q then so is B.

Let A be any subring of Q. Let P^Ff(Q; A), and let P Φ A Then P
is said to be irreducible if P^I^I^I^ I2^Ff(Q; A)) implies that P=I1 or P =
72, and P is said to be maximal if P^If^Ff(Q; A) implies thai Γ=A. Assume
that P is maximal in Ff(Q; A), and let P=71o/ a. Then P=(7 1 7 2 )*c7?=7 l

(ί=l,2), hence P=7, or 7, = A Therefore P is irreducible. Conversely, if P
is irreducible then P is maximal. Thus "maximal" and "irreducble" are
equivalent.

Assume that A is maximal in Q, and let P be irreducible in Ff(Q; A). If
7 / c P for some ideals I,JoίA then ( 7 + P ) ( / + P ) c P . If 7<£Pand / $ P then
7 + P J + P e T(Q; A) by Proposition 1.7, so that ( 7 + P ) ( / + P ) e T(Q; A). Then
have a contradiction P^LT(Q>A). Hence P is a prime ideal. Conversely if
P^Ff(Q;A) is a (proper) prime ideal then P is irreducble. Therefore, as is
well known, if P, P ' are irreducible in F*(A) then PoP'=PΌP. Then, in
the usual way, we have the following.

Proposition 1.11. Let A be a Krull subring of Q. Then any irreducible re-
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flexive ideal of A is a prime ideal, and Ff(Q; A) is commutative. Any element of

Ff{Q\A) is uniquely represented as a product of irreducible elements of Ff(Q; A).

Proposition 1.12. Let A be a Krull subring of Q, and let AMB<=F(Q A, B).

Assume that A is a prime ring. Then any non-zero A-B-submodule of M belongs to

F(Q)A,B), and there are elements xu — ,#Γ of M such that M * = ( Σ ί = 1 ...^tf^B)*.

Proof. By Proposition 1.8, B is a prime ring and is maximal in Q. Let
Mo be a non-zero ̂ 4-Z?-submodule of M. Then, since M~ιMQ and MJM~l are
non-zero ideals of B and A respectively, we have M0^F(Q; A, B), by virtue of
Proposition 1.9. Now let OΦ^GJIί. Then AxxB^F{Q\ A, B), and (Axβ)*
c M * . If (AxJiY^M* then there is an element x2^M with x2^(AxιB)*.
If (Ax1B+Ax2Bf SM*, then (Ax1B+Ax2Bf ^{Axβ+Axβ+AxsB)* for some
x 3 6M, Continueing this process we obtain xly •••, xr^M such that M*—
(ΣiAxiB)*, because ACC holds on {NeίF*(Q; A, B): JVςM*}, (In fact,
JVctf* means No(M*)'1^A9 and conversely.)

Proposition 1.13. Let Qr be any overring of Q, and A a prime subring
of Q. Assume that, for any non-zero ideal I >/ A, IQ=QI=Q holds. Then
Γ(Q; A)=T(Qf; A)9 and F(Q; A, A)={M(ΞF(Q'; A, A): M c Q , MQ=QM
=Q}. Therefore F^Q; A)=Fi(Qf; A), and Ff(Q; A)=Ff(Qf; A).

Proof. Evidently T(Q; A)Ώ.T{Q'\ A). Let I^T(Q; A), and let Ix^A
(x<=Q'). Then Qx=QIx^QA=Qy so x^Q. Hence x<=A. Similarly j / / c
A(yeίQ') implies that y<=A. Thus I^T(Q'\ A). Let M<EΞF(Q: A, A), and
put M'={χξΞQ: MxM^M}. Then MM', M'MEΞT(Q; A)=T(Q'; A).
Then, by Proposition 1.1 (1), we have M^F(Qf; A, A). Furthermore, QΏ.
MQΏMM'Q=Q, and so MQ=Q. Similarly QM=Q. Conversely, let
N£ΞF(Q';A,A\N^Q, and NQ=QN=Q. If zN^A(z<=Q') then zQ=
zNQ^AQ=Qy and so Z<=ΞQ. Hence NEEF(Q; A, A). The remainder is
obvious.

Corollary. Assume the same assumptions as in Proposition 1.13. If A is

maximal in Q (resp. a Krull subring of Q) then A is maximal in Q' (resp. a Krull

subring of Q'), and conversely.

Proof. This follows from Proposition 1.7 and Proposition 1.13.
Let A be a subring of Q. By S(Q; A) (abbr. S(A)) we denote U 7"1, where

/ runs through reflexive ideals of A. Evidently S(Q; A) is a subring containing
A. We call S(Q; A) the Asavo overring of A in Q.

Proposition 1.14. Let A be a prime Krull subring of Q. Assume that
I-S(Q; A)=S(Q; A)I=S(Q; A) for any non-zero ideal I of A. Then any ir-
reducible reflexive ideal of A is a (non-zero) minimal prime ideal of A, and con-
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versely (cf [11]).

Proof. Let P<=Ff(Q; A) be irreducible. Then P is a prime ideal. If
there exists a non-zero prime ideal P' of A such that P'3P. Then (P'P'^P^
P' implies that P'P~ι^Pr. Then we have a contradiction P~^A. Hence P
is minimal in the set of all non-zero prime ideals of A. Conversely, let P be a
minimal prime ideal. Since P'S(Q; A) = S(Q; A)^l, there are reflexive ideals
Ily * ,/r of A such that I^'-Iy^P. Then /,<ΞP for some u Hence some irre-
ducible component P" of /, is contained in P. Then, by the minimality of P,
we have P" = P. This completes the proof.

Note that, in the above case, A is a Krull subring of S(Q; A), and S(Q; A)
is a left and right Utumi's quotient ring of A.

Proposition 1.15. Let A be a prime subring of Q, and assume that A is
maximal in Q. Let M be a non-zero left A-submodule of Q. Put Or(M)=B
andM'={xtΞQ: Mx^A}.

(a) IfM'MeΞT(B)thenM<=F(Q;AyB).
(β) Assume that M satisfies the following conditions:
( i ) xM'Φ0 for any non-zero x^M.
(ii) MB is faithful
(iii) {y<BQ: yM'^A}=^M.

Then M G F * ( Q ; A, B) (, and conversely), {Cf. [6].)

Proof, (a) As M'M<=ΞT(B), we have MM'MΦO, so MM'ΦO. Hence
MM'ZΞFiiQ; A), and so O^M^A. Therefore Mf=M~\ If MM'x^A
thtnM'x^M', soMM'x^MM'. HenceXΪΞA. lίyMMr<^A,xhzτιMM'yMMr

cMM\ and so MM'y^A. Hence y<=A. Thus MM'(=T(A). Hence M e
F(Q: A, B). (β) Since MM' is a non-zero ideal of 4̂, we have MM'^F^A),
and ΛΓ^AΓ1. If xM'^M' then MΛ M ' C M M ' C ^ , hence Mx^M by (iii).
Therefore xGΰ. If xM'=0 then *<=M, hence x=0 by (i). Thus O/(Λί/)=
£, and 5 M ' is faithful. Therefore (4) of Proposition 1.1 holds. Hence M G F *

(Q; A, B), by (iii).

2. A positively filtered ring over a Krull order

Let R be a subring of a ring Q. If i?, Q satisfy the following conditions
we call R a Krull order of Q.

( i ) i? is a Krull subring of Q.
(ii) Q is a left and right quotient ring of R.
(iii) IQ=QI=Q for any non-zero ideal / of R.

REMARK. If R is a prime Goldie ring, and Q is the maximal quotient
ring of R then (ii), (iii) hold. Evidently every two-sided simple ring is a Krull
order of itself.
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Let R be a Krull order of Q. Let M be a non-zero i?-i?-submodule of Q.
Then MΠi?Φθ, and so Q ( M n # ) = Q = ( M n i ? ) Q . Therefore QM=Q=MQ.
Hence Q is a simple i?-Q-module as well as a simple Q-i?-module. In parti-
cular, Q is a two-sided simple ring. Let M^F(Q; R, R). Then QM=

so that / C M for some dense left ideal / of R. Then IR^M, and so
Put IR'M~ι=J. Then R^IR-M~ιM=JMy hence M^J'K

Since (/i?)*oM"1=/* we have M*=(IR)*oJ-\ Conversely, let iV be a non-
zero i?-2?-submodule of Q such that N^jT1 for some non-zero ideal Jx of i?.
Then, by Proposition 1.12, N^F(Q; Ry R). Summing up, we have

Proposition 2.1. Let R be a Krull order of Q.
( i ) Both QQR and RQQ are simple.
(ii) For a non-zero R-R-snbmodule N of Q, N^F(Q; Ry R) if and only if

iVc;/"1 for some non-zero ideal I of R.
(iii) F*(Q; R, R)={IoJ-1: /, j£ΞFf(Q; R)}y which is an abelian group.

For any ring A we denote by Qι(A) (resp. Qr{A)) the left (resp. right)
maximal quotient ring of A. Further we put Q(A) = Qι(A)PιQr{A), more
precisely, Q(A)= {x^Qr(A); IvCiA for some dense left ideal /}. By Corollary
of Proposition 1.13, if R is a Krull order of Q, then R is a Krull order of Q(R)
(=><?).

In the remainder of this paper we assume the followings: R is a Krull order
of Q. X is Q-Q-module containing Qy as a Q-Q-submodule, and such that
XjQ is an invertible Q-Q-module. Y is an i?-i?-submodule of X containing
i?, such that Y/R is an invertible i?-i?-module, and such that X=Q®RY=Y
®RQ Q<\Xy is an overring of Q satisfying the following conditions:

( i ) Q < Z > 2 l as a Q-Q-submodule, and Q<X>= (J i ^ \ where X°=Q.
(ii) For any integer z'2^1, the canonical map

(XIQ)®Q-®Q(XIQ) (/-times) -> X'/X'-1,

(x1+Q)®-- ®(xi+Q)\-^x1-~xi+Xi~1 is an isomorphism (cf. [13]).
We put R<Y>={]i>oY\ where Y° = R. If /<0 then we put X*=Y{

= 0 . Evidently Q®R{Y\R)Z^X\Q. <]®(y+R)^qy+Q, and (YIR)®RQz^X/Qy

i i
(y+R)®qy->yq+Q. Therefore Q®R(®R(Y/R))^®Q{XIQ) as Q-i?-modules,

i i i
and (®R(YjR))®RQ~®Q(XIQ) as i?-Q-modules, where ®je(y/jR) = (Y/i2)®je

®R(YIR) (/-times). For any / ^ l , the following diagram is commutative:

β I
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i i i
Since R®R(YjR) is projective, the canonical map ®R(YIR)^Q®R(®R(YIR))

i
(z^®Q(X/Q)) is a monomorphism, so that a is an isomorphism. Therefore
δ is a monomorphism, that is, Y1 Π X*~1== Y1"1. In particular, Y Π Q—R. Using
the diagram

by induction on z, we can prove that each £f is an isomorphism. Therefore
Q®RR<Y>=Q<X>, and symmetrically JR<Y>®*Q=Q<X>. We put Q=Q<Z>
and i?=i?<Y>.

REMARK. Let Q=Q(R), and let Y be an jR-i?-module containing R9 as an
iϊ-jR-submodule, and such that YjR is an invertible i?-i?-module. Then, X,
Q(Xy> and RζYy as above exist, and those are uniquely determined by YΏR.
The proof is given in §4, in the case when Y/RR^RR.

First we prove the following

Theorem 2.2. If R is a Krull order then RζY> is also a Krull order.

We need many lemmas.

L e m m a 2.3. For any integer / ^ l , there is a one to one correspondence

from the set jf all R-R-submodules ofQ to the set of all R-R-submodules of X^X1'1,

such that

Proof. This follows from [12; Proposition 3.3 and its proof].

Corollary 1. For any integer i^l, X^X*'1 is a simple Q-R-module as well
as a simple R-Q-module.

Proof. This follows from the fact that QQR, RQQ are simple.

Corollary 2. For any integer i ^ l , there is a one to one correspondence
M ι-> M' from the set of all R-R-submodules of Q to itself, which is defined by M' Y*+
Z ί " 1 = Y'M+Z 1 " 1 . {Note that this map is multiplicative.)

Lemma 2.4. Let M be an R-Q-submodule of X\r^\) such that Xr~ι®
M=Xr. Then QM^M.

Proof. Any y in QM is written as a sum y=yi+y2(yi^Xr~1>
IyζΞzM for some dense left ideal / of R. Then, for any αG/, ayι = ay—ay2^
Xr~ι Π M= {0}. Hence />Ί=0. Since QXr~ι is projective, we have j i = 0 . Thus
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Lemma 2.5. Let A be an R-Q-submodule of Q. Then QA^A.

Proof. We may assume that 0 ΦA Φ Q. Then, since RQQ is simple, we have

Qf)A=0. Therefore there exists an integer r such that Xr~1Γ\A=0 and

Xr Π AΦO. Since Xr\Xr'λ is a simple i?-Q-module, we have Xr~l®{Xr f]A)=

X\ hence Q=Xr~1®((Xr ΠA)®QQ) by [13; Corollary 1 of Proposition 1].

Then A=AΓ\Q=Xr-1f]A+(XrΓιA)®QQ=(XrΓ\A)®QQ. By Lemma 2.4,

Q(Xrf]A)^XrnAy and so Q,4cA

Corollary. If A is an ideal of R then QA=AQ (, so that QA is an ideal of

Q).

Proof. Noting that Q = QR = RQy AQ is an Λ-Q-submodule. Hence

QA^AQ. Symmetrically we obtain AQ^QA.

The following is well known, but we give its proof for completeness.

Lemma 2.6. Let B be a ring, and I an ideal of B. Then the following

conditions are equivalent:

(1) I is an invertible B-B-module.

(2) / is invertible in Q(B).

Proof. The implication (2)=Φ(1) is well known. (1)=^(2) Put

Qr(B): aI^B}=Γ. Then, since / is a dense right ideal, J ' ^ H o m (IBy BB)

canonically (cf. [16]). Since IB is a generator, we have ΓI=B. Since IB is

finitely generated and projective, we have II=B, Then, since / is a dense left

ideal, Γ^Q^B), and so Γ^Q(B). Thus / is invertible in Q(B).

Lemma 2.7. Every non-zero ideal of Q is invertible. (Cf. [14; Examples].)

Proof. Let A be any non-zero ideal of Q. We may assume that AΦQ.

Then there is an integer r ^ l such that Xr~ι^\A=Q and Z r Π^4φ0. Put M=

Xrf]A. Then, as in the proof of Lemma 2.5, Xr~ι@M=X\ and A=M®QQ

=Q®QM. Since M^XrjXr~ι

y M is an invertible Q-Q-module. Then it is

easily seen that Qz End (AQ) by the map induced by QA, SO that QAQ is inver-

tible, because AQ=ΛM®QQQ is finitely generated, projective, and a generator

(cf. [12; Lemma 3.1]).

If every non-zero ideal of a ring B is invertible, B is said to be an Asano

order. Noting Lemma 1.6, an Asano order is a Krull order. A Krull order

R is an Asano order if and only if T(Q(R); R)={R}.

Lemma 2.8. (i)_S(#)cS(Q)^Q(R)=Q(Q). (ii) For any non-zero ideal

A of Ry A S(Q)=S(Q)A=S(Q). Therefore R is a prime ring.

Proof. Since QQ is projective, {x^Q: 7# = 0}=0 for any dense left
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ideal / of Λ Then, as QR=Q,yε have Q c Q,(R). Symmetrically Qc Q r(#),
andjience Q^Q(RJ. Thus Q(R) = Q(Q). Since ^Q( = ̂ 4Q) is a non-zero ideal
oϊQywehavt S(Q)A=S(Q)QA~S(Q). Similarly A-S(Q) = S(Q). Therefore
R is a prime ring, and ^ c ^ Q ) . Hence S(R)^S(Q).

_In virtue of Propositions 1.13 and 2.8, the notations T(R)9 F^R), Ff(R),
T(R)y Fi(R), and Ff(R) do not produce ambiguity.

By pi we denote the correspondence M\^>M' given in Corollary 2 of
Lemma 2.3. Then pi{M)Yi+Xi~ι=YiM+Xi-\ and if M^R then p (M)Y''
+ y - i = y ' A f + y ' - 1 , because of X'""1 Π Y'= Y''"1. Further, note that p,(M')
pf (Λί//)=pf (Λί/Λί//) for any AT, M". Put Pi=p. Then it is easy to verify
that pi=p{ for a l l /^1.

For any JR-JR-submodule M of Q(R)y we put M*={X(ΞQ(R): xI^M for
some I<EΞT(R)}. Note that R*=R and Q*=Q.

Lemma 2.9. (i) p(T(R))=T(R). (ii) .Far <mj; R-R-submodule M of Q,
p(M*)=(p(Λί))* Wώ. Therefore p(Ff(R))=Ff(R).

Proof, (i) For any ideal / of R and any Λ G Q , I-RXR^R (or RxR I^R)
if and only if p(I)p(RxR)^R (or p(RxR)p(I)^R)y because of p(R)=R. There-
fore we obtain (i). (ii) If *<=M* then * / c M for some I(ΞT(R). Then P(ΛΛ Λ)
p(7)cp(M), and so p(RxR)^p(M)* by (i). Thus p(Λf*)c(p(M))*. Similarly

^ Then ρ~\(ρ(M))*)cM*9 whence (p(Λί))*cp(M*).

Lemma 2.10. R is maximal in Q(R).

Proof. Let A be any non-zero ideal of R, and letyAc:A(y&Q(R)). Then
and so j ^ Q , because 4̂Q is an invertible ideal of Q. Put W=

Then W is an i?-i?-submodule containing R. For any
/^0, there exists a unique i?-i?-submodule W{ of Q such that (WΠX^+X^1

= WiY
i+Xi~\ by Lemma 2.3. Similarly, for A, (Af]_Xi)+Xi~1=AiY

i+
X*-\ where A{ is an i?-i?-submodule of Q. Since fF^i?, we have WΠXi

2Y1", and so W{ΏR. Since ^ e i ? , we have AΠX^AΠY^ and so
It is easy to verify that Wrp*(Ai)Yi+JQAi+JY

i+'+Xi+'-1 for all
Therefore J ^ p>(Λ)^A +, for all ι,;^0. Noting that A0^A1^A2^~'y we
pat / = U i^Ai. Then / is a non-zero ideal of Ry and Wjpj(I)^I for all; ^ 0 . By
Lemma 2.9, p'(/*) = (p>(/))*, and so J^; p y (/*)c/*. By Lemma 2.9 (ii),
the number of irreducible components of p;(/*) is equal to the one of /*. As

we have ρ''(J*)c/*, hence p^(/*) = 7*. Thereby PF; Ci?, and so
1. Noting that H ^ ^ , we obtain WΓiXi=Yi+WΠXi~1

for aU ^O. Now Wf]Q=W0^Ry hence FTΠ-ϊyE Fy_ for all ^O. Thus
WczR, as requered. Similarly Ax^A implies that x

Lemma 2.11. For any ί ^ 1 , ( y ί ) * = y ί ,
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Proof. Let / be any right i?-homomorphism from R to R. Extend / to a
right Q-homomorphism / from Q=R(g)RQ to Q. If y&R* then yl^R for
some J<ΞT(R), and so J/<ΞQ. Then/(j)/ci?, and_ so/(j)ei? for any/. If (/λ,
uλ) (λGΛ) is a projective coordinate system for RR, then so is (/λ, uλ) (λCΛ)
forQQ. Thereforey=ΣjMjλ(y)^R. Hence R* = R. If * e ( y ' ) * then * / ε
Yi for some/eΓ(Λ). Then, as/Q=Q, we have xtΞX'. Hence « £ ^ Π # *
=Xif)R=Yi.

Lemma 2.12. Let A be any reflexive R-R-submodule of Q(R). Then

Proof. If xI^A for some I^T(R), then A'xxI^A~xA^R. Using
Lemma 2.11, A^x^R. Therefore x<={AΓιyι=A.

Lemma 2.13. Let A be any non-zero R-R-submodule of R. Then there
exists a finitely generated R-R-submodule Ao of A such that A^ (J j^oβ

j(Ao)y

where β(M) = M* for any R-R-submodule M of Q(R).

Proof. For any ίί>0, y'/F1'"1 is an invertible Λ-Λ-bimodule. Therefore
there exists a unique ideal A{ of R such that (A Π Y')+ y ί - 1 = Y*Ai+ Y*~ι. In
particular, AΓ\R=A0. Since YiAΠY^^AΠY^K we have an ascending
chain ^ Q C ^ C ^ C . . . . If ^[,= 0 then AΠ Y^Y1'1, and so -4*4=0 for some
k. Then ^4*c^4j+ 1c. ., which are reflexive ideals of R. Therefore, for some
integer tn^k,Al=Am+ι* = ~. By Proposition 1.12, A%=(Σj=i,~.tR2jR)* f o r

some zl9 •••, zt^Am. Noting that RYm is finitely generated, we have that
1 for some h19 —, bs£ΞA Π Yw. Let w^m. Then
M * + y - 1 ^ y -»(2y y"*y12)*+ yn - 1. Therefore, if

then aJ^Yn"m(ΣjYM^jR)+Yn~1 for some J(ΞT(R), and so β/e
1. Then α / e 2 ι yΛ~wέ ί i?+^ Π yn - 1 . Thus^ Π Yn^(^iYn~m

for any n^m. By induction we obtain Af)Yn^βn~m+1

(Σ>iYn~mbiR+AΓ\Ym~1) (n^m). However, from the above proof, this holds
whenever Am^0 and A%= '=Ai. Therefore, for any n^O with AnΦ0,
A Π Yn^Q2iRciR+A Π Yn~ψ for some cly —,cυ<E:A Π Yn. On the other hand,
if Ai=0 t h e n O=-^o=##>::=:^n> and so AΠ Yn = 0. Hence there exists a finitely
generated i?-i?-submodule W of A Π y* ' 1 such that f̂ Π Ym~ι<^βm{W). Then,
for any n^m, Af] Yn^βn~m+\^iY

n-%R+βm(W))^βn+\^iY
n-mbiR+W).

This completes the proof.
Now we can complete the proof of Theorem 2.2 with the following

Lemma 2.14. The ascending chain condition on reflexive ideals of R holds.

Proof. Let A^A^^A^**' be an ascending chain of reflexive ideals of
R. Put A== \)iAi. Then, by Lemma 2.13, i c [} jtofiW) ίor s o m e finitely
generated i?-i?-submodule A' of A. Then A'^Ai for some /. By Lemma
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2.12, β(Ai)=Ah and so β*(A')cAi for ally. Hence A=At.
Next we proceed to the proof of the following

Theorem 2.15. For any non-zero ideal A of Q<-3Γ>, AΓ\R<Y> is a re-
flexive ideal of i?< Y>.

Lemma 2.16. The following conditions are equivalent.
(1) For any non-zero ideal A of Q, Af]R is a reflexive ideal of R.
(2) For any B e T(R), QB=Q holds.
(3) For any non-zero ideal C of R, (QCy1 = C-1Q=QC-1 holds.

Proof. (l)-»(2) If QB^Q then B^QB ΓlR^R, and QB Π R is a reflexive
ideal, a contradiction. (2)=Φ(3) From CQ=QC, we have C ^ C Q C ' ^ C ^ Q C C " 1 .
Then, by assumption, QC~ι==C-ιQ. Hence (OQ- 1 =C" 1 Q=QC- 1

: _ (3)-^(l)
Let CeΓ(jf?). Then_QC = Q, because of C ' ^ 1 2 , JNow, put AP(R=A'. If
CΛjeJf^ei?), then Q ^ ^ Q C ^ e ^ , and so Λ?e^Πi?=^' . Similarly j C e ^ '
implies that yG^4'. Hence ^4' is a reflexive ideal, by Proposition 1.3.

REMARK 1. The condition (2) is equivalent to that BΠRφO for any

REMARK 2. Jtf C is an ideal of ^ such that CΠi?eΓ(i?), then
In fact, if xC&R then x(Cni?)£Ϊ?, and so # e i ? , by Lemma 2.11.

Lemma 2.17. For any I^F(Q; R} R), (RΓ1)* = RΓ1 holds.

Proof. The proof is similar to the one of Lemma 2.11.
Let M be a monic Q-Q-submodule of degree n (i.e. X*~1®M=Xn). Then,

by [13; Corollary 1 of Proposition 1], Xn+m=Xu"1®(Xm®QM) for any m^O.
Therefore Xm®QM^Xn+mjXn^1 as Q-Q-bimodules, canonically. Since Yn+m

f l P - ^ y -1, γn^ιγn-i i s c a n o n i c a i i y embedded in Xn+mIXn~\ and Q®R

(Y*+»jY*-i)~X*+mIXn'"ί. Hence there exists a unique i?-i?-submodule Vm of
Xm®QM such that the following diagram is commutative:

Xm®QM sw

J
γn+miγn-1

Namely, Γ w + X * - 1 = Y'^+X"'1. Then Q(g)ΛFM=Z'"®0M, and F s =
( Y ' ^ + X " ' 1 ) . Therefore F . c ^ c ^ ς , where_ F o = M Γ Ί ( y + X " ^ ) . By
[13; Corollary 1 of Proposition 1], Q=X"-1φ(Q®QM). Put A^Q®QM.
Then J n ( i e + Z " - 1 ) = U , F , - , and A= \Jmo(Xm®QM)= \Jmzo(Q®BVm)=Q®

XV, where V=\}tVt. By Lemma 2.13, ^ Π ^ S UyioflV) f o r s o m e finitely
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generated i?-i?-submodule A' of AΓ\R. However, by virtue of Lemma 2.11,
β(A Γi_R)=A Π R, whence A Π R= [] mβj(A'). As RAR is finitelyjenerated,
A'<zRVs for some s. Now we assume that M is invertible in Q(R). Then,
since Vo is an invertible i?-i?-module and Q®RV0=M=V0®RQ, we know
that RV0R is invertible in Q(R). In this situation, we need the following

Lemma 2.18. For any R-R-submodule W of Q, W*V^ι={WVo1)* holds.

Proof. By virtue of Proposition 1.2, there is a one to one mapping I\->
VO'IVQ from T(R) onto itself. Let x be in W*Vo1. Then xV0^W*. Since
V0R is finitely generated, xV0I^W for some IΪΞT(R). Then xVJVόι^WVό\
and so xϊΞ{WVo1)*. Similarly we can prove that (WVό1)*^W*Vϊ\

We still assume that M is a monic Q-Q-submodule which is invertible in
Q(R), and notations are the same as before. Since VS^A=QM= QV0, we
have VsVϊ;ιckQ. Since both RVS and RVΰι are finitely generated, RVSV^1 is
also finitely generated, and so VSVQ1I<ΞZR for some non-zero ideal / of R, because
of Q=RQ. Then, as A'^RVsy w e h a v e ^ ' F ^ 1 / ^ ^ , and %oAΎ^ιI
Then, by Lemma 2.18 and 2.17, fr(A')V*l = fr(A'Vzl)<^RJ-1 for all
Hence, as A(\R=\]j^fi{A')y we obtain {A ΓiRWό'I^R. Put N={x£Ξ
Q(R): (Af]R)x^R} and Nf={y^Q(R): Ay^Q}. Evidently N'^Vό'Q,
and V^ιI^N implies that N'^NQ. Next, let us prove that NQ^N'. Since

RVQ is finitely generated, there exists a non-zero ideal /' such that V0Γ^R.
Then VQI'^Γ'VQ for some non-zero ideal V of R, for RV0R is invertible. There-
fore A=QV0=QΓΎ0=QVQΓ^Q(A Π R), whence j4=Q(i4 ΓΊ ^)_. Hence iV<=
iV'. Thus N'=NQ. Finally, zN^R implies zN'=zNQ^Q, and so *<Ξ
QV0=A. Since JRCJV, we have *<=£. Hence ^ e ^ 4 Π ^ . Therefore a left
i?-submodule 4̂ Π R satisfies (β) of Proposition 1.15. Thus we have the following

Proposition 2.19. Let M be a monic Q-Q-submodule which is invertible
in Q(R). Put A=QMy A-1={XΪΞQ(R): Ax^Q}, and {AΓ\R)~ι={xEίQ(Ry.
{A Π R)x^R}. Then A=Q(A Π R), and A~l={A Π R)~ιQ. Further, AΓiRtΞ
F*(Q(R); Ry 5), where B=Or(A Π R).

Evidently Theorem 2.15 follows from Proposition 2.16, Proposition 2.19
above and Lemma 20 below. (Cf. the proof of Lemma 2.7).

Lemma 2.20. Let A be any non-zero ideal of Q. Then A=QM=MQ
for some monic Q-Q-submodule M. Such a M is uniquely determined by A, and
is invertible in S(Q).

Proof. The first half follows from the proof of Lemma 2.7. Since A—
M®QQy any right Q-homomorphism from M to Q can be extended to a right
Q-homomorphism from A to Q. Since A is invertible, this is given by a left
multiplication of an element of A"1. Therefore if we put M'=
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cQ}, then M'M=Qy because MQ is a generator. Symmetrically MM"=

Q for some Q-Q-submodule M" of A'1. Hence M is invertible in S(Q). Let

iV be any monic Q-Q-submodule with A — QN. Let deg iV=r. Then Q=

X'-ι®A, and iV=,4nXr, by [13; Corollary 1 of Proposition 1]. Hence N

is uniquely determined by A.

In all that follows we denote F*(Q(Q)j Q, Q),_F(Q(Q); Q, Q), F*(Q(#); I?,

i?), and F(Q(R),R,R) by F*{Q},F{Q},F*{1?}, and F{2?}, respectively.

Similarly we denote F*(Q; P, Λ) and F(Q; R, R) by F*{i?} and F{R}, respec-

tively (cf. Proposition 1.13).

Let M(ΞF{R}. Then MI^R for some IdF^R), by Proposition 2.1.

Using Corollary of Lemma 2.5, QMI=MIQ=MQI, and so QMQ=MQ, for

Q/ is invertible. Symmetrically QMQ=QM, whence MQ=QM. Let #<=

©(AT1)"1. Then *CeQM for some C<=T(R). Since CQ=Q, we have *<=

QMQ=MQ. J ims QM^QίM"1)"1. Therefore a group homomorphism

ψ from i^*{^} to F*{Q} is well denned by_ ψ(M)=QM. Let 4̂, ΰ__be

non-zero ideals of 0. Then ABf\RΏ.(A ΓlR)o(BC\R). Since ABΠΛc

£ Π £, we have (AB Π -R)J5Π Ry'^R. By Proposition 2.19, B~λ^(B Π £)~\

and so (^SQi?) (JBf^iej^c^ni?. Therefore ABΓ\R<^(A ΓiR)o(BΓ\R).

Hence i4βn-R=(-4ΠjR)o(jBnΛ). Then a group homomorphism φ from

F*{Q} to ,F*{i?} is well defined by φ_(^β- 1)=(^Π^)o(ΰ(Ί^)" 1. Because

of Proposition 2.19, γφ=id. Hence JP* {i?} 2^ Im φ x Ker ψ, and F* {Q} 2^ Im φ.

Let /, / be in Ff(R). If IQ^JQ then l ίΞQc/- 1 /^, and so G^ΓιJ for

some G e F f (JR). T h e n ^ G i ? ) * ^ / - ^ / . Therefore Γ O / G K e r ^ if and only

if (RGR)*<^ΓιoJ<^{{RFR)*yι for some F, GΪΞF^R). In particular, / e K e r
ψ if and only if J Πi?Φθ. In this case, / Γ\R<^F*(R), by Lemma 2.12. Let

P'<=Ff(Q) be irreducible. Then, by Corollary of Lemma 2.5, P'ΠR is a

prime ideal, so that P'Γ)R is irreducible in ί? (#) , and Q(P'Γ[R)=P' by Pro-

position 2.19. Conversely, if P^F^R) is irreducible and QPφQ then, by

the maximality of P in Ff(R)y we have QPΓiR=P, and QP is maximal. Let

J<=Ff(R)y and /=P l O . . .oP r , where each P, is irreducible in Ff(jR). Then

Q / n £ = ( Q P i n £ ) ° o(QP rn£), and each QPiOR is either P, or £ . Let

/', J " be in Ff(Λ). Then, /Ό/ / r l GKer ψ~QΓ=QI"~QΓ ΠR=QΓ'f)R.

Therefore Ker ψ=J_[(P), where P ranges over all irreducible reflexive ideals P

such that PΠi?Φ0 (or equivalently, QP=Q), and (P) denotes the infinite cyclic

group generated by P.

Lemma 2.21. (i) Let I^F{R}, and assume that IR=RI. Then RI(=

F{R}, (Riy^RI'^Γψ, and RI ΠX^IY^TI for all ί^O. Therefore,

/Ef*{i?} thenRl£ΞF*{R}.

(ii) Let J<=Ff(R) be irreducible, and asume that JY= YJ. Then, if

RJ (a, b<=R) then a<=RJ or b^RJ. Therefore RJ is irreducible in Ff(R).
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Proof, (i) Since OΦRI-ΓΉ^R and OΦi?/"1./!?, we have RIEΞF{R},

by Proposition 1.9. Letx^IR)'1. Then xI^R, and so xII'^RI'1. By Lemma
2.17, XZΞRΓ1. Hence (IRyι=RI'\ and symmetrically (Riy^Γ'R. Since
Yi+1/Y} is projertive,_y l + 1=y'eϊΓ for some right i?-submodule W of Yi+1.
Then R=Yi@{W®RR), by [13; Proposition 1]. Then Q=R®RQ=(Yi®RQ)
Φ(W®RR®RQ)=Xi®(W®RQ)y and RI= VI®WRL Hence X1 Π Λ/= y/,
and symmetrically JPMR^Y'. (ii) By (i), JR^FfiR^ Let B, C be
i?-i?-submodules of R such that BC^JR. Then, as (B+JR) (C+JR)^JR,
we may assume that 2?, CΏLJR. For any integer / ^ 1, there are ideals Bh C{ of R
such that {B[\Yi)-{-Yi-ι=BiY

i+Yi-\ {C^Yi)+Yi-ι=CJY
i+Yi~\ because

each y '/y- 1 is an invertible P-Λ-bimodule. Then, as JRf] Yi+i=JYi+j, we
have Bj p'ζCijC^J for all i, where p is the one as before. Now, assume that
B^JR. Then B^J for some , so that ρ;'(C, )Q/. Then C, Cp-•>'(/)=/ for
all ί. Noting that C0=Cf)R^J> this implies that C^JR. This completes the
proof.

Here we consider the following condition.
(#) For any 7 e F f (Q; Λ), / y = Y/.

Lemma 2.22. Assume that the condition (#) Ao/ώ. Lέtf P^Ff(R). Then
P is an irreducible ideal such that PΓiRφOif and only if P—IR for some irreducible
reflexive ideal I of R.

Proof. The "if" part follows from Lemma 2.21. Conversely, let
Ff(R) be irreducible, and let PΓΊΛΦO. Then Pf)R(ΞF*(R). If
for some IJ^F^R), then I* J*^P()R, because of PnR^Ff(R). Then/*i?
J*R<ZPj whence 7 * C P o r / * c : P , because P is a prime ideal. Hence Pf]R is
a prime ideal of i?. Then, by Lemma 2.21, (PΓ\R)R is irreducible. Hence

Assume that the condition (#) holds. Let /, / be in F* {R). Then
Λ 7 ) = ( ( Λ / J R ^ - 1 ) " 1 = = ( ( Λ / / ) " 1 ) - 1 = Λ ( / O J ) , by Lemma 2.21. Therefore

the mapping θ: Iv-*RI is a homomorphism from F*{i?} to Ker ψ. Evidently
I^RIΠQ. LetI=FoG~\F, G(=Ff(R))._ Then (£/ΠQ)G^RFΠQ=RFf]
R=F, because #* is a direct summand of RR. Therefore (RIΠ Q)GG~ι^FG-\
and so RIf]Q^FoG~1=I. Hence I=RI[)Q. On the other hand, all ir-
reducible P<=Ff(R) with PΠΛΦO generate Ker -ψ*. Therefore, by Lemma
2.22> θ is an isomorphism from F* {R} to Ker ψ. Thus we obtain the follow-
ing

Theorem 2.23. Assume that the condition (#) holds. Then θ:
Ker ψy 7M> RI, as groups. Further, RI Π Q=I for all 7 G F *

Proposition 2.24. Assume that the condition (#) holds. If I S(R)=S(R)I
or all I^F^R), then A-S(R)=S(R)A=S(R) for all A^F^R). (Cf.
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Proposition 1.14.)

Proof. From (#), it follows that S(R)^S(R). Let A<=Fi(R). Then
AA^ΠR^O, because of Lemma 2.16. Therefore S(R)^AA~1S(R)^A'S(R)9

hence A S(R)=S(R). Symmetrically S(R)A = S(R).

3. In this section, we study further on reflexive i?-i?-submodules of
Q(R). For any additive submodules V, W of Q(R), we put (V. W) = {x e

Proposition 3.1. (i) // N<=:F(Q(R); R,R) and N^R, then QN=NQ.
(ii) Ltf N(ΞF(Q(R);R,R)Land assume that QN=NQ. Then QN is an

ίnvertible_Q-Q-submodule of Q(R), (QNy1=QN-1=N-1Qy Q7V*=7V*Q, and
RN*=(RN)*. Furthermore, (RN-.R)=N~1R, and (R. N^R^RN*.

(iii) Let M be a Q-Q-submodule of Q, and assume that M is invertible in
Q(R). Then MΠR(ΞF*(Q(R); R,R)y and Q(MΓiR)=M=(MΓlR)Q. Fur-
ther there is an invertible R-R-submodule Vo of Q(R) such that Vo1(MΓiR),(MΠ

and QV0=M=V0Q.

Proof, (i) First we prove that QQNR is simple. Let U be any non-zero
Q-Λ-submodule of QN. Then Q^QNN'^UN'^O, and so Q=UN~\
because QQR is simple. Then QN=UN'1NcU9 whence U=QN. Thus

QQNR is simple. Then there is an integer n^O such that QNΠXn'1=0 and
QN Γ\Xn + 0. By making use of Corollary 1 of Lemma 2.3, we have Xn'1®
QN=X*. Then, by Lemma 2.4, QNΏNQ. Symmetrically QN^NQ,
whence QN=NQy as desired, (ii) QN^NQ yields ^N~1Q=N-1QNN-1=N^1

NQN-'=QN-\ and so N'1Q=QN'K Therefore QQNQ is invertible in Q(R),
and (QN)'1=N'1Q=QN''1. Utnce_QN=((QNy1y1=N:¥Q=QN:i:. Now, R®

RQN=R®RQ®QQN=Q®QQN^Q'QN=RQN{cί. Remark to Proposition 1.6),
and therefore any right i?-homomorphism / from R to R can be extended to a
right Q-homomorphism / from RQN to QN. Then, for any x^(RN)*, we
can see that/(#)e/V*, whence it follows that x^RN*, because RR is projective.
(Cf. the proof of Lemma 2.11.) Since RN*^(RN)* is evident we have ^Λ^* =
(RN)*. Symmetrically, Jy^NR (J<ΞT(R)) implies that y£ΞN*R. Let RNz
c £ . _Then N'WzcN^R, and so z(EN~]R, because of JV^ΛT 1)*. If
uN-'R^R then uN-'N^RN, whence u£Ξ(RN)*=RN*. This completes the
proof of (ii). (iii) Since QQQ is simple, an invertible Q-Q-module M is also
simple. Then, as in the proof of (i), Xn~ι®M=Xn for some n^O. Then
M^XnIXn~\ canonically. Let Vo be as in Lemma 2.18._ Then M=Q®RV0

= V0®RQ, and RV0R is invertible in Q(R). Put N=Mf)R. Then iVφO, for
RR is essentialin QR. Put I={χ(ΞQ: F>cjV}. Then N=VQ®RI, because Vo

is invertible. Since VoR is finitely generated, JV0^R for some non-zero ideal
/ of R. Put Horn (RR, RR)(JV0)=J'. Then, since RR is projective, / is a
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non-zero ideal of R. Noting that R®RQ=Qy we have JΊ^R. Therefore, by
Proposition2.1,/eJP{i?}. If * J ' c / ( a e Q , Γt=T(R)) then VQzΓ^VJ=Ny and
so VozQM_f]R=N> that is, *<Ξ/. Thus /GF*{i?}, and hence N=V0I=V0o
ItΞF*(Q(R);RyR). Further, NQ=V0IQ=V0Q=M. Likewise QiV = M. It
is evident that / = Vό]N. Symmetrically NVό1 Gf* {R}.

Let N'eΞF*(Q(R);R,R), and assume that JV'ctf. Put QN'f]R=N.
Then JVeF*(Q(jR); Λ, Λ). Therefore if we put J=NΌN"\ then J^Ff(R)y

and N'=JoN. Evidently QNΓ\R=N. Further, as in (iii) above, N=IVOy

where 7eF*{i?}. Therefore N'==(JoI)V0y w h e r e / O / G F * { U } , and Fo is an
invertible #-i?-submodule of Q(R) with V0Q=QV0=QN'.

Proposition 3.2. L*tf U<=F(Q(R) y R, R), and suppose that RU=UR and
QU=UQ._

( i ) RU(EF(Q(R)j R, R), (RUyι=RU-ι=U-ιR, and QU"1=U~1Q.
Therefore ((RUy1)-1=RU*=U*Ry and Qί/*=i7*Q.

(ii) QU is written as a product QU=M2Mτ1 with monic Q-Q-submodules
Mi such that QM^MiQ (i=ly2).

(iii) U*Y=YU*.

Proof, (i), (ii) Put M=QU. Then, by assumption, QM=MQ. By
Proposition 3.1, U~1Q=QU'-1=M-\ and hence QMGf*{Q}, because of
QM-1=M-1Q=(QM)-\ Therefore QM=(QM2y\QM1) for some monic Q-
Q-submodules M t such that QM^MiQ (*=1,2), by Lemma 2.20. Since
(QM2y

1=QMj1=Mj1Qy we have QM^QM^M, and so QMj'M.M'^Q.
Then M2lMλM~ι is a monic Q-Q-submodule, and so Mj1M1M~1=Q, by [13;
Corollary 1 of Proposition 1]. Hence M=M2~

1M1. As RU=UR, we have
U'ιRUU-ι=U-ιURU-\ whence U-ιR=RU~ι by Proposition 3.1 (ii). Since
UU-ιtΞT(R)y it follows from Remark 2 of Lemma 2.16 that RU-U^R^TiR).
Similarly RU'^UR^TiR). Hence RUEΞF{R}. The remainder follows
from Proposition 3.1 (ii). (iii) By (i), we may assume that 11=11*. Since
QMi=MiQy it follows from [13; Corollary 1 of Proposition 1] that XMi=Xni+1

f)QMi=Xni+1Γ\MiQ=MiXy where rc,=deg M, (£=1,2). Then, as M =
M2

ιMly we have XM=MX. Since IT^cM" 1 , UYU'^MXM^^X, and so
t/yt/-1cJiΓnl?=y. Then UYU'ιU^YU. Now, XM=X®QM=Y®RM,
so that any right i?-homomorphism from Y to i? can be extended to a right
Q-homomorphism form XM to M. Then, since YR is projective, we have
(YU)*=YU. Therefore UY^YU, and symmetrically YU^UY. Thus YC/
= UY. (Cf. the proof of Lemma 2.11.)

Theorem 3.3. Assume that the condition (#) holds. Let M be a monic
Q-Q-submodule of Q<X> such that Q<X>M=MQ<J?>, and let N=MΓiR<Y>.
Then M is invertible in 5(Q<X», N(=F*(Q(R); R, R)y M=QN=NQy and

Qixyu n R<γy=R<γyN=NR<jy.
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Proof. By Lemma 2.20 and Proposition 3.1, M is invertible in S(Q)9

M=QN=NQ, and N<=F*(Q(R); R, R). Put A=QMΠR and RN=B.
Then AΏB, and QB=BQ=QM=QA=AQ. By Proposition 2.16 and The-
orem 2.15, (QA)'1=QA'1=A-1Q. Therefore QA-1B=QA'1-QB=(QA)-1QA
=Qy hence I^A~ιB for some /<ΞF,(Λ). Then i / c ΰ , so i / * c β * - £ by
Proposition 3.1. Therefore if we put I={x<=R: Ax^B} then / = / * . As-
sume that IΦR. Then / c P for some irreducible P^Ff(R). Put B'=(£'• R).
Then, by Proposition 3.1 (ii), B'=N~ιR, and BBΆI^AI^RP. Now AΓ

'=AIB^BB'^Ry_ and so _RBf^(AI)-\ Then, by Proposition 1.11,
'eFίi?}, and so RB' AI<^R by virtue of the commutativity of F*{2?}.

Then, by Lemma 2.21 (ii), B^RP or BΆIQRP. However, if B^RP then
NP~1^RnM=N, so P-^R, a contradiction. On_the other hand, if BΆI<^
RP then RBΆIP-ι<^R, and so RB' A-RiloP-^^R. Therefore A-R(IoP-ιy
RB'<^R, hence A(IoP-ι)<^(R.*B')=B by Propositions 3.1 and_3.2.__ This_is
a contradiction. Thus / = # . ̂ Hence A=B, that is, QMΠ R=R(M ΓiR).
Symmetrically MQf)R=(Mf)R)R. This complete the proof.

Theorem 3.4. Assume that the condition (#) Aα/ώ. //" ̂ z ̂ ry reflexive ideal
of R is invertible then so is

Proof. Let A be any reflexive ideal of R. Then A can be written as
A=(IR)o(B Π R)y where I<=Ff{R), and B=QA=AQ (cf. Theorem 2.23). By
assumption, IR is invertible. On the other hand, B—QM—MQ for some
monic Q-Q-submodule M, by Lemma 2.20. Put Mf)R=N. Then J5fl^=
RN=NR by Theorem 3.3. By Proposition 3.1 (iii), N is written as a product
N=JVOy where /<ΞF*{/?}, and Fo is an invertible i?-i?-submodule of Q(β).
By Propositions 2.1 and 1.6, J is invertible, hence so is iV. Then BΓ\R is
invertible. In fact, (B Π R)~1=N~1R=RN~\ Thus A is invertible.

Theorem 3.5. Assume that the condition (#) holds. Put S =
(Q(R);R,R): QN=NQ, RN=NR}. Then λ: S^F*{^} α.? group, where
\(N)=RN.

Proof. By Proposition 3.2, X is well defined, and is a group homomor-
phism. If RN=R then N.N'^R. On the other hand, Q-QN=Q, and so
QN=Q, as in the proof of Proposition 3.2. Hence N9 N^^Q. Therefore
N,N~1^RnQ=R. Thus N=R. Let At=Ff(R). Then A=(RI)o(RN),
where I<=Ff(R), and iV is as in Theorem 3.3. Therefore Im X^Ff(R), and
so Im X=F*{R}, because of Proposition 2.1.

Assume that the condition (#) holds. Evidently X(N)^R if and only
if Nc:R, so that X induces a semi-group isomorphism from S={N€=S: Ncz
R} to FΫ(R). Further, by Theorem 3.3, Sp=*{N<=Sj QNΓ\R=N} is iso-
morphic to {A^Ff(R): QAf}R=A}. Therefore S,= {Λ ôiVi"1: Nly N2£Ξ
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as group. Hence the direct product -F*{jR} = Im φ x
Ker ψ induces the direct product S=SpxF*{R}. Let N(=Sp. Then N is
written as a product N=V0I, where /EF*{i?}, and Vo is an invertible R-R-
submodule of Q(R) such that QV^V.Q. JΓhen RN=NR=V0IR=V0RI,
and so RVQIΓι~VQRII-J. Hence Fo#c_(i?Fo)*=i?Fo by_Proposition 3.1.
Symmetrically RV0<ZV0R, whence V0R=RV0. Therefore S is generated by
F*{R} and the subgroup of all invertible i?-i?-submodules V of Q(R) with
QV=VQ,RV=VR.

Finally we note the following

Lemma 3.6. If R is a prime Goldίe ring and Q = Q(R), then any monk
Q-Q-submodule is invertible in Q{R).

Proof. Let M be a monic Q-Q-submodule of degree n. We may assume
that w^l . Then, since MQ — M®QQ, any right Q-homomorphism / from M
to Q can be extended to a right Q-homomorphism / from MQ to Q. Since
Q(R)Q is injective (cf. §4. Appendix), / is given by a left multiplication of an
element of Q(R). Since MQ is a generator, if we put M' — {xGiQ(R): xM^Q}
then M'M=Q. Symmetrically MM" = Q for some Q-Q-submodule M" of
Q(R). Hence QMQ is invertible in Q(-R).

4. Appendix

Lemma 4.1 i/" RR is Noetheήan then so is RR.

Proof. It suffices to prove that any left ideal of R is finitely generated.
Let / be any left ideal of R. For any integer w^O, γnjγn~ι i s an invertible
i?-i?-bimodule, and hence there exists a unique left ideal In of R such that / Π
Yn+Yn'ι=YnIΛ+Yu'1. Then / 0 = / n * £ / i C / 2 c . . . . Therefore, IM=Im+ι

= ••• for some m. Put J=Im. Since #/ and # Y1" are finitely generated, RYmJ is
also finitely generated, so that YMJ^J2i R-ai+ Ym~ι f°r s o m e au ~,ar of IΓ\ Ym.
Then, for any ̂ m , /Π F c y « / + p - ^ Σ . Y»-%+ Y"'1, and so lΠYn=
Σ , Yn-yi+I (Ί y*"1. Therefore / Π Yn^Σli Ra{+I Π Ym~ι for all w^m. Hence
J = Σ f Ra{+I Π y^"1. Since Λ/ Π Y^"1 is finitely generated, ]?/ is finitely gene-
rated.

If R is a prime Goldie ring and Q=Q{R)y then Q is a prime Goldie ring,
by Lemma 4.1. Hence, as is well known, Q(Q)Q is injective.

In the sequel, R is any ring. Let σ, τ be automorphisms of R> and D
an endomorphism of R as an additive group. If D(xy)=σ(x)D(y)-\-D(x)τ(y)
for all x, y^R, then D is said to be a (cr, τ)-derivation of R ([5]). If σ=idR,
D is called a τ-derivation. Let / be a dense right ideal of 7?, and / a right
i?-homomorρhism form / to Qr(R). Then, as is well known, there exists a
unique element b of Qr(R) such that f(χ)=bx for all x^I (cf. [16]). Let v
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be any automorphism of R. Then v is uniquely extended to an automor-
phism of Qr(R), and symmetrically of Q^R). And these induce the same
automorphism of Q(R). Therefore we denote these automorphisms by v,
too.

Lemma 4.2. Let τ be an automorphism of R, and g an additive homomor-
phism from a dense right ideal I to Qr(R) such that g(xa)=g(x)τ(a) for all # e / ,
a^R. Then there exists a unique element b of Qr{R) such that g(x)=b τ(x)
for all x^I.

Proof. Put h=gτ~1. Then h is a right i?-homomorphism from a dense
right ideal τ(I) to Qr(R). Hence there exists a unique element b of Qr(R)
such that h(τ(x))=b τ(x) for all x^L

Lemma 4.3. Let D be a (σ, τyderivation of R. Then D is uniquely ex-
tended to a (cr, τ)-derivation of Qr(R), and symmetrically of Qι(R). And these
induce the same (σ, τyderivation of Q(R).

Proof. Let b^Qr(R), and let / be a dense right ideal of R such that i / C
R. A map g from / to Qr(R) is defined by g(x)=D(bx)--σ(b)D(x) ( Λ G / ) .

Then g is as in Lemma 4.2, whence there exists a unique b'^Qr(R) such that
g(x)=b' r{x) for all x^I. Note that V does not depend on the choice of /.
Put D'(b)=bf. Then D' is a unique (σ, τ)-derivation of Qr(R) such that
D'\R=D, Similarly D is uniquely extended to a (σ, τ)-derivation D" of
Qt(R\ and it is easy to verify that D'\Q(R)=D"\Q(R).

We denote D\ Z)", and D'\Q(R) by D, too.
Let D be a τ-derivation of R, and put Q=Q(R). By Lemma 4.2, the

skew polynomial ring R[t; T, D] defined by at=tτ(a)-{-D(a) (a^R) is a sub-
ring of the skew polynomial ring Q[t; T, D]. Put Y=R+tR and X=Q+tQ.
Then, for any / ^ l , Y*=R+tR-\ \-t% and X*=Q+tQ-{ \-fQ. It is
easy to see that these satisfy the conditions in §2.
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