Miyashita, Y. Osaka J. Math. 18 (1981), 33-54

# **ON A KRULL ORDER**

Dedicated to Professor Gorô Azumaya on his 60th birthday

# YÔICHI MIYASHITA

(Received September 1, 1979)

Let R be a ring with  $1(\pm 0)$ ,  $\tau$  an automorphism of R, and D a  $\tau$ -derivation of R (i.e.  $D(ab)=D(a)\tau(b)+a\cdot D(b)$  for all  $a, b \in R$ ). Then a skew polynomial ring  $A=R[t; \tau, D]=R\oplus tR\oplus t^2R\oplus \cdots$  is well defined by  $at=t\tau(a)+D(a)$  $(a\in R)$ . Then if R is a two-sided simple ring, every ideal of A is invertible. On the other hand, as is well known, a (commutative) polynomial ring over a Krull domain is also a Krull domain. Furthermore, if R is a (non-commutative) Krull order in the sense of Marubayashi, then so is R[t] ([11]). This is the case when  $\tau=id$  and D=0. In this paper we define a new "Krull order", and prove the following. If R is a Krull order then A is also a Krull order. Further we obtain some results on the structure of the group of reflexive fractional ideals of A. Any two-sided simple ring is a Krull order if and only if R is a maximal order and the ascending chain condition on integral reflexive ideals holds.

As a matter of fact, we prove main results in a more general situation. Namely we take some "positively filtered ring" instead of  $R[t; \tau, D]$ . By virtue of this, for example, if M is an invertible R-bimodule over a Krull order R then the tensor ring T(M) is a Krull order. We believe this generalization is proper for this kind of study. However, if we assume R to be a prime Goldie ring, arguments may become more brief. But this exclude the case when R is a two-sided simple ring from our study. As is seen in §1, we take, as a starting point, the set of ideals which have trivial dual modules. This may be a feature of our study on Krull orders. Main results are analogous to those on a polynomial ring over a unique factorization domain.

For the completeness of this paper, we need some arguments on the construction of a positively filtered ring. But we postpone these until the forthcoming paper. However the case when  $A=R[t; \tau, D]$  is treated in 4. Appendix. In all that follows, all rings are associative, but not necessarily commutative. Every ring has  $1(\pm 0)$ , which is preserved by homomorphisms, inherited by subrings and acts as the identity operator on modules.

## 1. Preliminary results

Let A, B be rings. If M is a left (resp. right) A-module, we write  $_{A}M$ 

(resp.  $M_A$ ). If N is a left A-, right B-bimodule we write  ${}_AN_B$ , and we briefly call N an A-B-module.

Let Q be a ring, and M an additive submodule of Q. We define the *left* order of M (in Q) as  $O_l(M) = \{x \in Q : xM \subseteq M\}$ . Similarly we define the right order of M as  $O_r(M) = \{x \in Q : Mx \subseteq M\}$ . Then,  $\{x \in Q : MxM \subset M\}$  $= \{x \in Q : Mx \subseteq O_l(M)\} = \{x \in Q : xM \subseteq O_r(M)\}$ , which is denoted by  $M^{-1}$ . Evidently  $M^{-1}$  is an  $O_r(M) - O_l(M)$ -submodule,  $M^{-1}M$  is an ideal of  $O_r(M)$ , and  $MM^{-1}$  is an ideal of  $O_l(M)$ . Let R be a subring of Q. By T(Q; R) (abbr. T(R)) we denote the set of all ideals I satisfying the following conditions.

(i) I is faithful as a left R-module as well as a right R-module.

(ii) If  $xI \subseteq R$  or  $Ix \subseteq R$  ( $x \in Q$ ) then  $x \in R$ .

Evidently T(R) satisfies the following.

(i)  $R \in T(R)$ .

(ii) If  $I \in T(R)$ , and I' is an ideal of R such that  $I \subseteq I'$  then  $I' \in T(R)$ .

(iii) If  $I_1, I_2 \in T(R)$  then  $I_1I_2 \in T(R)$ , and so  $I_1 \cap I_2 \in T(R)$  (by (ii)).

(iv) If  $I \in T(R)$  then  $O_l(I) = R = O_r(I)$ . Therefore if xI = 0 or Ix = 0 ( $x \in Q$ ) then x=0.

**Proposition 1.1.** Let A, B be subrings of Q, and M an A-B-submodule of Q. Then the following conditions are equivalent.

(1) There are B-A-submodules M', M'' of Q such that  $MM' \in T(A)$ ,  $M''M \in T(B)$ .

(2)  $MM^{-1} \in T(A)$ , and  $M^{-1}M \in T(B)$ .

(3)  $O_l(M) = O_r(MM^{-1}) = A$ , and  $O_r(M) = O_l(M^{-1}M) = B$ . Further  ${}_AM$ ,  $M_B$ ,  $MM_A^{-1}$ , and  ${}_BM^{-1}M$  are faithful modules.

(4)  $O_l(M) = O_r(M^{-1}) = A$ , and  $O_r(M) = O_l(M^{-1}) = B$ . Further  $_AM$ ,  $M_B$ ,  $M_A^{-1}$ , and  $_BM^{-1}$  are faithful modules.

Proof. The implication  $(2) \Rightarrow (1)$  is trivial, and it is easy to see that  $(2) \Rightarrow (3), (3) \Rightarrow (4).$   $(1) \Rightarrow (2)$  Evidently  $O_l(M) = A$ , and  $O_r(M) = B$ . Therefore  $M' \subseteq M^{-1}$ , and  $M'' \subseteq M^{-1}$ . Hence  $MM' \subseteq MM^{-1}$ , and  $M''M \subseteq M^{-1}M$ . Thus we obtain (2).  $(4) \Rightarrow (2)$  If  $M^{-1}My \subseteq B$  then  $M^{-1}MyM^{-1} \subseteq M^{-1}$ , hence  $MyM^{-1} \subseteq O_r(M^{-1}) = A$ . Therefore  $yM^{-1} \subseteq M^{-1}$ , so  $y \in O_l(M^{-1}) = B$ . On the other hand, if  $zM^{-1}M \subseteq B$  then  $zM^{-1} \subseteq M^{-1}$ , hence  $z \in O_l(M^{-1}) = B$ . If  $bM^{-1}M = 0$  ( $b \in B$ ) then  $bM^{-1} \subseteq O_l(M) = A$ , and so  $bM^{-1} = 0$ . Hence b = 0. Thus  $_BM^{-1}M$  is faithful. Similarly  $M^{-1}M_B$  is faithful. Hence  $M^{-1}M \in T(B)$ . Symmetrically we have  $MM^{-1} \in T(A)$ . This completes the proof.

Let A, B be subrings of Q. By F(Q; A, B) (abbr. F(A, B)) we denote the set of all A-B-submodules M satisfying the condition (1) of Proposition 1.1. We put  $F(Q) = \bigcup_{A,B} F(Q; A, B)$ , where A, B run through all subrings of Q. In the sequel, if  $M \in F(Q; A, B)$  then we write  ${}_{A}M_{B} \in F(Q)$ , conveniently. Note that  $T(Q; A) \subseteq F(Q; A, A)$ , and that if  ${}_{A}M_{B} \in F(Q)$  then xM=0 or  $Mx=0(x \in$  Q) implies x=0.

**Proposition 1.2.** Let  $_{A}M_{B}$ ,  $_{B}N_{C} \in F(Q)$ .

- (i)  $_{B}M_{A}^{-1} \in F(Q)$ , and  $MIM^{-1} \in T(A)$  for any  $I \in T(B)$ .
- (ii)  $_{A}MN_{c} \in F(Q).$

Proof. (i) It follows from Proposition 1.1 that  ${}_{B}M_{A}^{-1} \in F(Q)$ . Let  $I \in T(B)$ . If  $MIM^{-1}x \subseteq A(x \in Q)$  then  $IM^{-1}x \subseteq M^{-1}$ , and so  $IM^{-1}xM \subseteq M^{-1}M \subseteq B$ . Therefore  $M^{-1}xM \subseteq B$ , hence  $M^{-1}x \subseteq M^{-1}$ . Thus  $x \in O_r(M^{-1}) = A$ . On the other hand,  $yMIM^{-1} \subseteq A$  implies that  $M^{-1}yMIM^{-1}M \subseteq B$ , and so  $M^{-1}yM \subseteq B$ . Hence  $M^{-1}y \subseteq M^{-1}$ , and therefore  $y \in A$ . Thus  $MIM^{-1} \in T(A)$ . (ii) If  $xMN \subseteq MN$ then  $M^{-1}xMNN^{-1} \subseteq M^{-1}MNN^{-1} \subseteq B$ , and so  $M^{-1}xM \subseteq B$ . Then  $x \in A$  as in (i). Thus  $O_l(MN) = A$ , and similarly  $O_r(MN) = C$ . Now,  $MNN^{-1}M^{-1}MN \subseteq$  $MM^{-1}MN \subseteq MN$ , and so  $N^{-1}M^{-1} \subseteq (MM)^{-1}$ . Therefore  $MNN^{-1}M^{-1} \subseteq$  $(MN) (MN)^{-1}$ , and  $N^{-1}M^{-1}MN \subseteq (MN)^{-1}(MN)$ . Since  $NN^{-1} \in T(B)$  and  $M^{-1}M \in T(B)$ , it follows from (i) that  $(MN)(MN)^{-1} \in T(A)$  and  $(MN)^{-1}(MN) \in$ T(C). By Proposition 1.1, we have  ${}_{A}MN_{c} \in F(Q)$ .

If  ${}_{A}M_{B} \in F(Q)$  then  ${}_{B}M_{A}^{-1} \in F(Q)$ , and so  ${}_{A}(M^{-1})_{B}^{-1} \in F(Q)$ . Since  $MM^{-1} \subseteq A$  we have  $M \subseteq (M^{-1})^{-1}$ . Then  $M^{-1} \supseteq ((M^{-1})^{-1})^{-1}$ . On the other hand,  $M^{-1} \subseteq ((M^{-1})^{-1})^{-1}$ . Hence  $M^{-1} = ((M^{-1})^{-1})^{-1}$ . We put  $M^{*} = (M^{-1})^{-1}$ . Then  $M \subseteq M^{*} = M^{**}$  for any  $M \in F(Q)$ .

**Proposition 1.3.** For any  ${}_{A}M_{B} \in F(Q)$ ,  $M^{*} = \{x \in Q : Ix \subseteq M \text{ for some } I \in T(A)\} = \{x \in Q : xJ \subseteq M \text{ for some } J \in T(B)\}.$ 

Proof. If  $x \in M^*$  then  $M^{-1}x \subseteq B$ , and so  $MM^{-1}x \subseteq M$ , where  $MM^{-1} \in T(A)$ . Conversely if  $Ix \subseteq M$  for some  $I \in T(A)$ , then  $IxM^{-1} \subseteq MM^{-1} \subseteq A$ , so  $xM^{-1} \subseteq A$ . Hence  $x \in (M^{-1})^{-1} = M^*$ . Symmetrically we obtain the latter half. Evidently, for any subring A or Q,  $T(Q; A) = \{I \in F(Q; A, A): I^* = A\}$ .

**Proposition 1.4.** Let  $_{A}M_{B}$ ,  $_{B}N_{c} \in F(Q)$ . Then  $(MN)^{-1} = (N^{-1}M^{-1})^{*}$ , and  $(M^{*}N)^{*} = (MN)^{*} = (MN^{*})^{*}$ .

Proof. Since  $N^{-1}M^{-1} \subseteq (MN)^{-1}$ , we have  $(N^{-1}M^{-1})^* \subseteq ((MN)^{-1})^* = (MN)^{-1}$ . On the other hand,  $x \in (MN)^{-1}$  implies that  $MNx \subseteq A$ , and so  $Nx \subseteq M^{-1}$ . Then  $N^{-1}Nx \subseteq N^{-1}M^{-1}$ , hence  $x \in (N^{-1}M^{-1})^*$ , because of  $N^{-1}N \in T(C)$ . Thus  $(MN)^{-1} = (N^{-1}M^{-1})^*$ . Using this,  $(MN)^* = ((N^{-1}M^{-1})^*)^{-1} = (N^{-1}M^{-1})^{-1}$ . As  $(M^*)^{-1} = M^{-1}$ , we have  $(M^*N)^* = (N^{-1}M^{-1})^{-1} = (MN)^*$ . Similarly  $(MN^*)^* = (N^{-1}M^{-1})^{-1} = (MN)^*$ .

If  ${}_{A}M_{B} \in F(Q)$  and  $M^{*} = M$ , we call M a reflexive A-B-submodule of Q. By  $F^{*}(Q; A, B)$  (abbr.  $F^{*}(A, B)$ ) we denote the set of all reflexive A-B-submodules of Q, and we put  $F^{*}(Q) = \bigcup_{A,B} F^{*}(Q; A, B)$ , where A, B run through all subrings of Q. By  $F_{i}(Q; A)$  (abbr.  $F_{i}(A)$ ) we denote  $\{M \in F(Q; A, A): M \subseteq A\}$ , and we denote  $F_{i}(Q; A) \cap F^{*}(Q; A, A)$  by  $F_{i}^{*}(Q; A)$  (abbr.  $F_{i}^{*}(A)$ ). If  $I \in$   $F_i(A)$  (resp.  $I \in F_i^*(A)$ ) we call I an *integral ideal* (resp. *reflexive ideal*) of A. Let  ${}_AM_B, {}_BN_C \in F^*(Q)$ . We define  $M \circ N$  by  $(MN)^*$ . Then, from Proposition 1.2 and Proposition 1.4, we have the following.

**Theorem 1.5.** The set of all reflexive submodules of Q,  $F^*(Q)$  is a Brandt groupoid. The set of identities of  $F^*(Q)$  is the set of all subrings of Q.

Let A, B be subrings of Q, and  ${}_{A}M_{B}$  an A-B-submodule of Q. If there are B-A-submodules M', M'' of Q such that MM'=A and M''M=B, we call M an invertible A-B-submodule of Q. Then it is easily seen that  ${}_{A}M_{B} \in F^{*}(Q; A, B)$  and  $M^{-1}=M'=M''$ . Here we note the following

**Proposition 1.6.** Let  ${}_{A}M_{B}$ ,  ${}_{B}N_{C} \in F^{*}(Q)$ . If  ${}_{A}M_{B}$  or  ${}_{B}N_{C}$  is an invertible submodule then  $M \circ N = MN$ .

Proof. We first assume that  ${}_{B}N_{c}$  is invertible. If  $xMN \subseteq C$  then  $xM \subseteq N^{-1}$ , so  $NxM \subseteq NN^{-1} = B$ . Therefore  $Nx \subseteq M^{-1}$ , and so  $x \in N^{-1}M^{-1}$ . Thus  $(MN)^{-1} = N^{-1}M^{-1}$ . Similarly  $(MN)^{-1} = N^{-1}M^{-1}$ , when  ${}_{A}M_{B}$  is invertible. Hence  $M \circ N = (N^{-1}M^{-1})^{-1} = M^*N^* = MN$ , when  ${}_{A}M_{B}$  or  ${}_{B}N_{C}$  is invertible (cf. Proposition 1.4).

REMARK. Let  ${}_{A}M_{B}$  be invertible in Q. Then  $Q \otimes_{A}M \xrightarrow{\rightarrow} Q, q \otimes m \mapsto qm (q \in Q, m \in M)$  (, and symmetrically  $M \otimes_{B}Q \xrightarrow{\rightarrow} Q$ ). In fact, if  $1 = \sum_{i} m'_{i}m_{i} (m'_{i} \in M^{-1}, m_{i} \in M)$  then the inverse of the homomorphism  $Q \otimes_{A}M \rightarrow Q$  is given by the map  $q \mapsto \sum_{i} qm'_{i} \otimes m_{i} (q \in Q)$ . As is well known, M is an invertible A-B-bimodule, that is,  $M_{B}$  is finitely generated, projective, and a generator, and  $A \xrightarrow{\rightarrow} \text{End}_{B}(M)$  by the map induced by  ${}_{A}M$  (cf. [3]).

Let A, B be subrings of Q. If there exists an A-B-submodule  $M \in F^*(Q; A, B)$  we write  $A \sim B$  (in Q). Then "~" is an equivalence relation on the subrings of Q.

If  $O_I(I)=O_r(I)=A$  holds for any ideal I of A such that both  $_AI$  and  $I_A$  are faithful, we say that A is maxmial in Q.

**Proposition 1.7.** For any subring A of Q, the following conditions are equivalent:

(1) A is maximal in Q.

(2)  ${}_{A}I_{A} \in F(Q; A, A)$  for every ideal I of A such that both  ${}_{A}I$  and  $I_{A}$  are faithful.

Proof. The implication  $(2) \Rightarrow (1)$  is trivial, and  $(1) \Rightarrow (2)$  follows from Proposition 1.1 (3).

**Proposition 1.8.** Let  ${}_{A}U_{B} \in F^{*}(Q; A, B)$ .

- (i) If A is maximal in Q then so is B.
- (ii) There is a group isomorphism  $F^*(Q; A, A) \xrightarrow{\sim} F^*(Q; B, B), M \mapsto (U^{-1}MU)^*$

 $= U^{-1} \circ M \circ U \ (M \in F^*(Q; A, A)).$ (iii) If A is a prime ring then so is B.

Proof. (i) Let I' be an ideal of B such that  ${}_{B}I'$ ,  $I'_{B}$  are faithful. Put  $I = UI'U^{-1}$ . It is easy to see that both  ${}_{A}I$  and  $I_{A}$  are faithful. Therefore, by assumption,  $O_{l}(I) = O_{r}(I) = A$ . It  $xI' \subseteq I'$  then  $UxU^{-1}I = UxU^{-1}UI'U^{-1} \subseteq UxI'U^{-1} \subseteq UII'U^{-1} = I$ , and so  $UxU^{-1} \subseteq O_{l}(I) = A$ . Then  $xU^{-1} \subseteq U^{-1}$ , so  $xU^{-1}U \subseteq U^{-1}U$ . Hence  $x \in B$ . Thus  $O_{l}(I') = R$ . Similarly  $O_{r}(I') = B$ . Hence B is maximal in Q. (ii) This follows from Theorem 1.5. (iii) Let I, J be ideals of B, and assume that IJ = 0. Then  $UIU^{-1} \cdot UJU^{-1} = 0$ , and so  $UIU^{-1} = 0$  or  $UJU^{-1} = 0$ . If  $UIU^{-1} = 0$  then UI = 0, so I = 0. Hence B is a prime ring.

**Proposition 1.9.** Let A, B be subrings of Q such that  $A \sim B$  in Q, and assume that A is a prime ring and is maximal in Q. Let M be an A-B-submodule of Q. Assume that there are elements u, v of Q such that  $0 \neq uM \subseteq B$  and  $0 \neq Mv \subseteq A$ . Then  ${}_{A}M_{B} \in F(Q; A, B)$ .

Proof. By Proposition 1.8, B is a prime ring, and is maximal in Q. Since BuM and MvA are non-zero ideals of B and A respectively, we have  $O_r(M)=B$  and  $O_l(M)=A$ . Since  $M^{-1} \ni u, v, M^{-1}M$  and  $MM^{-1}$  are non-zero ideals of B and A, respectively. Then, by Proposition 1.1 (3),  $M \in F(Q; A, B)$ .

Now we define a Krull subring of Q. A subring A of Q is said to be a *Krull subring* of Q if A is maximal in Q and the ascending chain condition on reflexive ideals of A holds. The following proposition follows from Proposition 1.8.

**Proposition 1.10.** Let A, B be subrings of Q such that  $A \sim B$  in Q. If A is a Krull subring of Q then so is B.

Let A be any subring of Q. Let  $P \in F_i^*(Q; A)$ , and let  $P \neq A$ . Then P is said to be *irreducible* if  $P = I_1 \circ I_2(I_1, I_2 \in F_i^*(Q; A))$  implies that  $P = I_1$  or  $P = I_2$ , and P is said to be *maximal* if  $P \subseteq I' \in F_i^*(Q; A)$  implies that I' = A. Assume that P is maximal in  $F_i^*(Q; A)$ , and let  $P = I_1 \circ I_2$ . Then  $P = (I_1I_2)^* \subseteq I_i^* = I_i$ (i=1,2), hence  $P = I_i$  or  $I_i = A$ . Therefore P is irreducible. Conversely, if P is irreducible then P is maximal. Thus "maximal" and "irreducble" are equivalent.

Assume that A is maximal in Q, and let P be irreducible in  $F_i^*(Q; A)$ . If  $IJ \subseteq P$  for some ideals I, J of A then  $(I+P)(J+P) \subseteq P$ . If  $I \not \equiv P$  and  $J \not \equiv P$  then  $I+P, J+P \in T(Q; A)$  by Proposition 1.7, so that  $(I+P)(J+P) \in T(Q; A)$ . Then have a contradiction  $P \in T(Q, A)$ . Hence P is a prime ideal. Conversely if  $P \in F_i^*(Q; A)$  is a (proper) prime ideal then P is irreducible. Therefore, as is well known, if P, P' are irreducible in  $F_i^*(A)$  then  $P \circ P' = P' \circ P$ . Then, in the usual way, we have the following.

**Proposition 1.11.** Let A be a Krull subring of Q. Then any irreducible re-

flexive ideal of A is a prime ideal, and  $F_i^*(Q; A)$  is commutative. Any element of  $F_i^*(Q; A)$  is uniquely represented as a product of irreducible elements of  $F_i^*(Q; A)$ .

**Proposition 1.12.** Let A be a Krull subring of Q, and let  ${}_{A}M_{B} \in F(Q; A, B)$ . Assume that A is a prime ring. Then any non-zero A-B-submodule of M belongs to F(Q; A, B), and there are elements  $x_{1}, \dots, x_{r}$  of M such that  $M^{*} = (\sum_{i=1,\dots,r} Ax_{i}B)^{*}$ .

Proof. By Proposition 1.8, B is a prime ring and is maximal in Q. Let  $M_0$  be a non-zero A-B-submodule of M. Then, since  $M^{-1}M_0$  and  $M_0M^{-1}$  are non-zero ideals of B and A respectively, we have  $M_0 \in F(Q; A, B)$ , by virtue of Proposition 1.9. Now let  $0 \neq x_1 \in M$ . Then  $Ax_1B \in F(Q; A, B)$ , and  $(Ax_1B)^* \subseteq M^*$ . If  $(Ax_1B)^* \subseteq M^*$  then there is an element  $x_2 \in M$  with  $x_2 \notin (Ax_1B)^*$ . If  $(Ax_1B)^* \subseteq M^*$ , then  $(Ax_1B + Ax_2B)^* \subseteq (Ax_1B + Ax_2B)^*$  for some  $x_3 \in M$ . Continueing this process we obtain  $x_1, \dots, x_r \in M$  such that  $M^* = (\sum_i Ax_iB)^*$ , because ACC holds on  $\{N \in F^*(Q; A, B): N \subseteq M^*\}$ . (In fact,  $N \subseteq M^*$  means  $N \circ (M^*)^{-1} \subseteq A$ , and conversely.)

**Proposition 1.13.** Let Q' be any overring of Q, and A a prime subring of Q. Assume that, for any non-zero ideal I of A, IQ=QI=Q holds. Then T(Q; A)=T(Q'; A), and  $F(Q; A, A)=\{M\in F(Q'; A, A): M\subseteq Q, MQ=QM$  $=Q\}$ . Therefore  $F_i(Q; A)=F_i(Q'; A)$ , and  $F_i^*(Q; A)=F_i^*(Q'; A)$ .

Proof. Evidently  $T(Q; A) \supseteq T(Q'; A)$ . Let  $I \in T(Q; A)$ , and let  $Ix \subseteq A$  $(x \in Q')$ . Then  $Qx = QIx \subseteq QA = Q$ , so  $x \in Q$ . Hence  $x \in A$ . Similarly  $yI \subseteq A(y \in Q')$  implies that  $y \in A$ . Thus  $I \in T(Q'; A)$ . Let  $M \in F(Q; A, A)$ , and put  $M' = \{x \in Q: MxM \subseteq M\}$ . Then MM',  $M'M \in T(Q; A) = T(Q'; A)$ . Then, by Proposition 1.1 (1), we have  $M \in F(Q'; A, A)$ . Furthermore,  $Q \supseteq MQ \supseteq MM'Q = Q$ , and so MQ = Q. Similarly QM = Q. Conversely, let  $N \in F(Q'; A, A)$ ,  $N \subseteq Q$ , and NQ = QN = Q. If  $zN \subseteq A(z \in Q')$  then  $zQ = zNQ \subseteq AQ = Q$ , and so  $z \in Q$ . Hence  $N \in F(Q; A, A)$ . The remainder is obvious.

**Corollary.** Assume the same assumptions as in Proposition 1.13. If A is maximal in Q (resp. a Krull subring of Q) then A is maximal in Q' (resp. a Krull subring of Q'), and conversely.

Proof. This follows from Proposition 1.7 and Proposition 1.13.

Let A be a subring of Q. By S(Q; A) (abbr. S(A)) we denote  $\cup I^{-1}$ , where I runs through reflexive ideals of A. Evidently S(Q; A) is a subring containing A. We call S(Q; A) the Asano overring of A in Q.

**Proposition 1.14.** Let A be a prime Krull subring of Q. Assume that  $I \cdot S(Q; A) = S(Q; A)I = S(Q; A)$  for any non-zero ideal I of A. Then any irreducible reflexive ideal of A is a (non-zero) minimal prime ideal of A, and con-

versely (cf. [11]).

Proof. Let  $P \in F_i^*(Q; A)$  be irreducible. Then P is a prime ideal. If there exists a non-zero prime ideal P' of A such that  $P' \exists P$ . Then  $(P'P^{-1})P \subseteq$ P' implies that  $P'P^{-1} \subseteq P'$ . Then we have a contradiction  $P^{-1} \subseteq A$ . Hence Pis minimal in the set of all non-zero prime ideals of A. Conversely, let P be a minimal prime ideal. Since  $P \cdot S(Q; A) = S(Q; A) \equiv 1$ , there are reflexive ideals  $I_1, \dots, I_r$  of A such that  $I_1 \dots I_r \subseteq P$ . Then  $I_i \subseteq P$  for some i. Hence some irreducible component P'' of  $I_i$  is contained in P. Then, by the minimality of P, we have P'' = P. This completes the proof.

Note that, in the above case, A is a Krull subring of S(Q; A), and S(Q; A) is a left and right Utumi's quotient ring of A.

**Proposition 1.15.** Let A be a prime subring of Q, and assume that A is maximal in Q. Let M be a non-zero left A-submodule of Q. Put  $O_r(M)=B$  and  $M'=\{x\in Q: Mx\subseteq A\}$ .

- ( $\alpha$ ) If  $M'M \in T(B)$  then  $M \in F(Q; A, B)$ .
- $(\beta)$  Assume that M satisfies the following conditions:
- (i)  $xM' \neq 0$  for any non-zero  $x \in M$ .
- (ii)  $M_B$  is faithful.
- (iii)  $\{y \in Q: yM' \subseteq A\} = M.$

Then  $M \in F^*(Q; A, B)$  (, and conversely). (Cf. [6].)

Proof. ( $\alpha$ ) As  $M'M \in T(B)$ , we have  $MM'M \neq 0$ , so  $MM' \neq 0$ . Hence  $MM' \in F_i(Q; A)$ , and so  $O_i(M) = A$ . Therefore  $M' = M^{-1}$ . If  $MM'x \subseteq A$  then  $M'x \subseteq M'$ , so  $MM'x \subseteq MM'$ . Hence  $x \in A$ . If  $yMM' \subseteq A$ , then  $MM'yMM' \subseteq MM'$ , and so  $MM'y \subseteq A$ . Hence  $y \in A$ . Thus  $MM' \in T(A)$ . Hence  $M \in F(Q; A, B)$ . ( $\beta$ ) Since MM' is a non-zero ideal of A, we have  $MM' \in F_i(A)$ , and  $M' = M^{-1}$ . If  $xM' \subseteq M'$  then  $MxM' \subseteq MM' \subseteq A$ , hence  $Mx \subseteq M$  by (iii). Therefore  $x \in B$ . If xM' = 0 then  $x \in M$ , hence x = 0 by (i). Thus  $O_i(M') = B$ , and  $_BM'$  is faithful. Therefore (4) of Proposition 1.1 holds. Hence  $M \in F^*$  (Q; A, B), by (iii).

## 2. A positively filtered ring over a Krull order

Let R be a subring of a ring Q. If R, Q satisfy the following conditions we call R a *Krull order* of Q.

- (i) R is a Krull subring of Q.
- (ii) Q is a left and right quotient ring of R.
- (iii) IQ=QI=Q for any non-zero ideal I of R.

REMARK. If R is a prime Goldie ring, and Q is the maximal quotient ring of R then (ii), (iii) hold. Evidently every two-sided simple ring is a Krull order of itself.

Let R be a Krull order of Q. Let M be a non-zero R-R-submodule of Q. Then  $M \cap R \neq 0$ , and so  $Q(M \cap R) = Q = (M \cap R)Q$ . Therefore QM = Q = MQ. Hence Q is a simple R-Q-module as well as a simple Q-R-module. In particular, Q is a two-sided simple ring. Let  $M \in F(Q; R, R)$ . Then  $QM = Q \ni 1$ , so that  $I \subseteq M$  for some dense left ideal I of R. Then  $IR \subseteq M$ , and so  $0 \neq IR \cdot M^{-1} \subseteq R$ . Put  $IR \cdot M^{-1} = J$ . Then  $R \supseteq IR \cdot M^{-1}M = JM$ , hence  $M \subseteq J^{-1}$ . Since  $(IR)^* \circ M^{-1} = J^*$  we have  $M^* = (IR)^* \circ J^{-1}$ . Conversely, let N be a non-zero R-R-submodule of Q such that  $N \subseteq J_1^{-1}$  for some non-zero ideal  $J_1$  of R. Then, by Proposition 1.12,  $N \in F(Q; R, R)$ . Summing up, we have

**Proposition 2.1.** Let R be a Krull order of Q.

(i) Both  $_{Q}Q_{R}$  and  $_{R}Q_{Q}$  are simple.

(ii) For a non-zero R-R-snbmodule N of Q,  $N \in F(Q; R, R)$  if and only if  $N \subseteq I^{-1}$  for some non-zero ideal I of R.

(iii)  $F^*(Q; R, R) = \{I \circ J^{-1}: I, J \in F^*(Q; R)\}$ , which is an abelian group.

For any ring A we denote by  $Q_I(A)$  (resp.  $Q_r(A)$ ) the left (resp. right) maximal quotient ring of A. Further we put  $Q(A) = Q_I(A) \cap Q_r(A)$ , more precisely,  $Q(A) = \{x \in Q_r(A); Iv \subseteq A \text{ for some dense left ideal } I\}$ . By Corollary of Proposition 1.13, if R is a Krull order of Q, then R is a Krull order of Q(R) ( $\supseteq Q$ ).

In the remainder of this paper we assume the followings: R is a Krull order of Q. X is Q-Q-module containing Q, as a Q-Q-submodule, and such that X/Q is an invertible Q-Q-module. Y is an R-R-submodule of X containing R, such that Y/R is an invertible R-R-module, and such that  $X=Q\otimes_R Y=Y$  $\otimes_R Q$ .  $Q\langle X \rangle$  is an overring of Q satisfying the following conditions:

(i)  $Q\langle X \rangle \supseteq X$  as a Q-Q-submodule, and  $Q\langle X \rangle = \bigcup_{i \ge 0} X^i$ , where  $X^0 = Q$ .

(ii) For any integer  $i \ge 1$ , the canonical map

$$(X/Q) \otimes_{\mathcal{Q}} \cdots \otimes_{\mathcal{Q}} (X/Q)$$
 (*i*-times)  $\rightarrow X^{i}/X^{i-1}$ ,

 $(x_1+Q)\otimes\cdots\otimes(x_i+Q)\mapsto x_1\cdots x_i+X^{i-1}$  is an isomorphism (cf. [13]).

and  $(\bigotimes_R(Y/R)) \bigotimes_R Q \cong \bigotimes_Q (X/Q)$  as *R*-Q-modules, where  $\bigotimes_R (Y/R) = (Y/R) \bigotimes_R \cdots \bigotimes_R (Y/R)$  (*i*-times). For any  $i \ge 1$ , the following diagram is commutative:

$$\begin{array}{ccc} i & \beta & i \\ \otimes_{R}(Y/R) & \longrightarrow & \otimes_{Q}(X/Q) \\ \alpha & & \downarrow \approx \\ Y^{i}/Y^{i-1} & \longrightarrow & X^{i}/X^{i-1} \end{array}$$

40

i Since  $_{R} \otimes_{R} (Y/R)$  is projective, the canonical map  $\bigotimes_{R} (Y/R) \to Q \otimes_{R} (\bigotimes_{R} (Y/R))$  $\stackrel{i}{(\Rightarrow \otimes_{Q} (X/Q))}$  is a monomorphism, so that  $\alpha$  is an isomorphism. Therefore  $\delta$  is a monomorphism, that is,  $Y^{i} \cap X^{i-1} = Y^{i-1}$ . In particular,  $Y \cap Q = R$ . Using the diagram

by induction on *i*, we can prove that each  $\mathcal{E}_i$  is an isomorphism. Therefore  $Q \otimes_R R \langle Y \rangle = Q \langle X \rangle$ , and symmetrically  $R \langle Y \rangle \otimes_R Q = Q \langle X \rangle$ . We put  $\overline{Q} = Q \langle X \rangle$  and  $\overline{R} = R \langle Y \rangle$ .

REMARK. Let Q=Q(R), and let Y be an R-R-module containing R, as an R-R-submodule, and such that Y/R is an invertible R-R-module. Then, X,  $Q\langle X\rangle$ , and  $R\langle Y\rangle$  as above exist, and those are uniquely determined by  $Y\supseteq R$ . The proof is given in §4, in the case when  $Y/R_R \supset R_R$ .

First we prove the following

**Theorem 2.2.** If R is a Krull order then  $R\langle Y \rangle$  is also a Krull order.

We need many lemmas.

**Lemma 2.3.** For any integer  $i \ge 1$ , there is a one to one correspondence from the set of all R-R-submodules of Q to the set of all R-R-submodules of  $X^i/X^{i-1}$ , such that  $M \mapsto (MY^i + X^{i-1})/X^{i-1}$ .

Proof. This follows from [12; Proposition 3.3 and its proof].

**Corollary 1.** For any integer  $i \ge 1$ ,  $X^i/X^{i-1}$  is a simple Q-R-module as well as a simple R-Q-module.

Proof. This follows from the fact that  ${}_{Q}Q_{R}$ ,  ${}_{R}Q_{Q}$  are simple.

**Corollary 2.** For any integer  $i \ge 1$ , there is a one to one correspondence  $M \mapsto M'$  from the set of all R-R-submodules of Q to itself, which is defined by  $M'Y^i + X^{i-1} = Y^i M + X^{i-1}$ . (Note that this map is multiplicative.)

**Lemma 2.4.** Let M be an R-Q-submodule of  $X'(r \ge 1)$  such that  $X^{r-1} \oplus M = X'$ . Then  $QM \subseteq M$ .

Proof. Any y in QM is written as a sum  $y=y_1+y_2(y_1\in X^{r-1}, y_2\in M)$ , and  $Iy\subseteq M$  for some dense left ideal I of R. Then, for any  $a\in I$ ,  $ay_1=ay-ay_2\in X^{r-1}\cap M=\{0\}$ . Hence  $Iy_1=0$ . Since  ${}_{Q}X^{r-1}$  is projective, we have  $y_1=0$ . Thus

 $y=y_2\in M$ .

### **Lemma 2.5.** Let A be an R- $\overline{Q}$ -submodule of $\overline{Q}$ . Then $QA \subseteq A$ .

Proof. We may assume that  $0 \neq A \neq \overline{Q}$ . Then, since  ${}_{R}Q_{Q}$  is simple, we have  $Q \cap A = 0$ . Therefore there exists an integer r such that  $X^{r-1} \cap A = 0$  and  $X' \cap A \neq 0$ . Since  $X'/X^{r-1}$  is a simple R-Q-module, we have  $X^{r-1} \oplus (X' \cap A) = X'$ , hence  $\overline{Q} = X^{r-1} \oplus ((X' \cap A) \otimes_{Q} \overline{Q})$  by [13; Corollary 1 of Proposition 1]. Then  $A = A \cap \overline{Q} = X^{r-1} \cap A + (X' \cap A) \otimes_{Q} \overline{Q} = (X' \cap A) \otimes_{Q} \overline{Q}$ . By Lemma 2.4,  $Q(X' \cap A) \subseteq X' \cap A$ , and so  $QA \subseteq A$ .

**Corollary.** If A is an ideal of  $\overline{R}$  then QA = AQ (, so that QA is an ideal of  $\overline{Q}$ ).

Proof. Noting that  $\overline{Q} = Q\overline{R} = \overline{R}Q$ , AQ is an  $R-\overline{Q}$ -submodule. Hence  $QA \subseteq AQ$ . Symmetrically we obtain  $AQ \subseteq QA$ .

The following is well known, but we give its proof for completeness.

**Lemma 2.6.** Let B be a ring, and I an ideal of B. Then the following conditions are equivalent:

- (1) I is an invertible B-B-module.
- (2) I is invertible in Q(B).

Proof. The implication  $(2) \Rightarrow (1)$  is well known.  $(1) \Rightarrow (2)$  Put  $\{a \in Q_r(B): aI \subseteq B\} = I'$ . Then, since I is a dense right ideal,  $I' \supseteq Hom(I_B, B_B)$  canonically (cf. [16]). Since  $I_B$  is a generator, we have I'I = B. Since  $I_B$  is finitely generated and projective, we have II' = B, Then, since I is a dense left ideal,  $I' \subseteq Q_I(B)$ , and so  $I' \subseteq Q(B)$ . Thus I is invertible in Q(B).

**Lemma 2.7.** Every non-zero ideal of  $\overline{Q}$  is invertible. (Cf. [14; Examples].)

Proof. Let A be any non-zero ideal of  $\overline{Q}$ . We may assume that  $A \pm \overline{Q}$ . Then there is an integer  $r \ge 1$  such that  $X^{r-1} \cap A = 0$  and  $X' \cap A \pm 0$ . Put  $M = X' \cap A$ . Then, as in the proof of Lemma 2.5,  $X^{r-1} \oplus M = X'$ , and  $A = M \otimes_Q \overline{Q} = \overline{Q} \otimes_Q M$ . Since  $M \simeq X'/X^{r-1}$ , M is an invertible Q-Q-module. Then it is easily seen that  $\overline{Q} \simeq \text{End}(A_{\overline{Q}})$  by the map induced by  $\overline{Q}A$ , so that  $\overline{Q}A_{\overline{Q}}$  is invertible, because  $A_{\overline{Q}} = M \otimes_Q \overline{Q}_{\overline{Q}}$  is finitely generated, projective, and a generator (cf. [12; Lemma 3.1]).

If every non-zero ideal of a ring B is invertible, B is said to be an Asano order. Noting Lemma 1.6, an Asano order is a Krull order. A Krull order R is an Asano order if and only if  $T(Q(R); R) = \{R\}$ .

**Lemma 2.8.** (i)  $S(\bar{R}) \subseteq S(\bar{Q}) \subseteq Q(\bar{R}) = Q(\bar{Q})$ . (ii) For any non-zero ideal A of  $\bar{R}$ ,  $A \cdot S(\bar{Q}) = S(\bar{Q})A = S(\bar{Q})$ . Therefore  $\bar{R}$  is a prime ring.

Proof. Since  $_{Q}\overline{Q}$  is projective,  $\{x \in \overline{Q}: Ix=0\} = 0$  for any dense left

ideal I of R. Then, as  $Q\bar{R}=\bar{Q}$ , we have  $\bar{Q}\subseteq Q_l(\bar{R})$ . Symmetrically  $\bar{Q}\subseteq Q_r(\bar{R})$ , and hence  $\bar{Q}\subseteq Q(\bar{R})$ . Thus  $Q(\bar{R})=Q(\bar{Q})$ . Since AQ(=AQ) is a non-zero ideal of  $\bar{Q}$ , we have  $S(\bar{Q})A=S(\bar{Q})QA=S(\bar{Q})$ . Similarly  $A \cdot S(\bar{Q})=S(\bar{Q})$ . Therefore  $\bar{R}$  is a prime ring, and  $A^{-1}\subseteq S(\bar{Q})$ . Hence  $S(\bar{R})\subseteq S(\bar{Q})$ .

In virtue of Propositions 1.13 and 2.8, the notations T(R),  $F_i(R)$ ,  $F_i^*(R)$ ,  $T(\bar{R})$ ,  $F_i(\bar{R})$ , and  $F_i^*(\bar{R})$  do not produce ambiguity.

By  $\rho_i$  we denote the correspondence  $M \mapsto M'$  given in Corollary 2 of Lemma 2.3. Then  $\rho_i(M)Y^i + X^{i-1} = Y^iM + X^{i-1}$ , and if  $M \subseteq R$  then  $\rho_i(M)Y^i + Y^{i-1} = Y^iM + Y^{i-1}$ , because of  $X^{i-1} \cap Y^i = Y^{i-1}$ . Further, note that  $\rho_i(M') = \rho_i(M'M'')$  for any M', M''. Put  $\rho_1 = \rho$ . Then it is easy to verify that  $\rho_i = \rho^i$  for all  $i \ge 1$ .

For any *R*-*R*-submodule *M* of  $Q(\bar{R})$ , we put  $M^* = \{x \in Q(\bar{R}) : xI \subseteq M \text{ for some } I \in T(R)\}$ . Note that  $R^* = R$  and  $\bar{Q}^* = \bar{Q}$ .

**Lemma 2.9.** (i)  $\rho(T(R)) = T(R)$ . (ii) For any R-R-submodule M of Q,  $\rho(M^*) = (\rho(M))^*$  holds. Therefore  $\rho(F_i^*(R)) = F_i^*(R)$ .

Proof. (i) For any ideal I of R and any  $x \in Q$ ,  $I \cdot RxR \subseteq R$  (or  $RxR \cdot I \subseteq R$ ) if and only if  $\rho(I)\rho(RxR) \subseteq R$  (or  $\rho(RxR)\rho(I)\subseteq R$ ), because of  $\rho(R)=R$ . Therefore we obtain (i). (ii) If  $x \in M^*$  then  $xI \subseteq M$  for some  $I \in T(R)$ . Then  $\rho(RxR)$  $\rho(I) \subseteq \rho(M)$ , and so  $\rho(RxR) \subseteq \rho(M)^*$  by (i). Thus  $\rho(M^*) \subseteq (\rho(M))^*$ . Similarly  $\rho^{-1}(M^*) \subseteq (\rho^{-1}(M))^*$ . Then  $\rho^{-1}((\rho(M))^*) \subseteq M^*$ , whence  $(\rho(M))^* \subseteq \rho(M^*)$ .

**Lemma 2.10.**  $\overline{R}$  is maximal in  $Q(\overline{R})$ .

Proof. Let A be any non-zero ideal of  $\overline{R}$ , and let  $yA \subseteq A(y \in Q(\overline{R}))$ . Then  $yAQ \in AQ$ , and so  $y \in \overline{Q}$ , because AQ is an invertible ideal of  $\overline{Q}$ . Put W = $\{x \in \overline{Q}: xA \subseteq A\}$ . Then W is an  $\overline{R} \cdot \overline{R}$ -submodule containing  $\overline{R}$ . For any  $i \ge 0$ , there exists a unique R-R-submodule  $W_i$  of Q such that  $(W \cap X^i) + X^{i-1}$  $=W_iY^i+X^{i-1}$ , by Lemma 2.3. Similarly, for A,  $(A \cap X^i)+X^{i-1}=A_iY^i+$  $X^{i-1}$ , where  $A_i$  is an *R*-*R*-submodule of *Q*. Since  $W \supseteq \overline{R}$ , we have  $W \cap X^i$  $\supseteq Y^i$ , and so  $W_i \supseteq R$ . Since  $A \subseteq \overline{R}$ , we have  $A \cap X^i = A \cap Y^i$ , and so  $A_i \subseteq R$ . It is easy to verify that  $W_j \cdot \rho^j(A_i) Y^{i+j} \subseteq A_{i+j} Y^{i+j} + X^{i+j-1}$  for all  $i, j \ge 0$ . Therefore  $W_j \cdot \rho^j(A_i) \subseteq A_{i+j}$  for all  $i, j \ge 0$ . Noting that  $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ , we put  $I = \bigcup_{i \ge 0} A_i$ . Then I is a non-zero ideal of R, and  $W_i \rho^j(I) \subseteq I$  for all  $j \ge 0$ . By Lemma 2.9,  $\rho^{i}(I^{*}) = (\rho^{i}(I))^{*}$ , and so  $W_{i} \cdot \rho^{i}(I^{*}) \subseteq I^{*}$ . By Lemma 2.9 (ii), the number of irreducible components of  $\rho^{i}(I^{*})$  is equal to the one of  $I^{*}$ . As  $R \subseteq W_j$ , we have  $\rho^j(I^*) \subseteq I^*$ , hence  $\rho^j(I^*) = I^*$ . Thereby  $W_i \subseteq R$ , and so  $W \cap X^{j} \subseteq Y^{j} + X^{i-1}$ . Noting that  $W \supseteq \overline{R}$ , we obtain  $W \cap X^{j} = Y^{j} + W \cap X^{j-1}$ for all  $j \ge 0$ . Now  $W \cap Q = W_0 \subseteq R$ , hence  $W \cap X^j \subseteq Y^j$  for all  $j \ge 0$ . Thus  $W \subseteq \overline{R}$ , as requered. Similarly  $Ax \subseteq A$  implies that  $x \in \overline{R}$ .

**Lemma 2.11.** For any  $i \ge 1$ ,  $(Y^i)^* = Y^i$ , and  $\bar{R}^* = \bar{R}$ .

Proof. Let f be any right R-homomorphism from  $\overline{R}$  to R. Extend f to a right Q-homomorphism  $\overline{f}$  from  $\overline{Q} = \overline{R} \otimes_R Q$  to Q. If  $y \in \overline{R}^*$  then  $yI \subseteq \overline{R}$  for some  $I \in T(R)$ , and so  $y \in \overline{Q}$ . Then  $\overline{f}(y)I \subseteq R$ , and so  $\overline{f}(y) \in R$  for any f. If  $(f_{\lambda}, u_{\lambda})$  ( $\lambda \in \Lambda$ ) is a projective coordinate system for  $\overline{R}_R$ , then so is  $(f_{\lambda}, u_{\lambda})$  ( $\lambda \subset \Lambda$ ) for  $\overline{Q}_Q$ . Therefore  $y = \sum_{\lambda} u_{\lambda} \overline{f}_{\lambda}(y) \in \overline{R}$ . Hence  $\overline{R}^* = \overline{R}$ . If  $x \in (Y^i)^*$  then  $xJ \subseteq Y^i$  for some  $J \in T(R)$ . Then, as JQ = Q, we have  $x \in X^i$ . Hence  $x \in X^i \cap \overline{R}^* = X^i \cap \overline{R} = Y^i$ .

**Lemma 2.12.** Let A be any reflexive  $\overline{R}$ - $\overline{R}$ -submodule of  $Q(\overline{R})$ . Then  $A^* = A$ .

Proof. If  $xI \subseteq A$  for some  $I \in T(R)$ , then  $A^{-1}xI \subseteq A^{-1}A \subseteq \overline{R}$ . Using Lemma 2.11,  $A^{-1}x \subseteq \overline{R}$ . Therefore  $x \in (A^{-1})^{-1} = A$ .

**Lemma 2.13.** Let A be any non-zero  $\overline{R}$ -R-submodule of  $\overline{R}$ . Then there exists a finitely generated  $\overline{R}$ -R-submodule  $A_0$  of A such that  $A \subseteq \bigcup_{j \ge 0} \beta^j(A_0)$ , where  $\beta(M) = M^*$  for any R-R-submodule M of  $Q(\overline{R})$ .

Proof. For any  $i \ge 0$ ,  $Y^i/Y^{i-1}$  is an invertible *R*-*R*-bimodule. Therefore there exists a unique ideal  $A_i$  of R such that  $(A \cap Y^i) + Y^{i-1} = Y^i A_i + Y^{i-1}$ . In particular,  $A \cap R = A_0$ . Since  $Y(A \cap Y') \subseteq A \cap Y'^{i+1}$ , we have an ascending chain  $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ . If  $A_i = 0$  then  $A \cap Y^i \subseteq Y^{i-1}$ , and so  $A_k \neq 0$  for some k. Then  $A_k^* \subseteq A_{k+1}^* \subseteq \cdots$ , which are reflexive ideals of R. Therefore, for some integer  $m \ge k, A_m^* = A_{m+1}^* = \cdots$ . By Proposition 1.12,  $A_m^* = (\sum_{j=1,\dots,l} Rz_j R)^*$  for some  $z_1, \dots, z_t \in A_m$ . Noting that  ${}_RY^m$  is finitely generated, we have that  $\sum_{i} Y^{m} z_{i} R \subseteq \sum_{i} Rb_{i} R + Y^{m-1}$  for some  $b_{1}, \dots, b_{s} \in A \cap Y^{m}$ . Let  $n \ge m$ . Then  $A \cap Y^{n} \subseteq Y^{n}A_{n}^{*} + Y^{n-1} = Y^{n}A_{m}^{*} + Y^{n-1} \subseteq Y^{n-m}(\sum_{i}Y^{m}z_{i}R)^{*} + Y^{n-1}$ . Therefore, if  $a \in A \cap Y^n$  then  $aJ \subseteq Y^{n-m}(\sum_j Y^m z_j R) + Y^{n-1}$  for some  $J \in T(R)$ , and so  $aJ \subseteq I$  $\sum_i Y^{n-m} b_i R + Y^{n-1}$ . Then  $a J \subseteq \sum_i Y^{n-m} b_i R + A \cap Y^{n-1}$ . Thus  $A \cap Y^n \subseteq (\sum_i Y^{n-m} b_i R + A \cap Y^{n-1})$ .  $b_i R + A \cap Y^{n-1}$  for any  $n \ge m$ . By induction we obtain  $A \cap Y^n \subseteq \beta^{n-m+1}$  $(\sum_{i} Y^{n-m} b_i R + A \cap Y^{m-1})$   $(n \ge m)$ . However, from the above proof, this holds whenever  $A_m \neq 0$  and  $A_n^* = \cdots = A_n^*$ . Therefore, for any  $n \ge 0$  with  $A_n \neq 0$ ,  $A \cap Y^n \subseteq (\sum_i Rc_i R + A \cap Y^{n-1})^*$  for some  $c_1, \dots, c_n \in A \cap Y^n$ . On the other hand, if  $A_n=0$  then  $0=A_0=\cdots=A_n$ , and so  $A\cap Y^n=0$ . Hence there exists a finitely generated R-R-submodule W of  $A \cap Y^{m-1}$  such that  $A \cap Y^{m-1} \subseteq \beta^m(W)$ . Then, for any  $n \ge m$ ,  $A \cap Y^n \subseteq \beta^{n-m+1}(\sum_i Y^{n-m}b_iR + \beta^m(W)) \subseteq \beta^{n+1}(\sum_i Y^{n-m}b_iR + W)$ . This completes the proof.

Now we can complete the proof of Theorem 2.2 with the following

**Lemma 2.14.** The ascending chain condition on reflexive ideals of  $\overline{R}$  holds.

Proof. Let  $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$  be an ascending chain of reflexive ideals of  $\overline{R}$ . Put  $A = \bigcup_i A_i$ . Then, by Lemma 2.13,  $A \subseteq \bigcup_{j \ge 0} \beta^j(A')$  for some finitely generated  $\overline{R}$ -R-submodule A' of A. Then  $A' \subseteq A_i$  for some *i*. By Lemma

44

2.12,  $\beta(A_i) = A_i$ , and so  $\beta^j(A') \subseteq A_i$  for all j. Hence  $A = A_i$ . Next we proceed to the proof of the following

**Theorem 2.15.** For any non-zero ideal A of  $Q\langle X \rangle$ ,  $A \cap R\langle Y \rangle$  is a reflexive ideal of  $R\langle Y \rangle$ .

Lemma 2.16. The following conditions are equivalent.

- (1) For any non-zero ideal A of  $\overline{Q}$ ,  $A \cap \overline{R}$  is a reflexive ideal of  $\overline{R}$ .
- (2) For any  $B \in T(\overline{R})$ ,  $QB = \overline{Q}$  holds.
- (3) For any non-zero ideal C of  $\overline{R}$ ,  $(QC)^{-1}=C^{-1}Q=QC^{-1}$  holds.

Proof. (1) $\Rightarrow$ (2) If  $QB \subseteq \overline{Q}$  then  $B \subseteq QB \cap \overline{R} \subseteq \overline{R}$ , and  $QB \cap \overline{R}$  is a reflexive ideal, a contradiction. (2) $\Rightarrow$ (3) From CQ = QC, we have  $C^{-1}CQC^{-1} = C^{-1}QCC^{-1}$ . Then, by assumption,  $QC^{-1} = C^{-1}Q$ . Hence  $(QC)^{-1} = C^{-1}Q = QC^{-1}$ . (3) $\Rightarrow$ (1) Let  $C \in T(\overline{R})$ . Then  $QC = \overline{Q}$ , because of  $C^{-1} = \overline{R}$ , Now, put  $A \cap \overline{R} = A'$ . If  $Cx \subseteq A'(x \in \overline{R})$ , then  $\overline{Q}x = QCx \subseteq A$ , and so  $x \in A \cap \overline{R} = A'$ . Similarly  $yC \subseteq A'$  implies that  $y \in A'$ . Hence A' is a reflexive ideal, by Proposition 1.3.

REMARK 1. The condition (2) is equivalent to that  $B \cap R \neq 0$  for any  $B \in T(\overline{R})$ .

REMARK 2. If C is an ideal of  $\overline{R}$  such that  $C \cap R \in T(R)$ , then  $C \in T(\overline{R})$ . In fact, if  $xC \in \overline{R}$  then  $x(C \cap R) \subseteq \overline{R}$ , and so  $x \in \overline{R}$ , by Lemma 2.11.

**Lemma 2.17.** For any  $I \in F(Q; R, R)$ ,  $(\bar{R}I^{-1})^* = \bar{R}I^{-1}$  holds.

Proof. The proof is similar to the one of Lemma 2.11.

Let M be a monic Q-Q-submodule of degree n (i.e.  $X^{n-1} \oplus M = X^n$ ). Then, by [13; Corollary 1 of Proposition 1],  $X^{n+m} = X^{n-1} \oplus (X^m \otimes_Q M)$  for any  $m \ge 0$ . Therefore  $X^m \otimes_Q M \rightrightarrows X^{n+m}/X^{n-1}$  as Q-Q-bimodules, canonically. Since  $Y^{n+m} \cap X^{n-1} = Y^{n-1}$ ,  $Y^{n+m}/Y^{n-1}$  is canonically embedded in  $X^{n+m}/X^{n-1}$ , and  $Q \otimes_R (Y^{n+m}/Y^{n-1}) \rightrightarrows X^{n+m}/X^{n-1}$ . Hence there exists a unique R-R-submodule  $V_m$  of  $X^m \otimes_Q M$  such that the following diagram is commutative:



Namely,  $V_m + X^{n-1} = Y^{n+m} + X^{n-1}$ . Then  $Q \otimes_R V_m = X^m \otimes_Q M$ , and  $V_m = X^m M \cap (Y^{n+m} + X^{n-1})$ . Therefore  $V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots$ , where  $V_0 = M \cap (Y^n + X^{n-1})$ . By [13; Corollary 1 of Proposition 1],  $\bar{Q} = X^{n-1} \oplus (\bar{Q} \otimes_Q M)$ . Put  $A = \bar{Q} \otimes_Q M$ . Then  $A \cap (\bar{R} + X^{n-1}) = \bigcup_i V_i$ , and  $A = \bigcup_{m \ge 0} (X^m \otimes_Q M) = \bigcup_{m \ge 0} (Q \otimes_R V_m) = Q \otimes_R V$ , where  $V = \bigcup_i V_i$ . By Lemma 2.13,  $A \cap \bar{R} \subseteq \bigcup_{j \ge 0} \beta^j(A')$  for some finitely

generated  $\overline{R}$ -*R*-submodule A' of  $A \cap \overline{R}$ . However, by virtue of Lemma 2.11,  $\beta(A \cap \overline{R}) = A \cap \overline{R}$ , whence  $A \cap \overline{R} = \bigcup_{j \ge 0} \beta^j(A')$ . As  $_{\overline{R}}A'_R$  is finitely generated,  $A' \subseteq \overline{R}V_s$  for some *s*. Now we assume that *M* is invertible in  $Q(\overline{R})$ . Then, since  $V_0$  is an invertible *R*-*R*-module and  $Q \otimes_{\overline{R}} V_0 = M = V_0 \otimes_{\overline{R}} Q$ , we know that  $_{\overline{R}}V_{0R}$  is invertible in  $Q(\overline{R})$ . In this situation, we need the following

# **Lemma 2.18.** For any R-R-submodule W of $\overline{Q}$ , $W^*V_0^{-1} = (WV_0^{-1})^*$ holds.

Proof. By virtue of Proposition 1.2, there is a one to one mapping  $I \mapsto V_0^{-1}IV_0$  from T(R) onto itself. Let x be in  $W^*V_0^{-1}$ . Then  $xV_0 \subseteq W^*$ . Since  $V_{0R}$  is finitely generated,  $xV_0I \subseteq W$  for some  $I \in T(R)$ . Then  $xV_0IV_0^{-1} \subseteq WV_0^{-1}$ , and so  $x \in (WV_0^{-1})^*$ . Similarly we can prove that  $(WV_0^{-1})^* \subseteq W^*V_0^{-1}$ ,

We still assume that M is a monic Q-Q-submodule which is invertible in  $Q(\bar{R})$ , and notations are the same as before. Since  $V_s \subseteq A = \bar{Q}M = \bar{Q}V_0$ , we have  $V_s V_0^{-1} \subseteq \bar{Q}$ . Since both  $_R V_s$  and  $_R V_0^{-1}$  are finitely generated,  $_R V_s V_0^{-1}$  is also finitely generated, and so  $V_s V_0^{-1} I \subseteq \bar{R}$  for some non-zero ideal I of R, because of  $\bar{Q} = \bar{R}Q$ . Then, as  $A' \subseteq \bar{R}V_s$ , we have  $A'V_0^{-1}I \subseteq \bar{R}$ , and so  $A'V_0^{-1}II^{-1} \subseteq \bar{R}I^{-1}$ . Then, by Lemma 2.18 and 2.17,  $\beta^j(A')V_0^{-1} = \beta^j(A'V_0^{-1}) \subseteq \bar{R}I^{-1}$  for all  $j \ge 0$ . Hence, as  $A \cap \bar{R} = \bigcup_{j \ge 0} \beta^j(A')$ , we obtain  $(A \cap \bar{R})V_0^{-1}I \subseteq \bar{R}$ . Put  $N = \{x \in Q(\bar{R}): (A \cap \bar{R})x \subseteq \bar{R}\}$  and  $N' = \{y \in Q(\bar{R}): Ay \subseteq \bar{Q}\}$ . Evidently  $N' = V_0^{-1}\bar{Q}$ , and  $V_0^{-1}I \subseteq N$  implies that  $N' \subseteq N\bar{Q}$ . Next, let us prove that  $N\bar{Q} \subseteq N'$ . Since  $_RV_0$  is finitely generated, there exists a non-zero ideal I' such that  $V_0I' \subseteq \bar{R}$ . Then  $V_0I' = I''V_0$  for some non-zero ideal I'' of R, for  $_RV_{0R}$  is invertible. Therefore  $A = \bar{Q}V_0 = \bar{Q}I''V_0 = \bar{Q}V_0I' \subseteq \bar{Q}(A \cap \bar{R})$ , whence  $A = \bar{Q}(A \cap \bar{R})$ . Hence  $N \subseteq N'$ . Thus  $N' = N\bar{Q}$ . Finally,  $zN \subseteq \bar{R}$  implies  $zN' = zN\bar{Q} \subseteq \bar{Q}$ , and so  $z \in \bar{Q}V_0 = A$ . Since  $\bar{R} \subseteq N$ , we have  $z \in \bar{R}$ . Hence  $z \in A \cap \bar{R}$ . Therefore a left  $\bar{R}$ -submodule  $A \cap \bar{R}$  satisfies ( $\beta$ ) of Proposition 1.15. Thus we have the following

**Proposition 2.19.** Let M be a monic Q-Q-submodule which is invertible in  $Q(\overline{R})$ . Put  $A = \overline{Q}M$ ,  $A^{-1} = \{x \in Q(\overline{R}): Ax \subseteq \overline{Q}\}$ , and  $(A \cap \overline{R})^{-1} = \{x \in Q(\overline{R}): (A \cap \overline{R})x \subseteq \overline{R}\}$ . Then  $A = Q(A \cap \overline{R})$ , and  $A^{-1} = (A \cap \overline{R})^{-1}\overline{Q}$ . Further,  $A \cap \overline{R} \in F^*(Q(\overline{R}); \overline{R}, B)$ , where  $B = O_r(A \cap \overline{R})$ .

Evidently Theorem 2.15 follows from Proposition 2.16, Proposition 2.19 above and Lemma 20 below. (Cf. the proof of Lemma 2.7).

**Lemma 2.20.** Let A be any non-zero ideal of  $\overline{Q}$ . Then  $A = \overline{Q}M = M\overline{Q}$  for some monic Q-Q-submodule M. Such a M is uniquely determined by A, and is invertible in  $S(\overline{Q})$ .

Proof. The first half follows from the proof of Lemma 2.7. Since  $A = M \otimes_Q \overline{Q}$ , any right Q-homomorphism from M to Q can be extended to a right  $\overline{Q}$ -homomorphism from A to  $\overline{Q}$ . Since A is invertible, this is given by a left multiplication of an element of  $A^{-1}$ . Therefore if we put  $M' = \{x \in A^{-1}:$ 

 $xM \subseteq Q$ }, then M'M = Q, because  $M_Q$  is a generator. Symmetrically MM'' = Q for some Q-Q-submodule M'' of  $A^{-1}$ . Hence M is invertible in  $S(\overline{Q})$ . Let N be any monic Q-Q-submodule with  $A = \overline{Q}N$ . Let deg N = r. Then  $\overline{Q} = X^{r-1} \oplus A$ , and  $N = A \cap X'$ , by [13; Corollary 1 of Proposition 1]. Hence N is uniquely determined by A.

In all that follows we denote  $F^*(Q(\overline{Q}); \overline{Q}, \overline{Q})$ ,  $F(Q(\overline{Q}); \overline{Q}, \overline{Q})$ ,  $F^*(Q(\overline{R}); \overline{R}, \overline{R})$ , and  $F(Q(\overline{R}), \overline{R}, \overline{R})$  by  $F^*\{\overline{Q}\}, F^*\{\overline{Q}\}, F^*\{\overline{R}\}$ , and  $F\{\overline{R}\}$ , respectively. Similarly we denote  $F^*(Q; R, R)$  and F(Q; R, R) by  $F^*\{R\}$  and  $F\{R\}$ , respectively (cf. Proposition 1.13).

Let  $M \in F\{\overline{R}\}$ . Then  $MI \subseteq \overline{R}$  for some  $I \subset F_i(\overline{R})$ , by Proposition 2.1. Using Corollary of Lemma 2.5, QMI=MIQ=MQI, and so QMQ=MQ, for QI is invertible. Symmetrically QMQ=QM, whence MQ=QM. Let  $x \in$  $Q(M^{-1})^{-1}$ . Then  $xC \subseteq QM$  for some  $C \in T(\overline{R})$ . Since  $CQ = \overline{Q}$ , we have  $x \in Q$ . QMQ = MQ. Thus  $QM = Q(M^{-1})^{-1}$ . Therefore a group homomorphism  $\psi$  from  $F^*\{\overline{R}\}$  to  $F^*\{\overline{Q}\}$  is well defined by  $\psi(M)=QM$ . Let A, B be non-zero ideals of  $\overline{Q}$ . Then  $AB \cap \overline{R} \supseteq (A \cap \overline{R}) \circ (B \cap \overline{R})$ . Since  $AB \cap \overline{R} \subseteq AB \cap \overline{R}$ .  $B \cap \overline{R}$ , we have  $(AB \cap \overline{R}) (B \cap \overline{R})^{-1} \subseteq \overline{R}$ . By Proposition 2.19,  $B^{-1} \supseteq (B \cap \overline{R})^{-1}$ . and so  $(AB \cap \overline{R}) (B \cap \overline{R})^{-1} \subseteq A \cap \overline{R}$ . Therefore  $AB \cap \overline{R} \subseteq (A \cap \overline{R}) \circ (B \cap \overline{R})$ . Hence  $AB \cap \overline{R} = (A \cap \overline{R}) \circ (B \cap \overline{R})$ . Then a group homomorphism  $\phi$  from  $F^*\{\overline{Q}\}$  to  $F^*\{\overline{R}\}$  is well defined by  $\phi(AB^{-1}) = (A \cap \overline{R}) \circ (B \cap \overline{R})^{-1}$ . Because of Proposition 2.19,  $\psi \phi = id$ . Hence  $F^*\{\overline{R}\} \cong \operatorname{Im} \phi \times \operatorname{Ker} \psi$ , and  $F^*\{\overline{Q}\} \cong \operatorname{Im} \phi$ . Let I, J be in  $F_i^*(\overline{R})$ . If  $IQ \subseteq JQ$  then  $1 \in \overline{Q} \subseteq I^{-1}JQ$ , and so  $G \subseteq I^{-1}J$  for some  $G \in F_i(R)$ . Then  $(\overline{R}G\overline{R})^* \subseteq I^{-1} \circ I$ . Therefore  $I^{-1} \circ I \in \text{Ker } \psi$  if and only if  $(\overline{R}G\overline{R})^* \subseteq I^{-1} \circ I \subseteq ((\overline{R}F\overline{R})^*)^{-1}$  for some  $F, G \in F_i(R)$ . In particular,  $I \in \text{Ker}$  $\psi$  if and only if  $J \cap R \neq 0$ . In this case,  $J \cap R \in F_i^*(R)$ , by Lemma 2.12. Let  $P' \in F_i^*(\bar{Q})$  be irreducible. Then, by Corollary of Lemma 2.5,  $P' \cap \bar{R}$  is a prime ideal, so that  $P' \cap \overline{R}$  is irreducible in  $F_i^*(\overline{R})$ , and  $Q(P' \cap \overline{R}) = P'$  by Proposition 2.19. Conversely, if  $P \in F_i^*(\overline{R})$  is irreducible and  $QP \neq \overline{Q}$  then, by the maximality of P in  $F_i^*(\overline{R})$ , we have  $QP \cap \overline{R} = P$ , and QP is maximal. Let  $I \in F_i^*(\bar{R})$ , and  $I = P_1 \circ \cdots \circ P_r$ , where each  $P_i$  is irreducible in  $F_i^*(\bar{R})$ . Then  $Q I \cap \overline{R} = (QP_1 \cap \overline{R}) \circ \cdots \circ (QP_r \cap \overline{R})$ , and each  $QP_i \cap \overline{R}$  is either  $P_i$  or  $\overline{R}$ . Let I', I'' be in  $F_i^*(\overline{R})$ . Then,  $I' \circ I''^{-1} \in \operatorname{Ker} \psi \Leftrightarrow QI' = QI'' \Leftrightarrow QI' \cap \overline{R} = QI'' \cap \overline{R}$ . Therefore Ker  $\psi = ||(P)|$ , where P ranges over all irreducible reflexive ideals P such that  $P \cap R \neq 0$  (or equivalently,  $QP = \overline{Q}$ ), and (P) denotes the infinite cyclic group generated by P.

**Lemma 2.21.** (i) Let  $I \in F\{R\}$ , and assume that  $I\overline{R} = \overline{R}I$ . Then  $\overline{R}I \in F\{\overline{R}\}$ ,  $(\overline{R}I)^{-1} = \overline{R}I^{-1} = I^{-1}\overline{R}$ , and  $\overline{R}I \cap X^i = IY^i = Y^iI$  for all  $i \ge 0$ . Therefore,  $I \in F^*\{R\}$  then  $\overline{R}I \in F^*\{\overline{R}\}$ .

(ii) Let  $J \in F_i^*(R)$  be irreducible, and asume that JY = YJ. Then, if  $aRb \subseteq \overline{R}J$   $(a, b \in \overline{R})$  then  $a \in \overline{R}J$  or  $b \in \overline{R}J$ . Therefore  $\overline{R}J$  is irreducible in  $F_i^*(\overline{R})$ .

Proof. (i) Since  $0 \neq \overline{R}I \cdot I^{-1}\overline{R} \subseteq \overline{R}$  and  $0 \neq \overline{R}I^{-1} \cdot I\overline{R}$ , we have  $\overline{R}I \in F\{\overline{R}\}$ , by Proposition 1.9. Let  $x \in (I\overline{R})^{-1}$ . Then  $xI \subseteq \overline{R}$ , and so  $xII^{-1} \subseteq \overline{R}I^{-1}$ . By Lemma 2.17,  $x \in \overline{R}I^{-1}$ . Hence  $(I\overline{R})^{-1} = \overline{R}I^{-1}$ , and symmetrically  $(\overline{R}I)^{-1} = I^{-1}\overline{R}$ . Since  $Y^{i+1}/Y_R^i$  is projective,  $Y^{i+1} = Y^i \oplus W$  for some right *R*-submodule *W* of  $Y^{i+1}$ . Then  $\overline{R} = Y^i \oplus (W \otimes_R \overline{R})$ , by [13; Proposition 1]. Then  $\overline{Q} = \overline{R} \otimes_R Q = (Y^i \otimes_R Q)$  $\oplus (W \otimes_R \overline{R} \otimes_R Q) = X^i \oplus (W \otimes_R \overline{Q})$ , and  $\overline{R}I = Y^iI \oplus W\overline{R}I$ . Hence  $X^i \cap \overline{R}I = Y^iI$ , and symmetrically  $X^i \cap I\overline{R} = IY^i$ . (ii) By (i),  $J\overline{R} \in F_i^*(\overline{R})$ . Let *B*, *C* be *R*-*R*-submodules of  $\overline{R}$  such that  $BC \subseteq J\overline{R}$ . Then, as  $(B+J\overline{R})(C+J\overline{R}) \subseteq J\overline{R}$ , we may assume that  $B, C \supseteq J\overline{R}$ . For any integer  $i \ge 1$ , there are ideals  $B_i, C_i$  of *R* such that  $(B \cap Y^i) + Y^{i-1} = B_iY^i + Y^{i-1}, (C \cap Y^i) + Y^{i-1} = C_iY^i + Y^{i-1}$ , because each  $Y^i/Y^{i-1}$  is an invertible *R*-*R*-bimodule. Then, as  $J\overline{R} \cap Y^{i+j} = JY^{i+j}$ , we have  $B_j \cdot \rho^j(C_i) \subseteq J$  for all *i*, where  $\rho$  is the one as before. Now, assume that  $B \supseteq J\overline{R}$ . Then  $B_j \subseteq J$  for some *j*, so that  $\rho^j(C_i) \subseteq J$ . Then  $C_i \subseteq \rho^{-j}(J) = J$  for all *i*. Noting that  $C_0 = C \cap R \subseteq J$ , this implies that  $C \subseteq J\overline{R}$ . This completes the proof.

Here we consider the following condition.

(#) For any  $I \in F_i^*(Q; R)$ , IY = YI.

**Lemma 2.22.** Assume that the condition ( $\sharp$ ) holds. Let  $P \in F_i^*(\overline{R})$ . Then P is an irreducible ideal such that  $P \cap R \neq 0$  if and only if  $P = I\overline{R}$  for some irreducible reflexive ideal I of R.

Proof. The "if" part follows from Lemma 2.21. Conversely, let  $P \in F_i^*(\bar{R})$  be irreducible, and let  $P \cap R \neq 0$ . Then  $P \cap R \in F_i^*(R)$ . If  $IJ \subseteq P \cap R$  for some  $I, J \in F_i(R)$ , then  $I^*J^* \subseteq P \cap R$ , because of  $P \cap R \in F_i^*(R)$ . Then  $I^*\bar{R} \cdot J^*\bar{R} \subseteq P$ , whence  $I^* \subseteq P$  or  $J^* \subseteq P$ , because P is a prime ideal. Hence  $P \cap R$  is a prime ideal of R. Then, by Lemma 2.21,  $(P \cap R)\bar{R}$  is irreducible. Hence  $(P \cap R)\bar{R} = P$ .

Assume that the condition ( $\sharp$ ) holds. Let I, J be in  $F^*\{R\}$ . Then  $(\bar{R}I) \circ (\bar{R}J) = ((\bar{R}I \cdot \bar{R}J)^{-1})^{-1} = ((\bar{R}IJ)^{-1})^{-1} = \bar{R}(I \circ J)$ , by Lemma 2.21. Therefore the mapping  $\theta: I \mapsto \bar{R}I$  is a homomorphism from  $F^*\{R\}$  to Ker  $\psi$ . Evidently  $I \subseteq \bar{R}I \cap Q$ . Let  $I = F \circ G^{-1}(F, G \in F_i^*(R))$ . Then  $(\bar{R}I \cap Q)G \subseteq \bar{R}F \cap Q = \bar{R}F \cap R = F$ , because  $R_R$  is a direct summand of  $\bar{R}_R$ . Therefore  $(\bar{R}I \cap Q)GG^{-1} \subseteq FG^{-1}$ , and so  $\bar{R}I \cap Q \subseteq F \circ G^{-1} = I$ . Hence  $I = \bar{R}I \cap Q$ . On the other hand, all irreducible  $P \in F_i^*(\bar{R})$  with  $P \cap R \neq 0$  generate Ker  $\psi$ . Therefore, by Lemma 2.22,  $\theta$  is an isomorphism from  $F^*\{R\}$  to Ker  $\psi$ . Thus we obtain the following

**Theorem 2.23.** Assume that the condition ( $\sharp$ ) holds. Then  $\theta$ :  $F^*\{R\} \cong$ Ker  $\psi$ ,  $I \mapsto \overline{R}I$ , as groups. Further,  $\overline{R}I \cap Q = I$  for all  $I \in F^*\{R\}$ .

**Proposition 2.24.** Assume that the condition  $(\sharp)$  holds. If  $I \cdot S(R) = S(R)I = S(R)$  for all  $I \in F_i(R)$ , then  $A \cdot S(\overline{R}) = S(\overline{R})A = S(\overline{R})$  for all  $A \in F_i(\overline{R})$ . (Cf.

Proposition 1.14.)

Proof. From ( $\sharp$ ), it follows that  $S(R) \subseteq S(\bar{R})$ . Let  $A \in F_i(\bar{R})$ . Then  $AA^{-1} \cap R \neq 0$ , because of Lemma 2.16. Therefore  $S(R) \subseteq AA^{-1}S(R) \subseteq A \cdot S(\bar{R})$ , hence  $A \cdot S(\bar{R}) = S(\bar{R})$ . Symmetrically  $S(\bar{R})A = S(\bar{R})$ .

3. In this section, we study further on reflexive *R*-*R*-submodules of  $Q(\bar{R})$ . For any additive submodules *V*, *W* of  $Q(\bar{R})$ , we put  $(V \cdot W) = \{x \in Q(\bar{R}): xW \subseteq V\}$ , and  $(W \cdot V) = \{x \in Q(\bar{R}): Wx \subseteq V\}$ .

**Proposition 3.1.** (i) If  $N \in F(Q(\overline{R}); R, R)$  and  $N \subseteq \overline{R}$ , then QN = NQ. (ii) Let  $N \in F(Q(\overline{R}); R, R)$ , and assume that QN = NQ. Then QN is an invertible Q-Q-submodule of  $Q(\overline{R})$ ,  $(QN)^{-1} = QN^{-1} = N^{-1}Q$ ,  $QN^* = N^*Q$ , and  $\overline{R}N^* = (\overline{R}N)^*$ . Furthermore,  $(\overline{R}N \cdot R) = N^{-1}\overline{R}$ , and  $(\overline{R} \cdot N^{-1}\overline{R}) = \overline{R}N^*$ .

(iii) Let M be a Q-Q-submodule of Q, and assume that M is invertible in  $Q(\bar{R})$ . Then  $M \cap \bar{R} \in F^*(Q(\bar{R}); R, R)$ , and  $Q(M \cap \bar{R}) = M = (M \cap \bar{R})Q$ . Further there is an invertible R-R-submodule  $V_0$  of  $Q(\bar{R})$  such that  $V_0^{-1}(M \cap \bar{R}), (M \cap \bar{R})V_0^{-1} \in F^*\{R\}$  and  $QV_0 = M = V_0Q$ .

Proof. (i) First we prove that  $_QQN_R$  is simple. Let U be any non-zero Q-R-submodule of QN. Then  $Q=QNN^{-1}\supseteq UN^{-1}\neq 0$ , and so  $Q=UN^{-1}$ , because  ${}_{Q}Q_{R}$  is simple. Then  $QN = UN^{-1}N \subseteq U$ , whence U = QN. Thus  $_{Q}QN_{R}$  is simple. Then there is an integer  $n \ge 0$  such that  $QN \cap X^{n-1} = 0$  and  $QN \cap X^n \neq 0$ . By making use of Corollary 1 of Lemma 2.3, we have  $X^{n-1} \oplus$  $QN = X^n$ . Then, by Lemma 2.4,  $QN \supseteq NQ$ . Symmetrically  $QN \subseteq NQ$ , whence QN=NQ, as desired. (ii) QN=NQ yields  $N^{-1}Q=N^{-1}QNN^{-1}=N^{-1}$  $NQN^{-1}=QN^{-1}$ , and so  $N^{-1}Q=QN^{-1}$ . Therefore  $_{Q}QN_{Q}$  is invertible in  $Q(\bar{R})$ , and  $(QN)^{-1} = N^{-1}Q = QN^{-1}$ . Hence  $QN = ((QN)^{-1})^{-1} = N^*Q = QN^*$ . Now,  $\bar{R} \otimes$  $_{R}QN = \overline{R} \otimes_{R}Q \otimes_{Q}QN = \overline{Q} \otimes_{Q}QN \cong \overline{Q} \cdot QN = \overline{R}QN$  (cf. Remark to Proposition 1.6), and therefore any right R-homomorphism f from  $ar{R}$  to R can be extended to a right Q-homomorphism f from  $\overline{R}QN$  to QN. Then, for any  $x \in (\overline{R}N)^*$ , we can see that  $f(x) \in N^*$ , whence it follows that  $x \in \overline{R}N^*$ , because  $\overline{R}_R$  is projective. (Cf. the proof of Lemma 2.11.) Since  $\overline{R}N^* \subseteq (\overline{R}N)^*$  is evident we have  $\overline{R}N^* =$  $(\bar{R}N)^*$ . Symmetrically,  $J_Y \subseteq N\bar{R}$  ( $J \in T(R)$ ) implies that  $y \in N^*\bar{R}$ . Let  $\bar{R}Nz$  $\subseteq \overline{R}$ . Then  $N^{-1}Nz \subseteq N^{-1}\overline{R}$ , and so  $z \in N^{-1}\overline{R}$ , because of  $N^{-1} = (N^{-1})^*$ . If  $uN^{-1}\overline{R}\subseteq\overline{R}$  then  $uN^{-1}N\subseteq\overline{R}N$ , whence  $u\in(\overline{R}N)^*=\overline{R}N^*$ . This completes the proof of (ii). (iii) Since  ${}_{Q}Q_{Q}$  is simple, an invertible Q-Q-module M is also simple. Then, as in the proof of (i),  $X^{n-1} \oplus M = X^n$  for some  $n \ge 0$ . Then  $M \simeq X^n/X^{n-1}$ , canonically. Let  $V_0$  be as in Lemma 2.18. Then  $M = Q \otimes_R V_0$  $=V_0\otimes_R Q$ , and  $_RV_{0R}$  is invertible in  $Q(\bar{R})$ . Put  $N=M\cap \bar{R}$ . Then  $N\neq 0$ , for  $\bar{R}_{R}$  is essential  $\bar{Q}_{R}$ . Put  $I = \{x \in Q: V_{0}x \subseteq N\}$ . Then  $N = V_{0} \otimes_{R} I$ , because  $V_{0}$ is invertible. Since  $V_{0R}$  is finitely generated,  $JV_0 \subseteq \overline{R}$  for some non-zero ideal J of R. Put Hom  $(\overline{R}_R, R_R)(JV_0) = J'$ . Then, since  $\overline{R}_R$  is projective, J' is a

non-zero ideal of R. Noting that  $\overline{R} \otimes_R Q = \overline{Q}$ , we have  $J'I \subseteq R$ . Therefore, by Proposition 2.1,  $I \in F\{R\}$ . If  $zI' \subseteq I(z \in Q, I' \in T(R))$  then  $V_0 zI' \subseteq V_0 I = N$ , and so  $V_0 z \subseteq M \cap \overline{R} = N$ , that is,  $z \in I$ . Thus  $I \in F^*\{R\}$ , and hence  $N = V_0 I = V_0 \circ I = F^*(Q(\overline{R}); R, R)$ . Further,  $NQ = V_0 I Q = V_0 Q = M$ . Likewise QN = M. It is evident that  $I = V_0^{-1}N$ . Symmetrically  $NV_0^{-1} \in F^*\{R\}$ .

Let  $N' \in F^*(Q(\overline{R}); R, R)$ , and assume that  $N' \subseteq \overline{R}$ . Put  $QN' \cap \overline{R} = N$ . Then  $N \in F^*(Q(\overline{R}); R, R)$ . Therefore if we put  $J = N' \circ N^{-1}$ , then  $J \in F_i^*(R)$ , and  $N' = J \circ N$ . Evidently  $QN \cap \overline{R} = N$ . Further, as in (iii) above,  $N = IV_0$ , where  $I \in F^*\{R\}$ . Therefore  $N' = (J \circ I)V_0$ , where  $J \circ I \in F^*\{R\}$ , and  $V_0$  is an invertible *R*-*R*-submodule of  $Q(\overline{R})$  with  $V_0Q = QV_0 = QN'$ .

**Proposition 3.2.** Let  $U \in F(Q(\overline{R}); R, R)$ , and suppose that  $\overline{R}U = U\overline{R}$  and QU = UQ.

(i)  $\bar{R}U \in F(Q(\bar{R}); \bar{R}, \bar{R}), (\bar{R}U)^{-1} = \bar{R}U^{-1} = U^{-1}\bar{R}, \text{ and } QU^{-1} = U^{-1}Q.$ Therefore  $((\bar{R}U)^{-1})^{-1} = \bar{R}U^* = U^*\bar{R}, \text{ and } QU^* = U^*Q.$ 

(ii) QU is written as a product  $QU=M_2M_1^{-1}$  with monic Q-Q-submodules  $M_i$  such that  $\bar{Q}M_i=M_i\bar{Q}$  (i=1,2).

(iii)  $U^*Y = YU^*$ .

Proof. (i), (ii) Put M=QU. Then, by assumption,  $\bar{Q}M=M\bar{Q}$ . By Proposition 3.1,  $U^{-1}Q = QU^{-1} = M^{-1}$ , and hence  $\bar{Q}M \in F^*\{\bar{Q}\}$ , because of  $\bar{Q}M^{-1} = M^{-1}\bar{Q} = (\bar{Q}M)^{-1}$ . Therefore  $\bar{Q}M = (\bar{Q}M_2)^{-1}(\bar{Q}M_1)$  for some monic Q-Q-submodules  $M_i$  such that  $\bar{Q}M_i = M_i\bar{Q}$  (i=1, 2), by Lemma 2.20. Since  $(\bar{Q}M_2)^{-1} = \bar{Q}M_2^{-1} = M_2^{-1}\bar{Q}$ , we have  $\bar{Q}M = \bar{Q}M_2^{-1}M_1$  and so  $\bar{Q}M_2^{-1}M_1M^{-1} = \bar{Q}$ . Then  $M_2^{-1}M_1M^{-1}$  is a monic Q-Q-submodule, and so  $M_2^{-1}M_1M^{-1}=Q$ , by [13; Corollary 1 of Proposition 1]. Hence  $M = M_2^{-1}M_1$ . As  $\overline{R}U = U\overline{R}$ , we have  $U^{-1}\overline{R}UU^{-1}=U^{-1}U\overline{R}U^{-1}$ , whence  $U^{-1}\overline{R}=\overline{R}U^{-1}$  by Proposition 3.1 (ii). Since  $UU^{-1} \in T(R)$ , it follows from Remark 2 of Lemma 2.16 that  $RU \cdot U^{-1} \overline{R} \in T(\overline{R})$ . Similarly  $\overline{R}U^{-1} \cdot U\overline{R} \in T(\overline{R})$ . Hence  $\overline{R}U \in F\{\overline{R}\}$ . The remainder follows from Proposition 3.1 (ii). (iii) By (i), we may assume that  $U=U^*$ . Since  $\bar{Q}M_i = M_i\bar{Q}$ , it follows from [13; Corollary 1 of Proposition 1] that  $XM_i = X^{n_i+1}$  $\cap \overline{Q}M_i = X^{n_i+1} \cap M_i \overline{Q} = M_i X$ , where  $n_i = \deg M_i$  (i=1,2). Then, as  $M = M_i = \log M_i$  $M_2^{-1}M_1$ , we have XM = MX. Since  $U^{-1} \subseteq M^{-1}$ ,  $UYU^{-1} \subseteq MXM^{-1} = X$ , and so  $UYU^{-1} \subseteq X \cap \overline{R} = Y$ . Then  $UYU^{-1}U \subseteq YU$ . Now,  $XM = X \otimes_{Q} M = Y \otimes_{R} M$ , so that any right R-homomorphism from Y to R can be extended to a right Q-homomorphism form XM to M. Then, since  $Y_R$  is projective, we have  $(YU)^* = YU$ . Therefore  $UY \subseteq YU$ , and symmetrically  $YU \subseteq UY$ . Thus YU=UY. (Cf. the proof of Lemma 2.11.)

**Theorem 3.3.** Assume that the condition ( $\sharp$ ) holds. Let M be a monic Q-Q-submodule of  $Q \langle X \rangle$  such that  $Q \langle X \rangle M = MQ \langle X \rangle$ , and let  $N = M \cap R \langle Y \rangle$ . Then M is invertible in  $S(Q \langle X \rangle)$ ,  $N \in F^*(Q(\overline{R}); R, R)$ , M = QN = NQ, and  $Q \langle X \rangle M \cap R \langle Y \rangle = R \langle Y \rangle N = NR \langle Y \rangle$ .

Proof. By Lemma 2.20 and Proposition 3.1, M is invertible in  $S(\overline{Q})$ , M=QN=NQ, and  $N\in F^*(Q(\bar{R}); R, R)$ . Put  $A=\bar{Q}M\cap \bar{R}$  and  $\bar{R}N=B$ . Then  $A \supseteq B$ , and  $QB = BQ = \bar{Q}M = QA = AQ$ . By Proposition 2.16 and Theorem 2.15,  $(QA)^{-1} = QA^{-1} = A^{-1}Q$ . Therefore  $QA^{-1}B = QA^{-1} \cdot QB = (QA)^{-1}QA$  $=\bar{Q}$ , hence  $I \subseteq A^{-1}B$  for some  $I \in F_i(R)$ . Then  $AI \subseteq B$ , so  $AI^* \subseteq B^* = B$  by Proposition 3.1. Therefore if we put  $I = \{x \in R: Ax \subseteq B\}$  then  $I = I^*$ . Assume that  $I \neq R$ . Then  $I \subseteq P$  for some irreducible  $P \in F_i^*(R)$ . Put  $B' = (B^* \cdot \overline{R})$ . Then, by Proposition 3.1 (ii),  $B' = N^{-1}\overline{R}$ , and  $BB'AI \subseteq AI \subseteq \overline{R}P$ . Now AI.  $\overline{RB'} = AIB' \subseteq \overline{BB'} \subseteq \overline{R}$ , and so  $\overline{RB'} \subseteq (AI)^{-1}$ . Then, by Proposition 1.11,  $\overline{RB'} \in F\{\overline{R}\}$ , and so  $\overline{RB'} \cdot AI \subseteq \overline{R}$  by virtue of the commutativity of  $F^*\{\overline{R}\}$ . Then, by Lemma 2.21 (ii),  $B \subseteq \overline{RP}$  or  $B'AI \subseteq \overline{RP}$ . However, if  $B \subseteq \overline{RP}$  then  $NP^{-1} \subseteq \overline{R} \cap M = N$ , so  $P^{-1} \subseteq R$ , a contradiction. On the other hand, if  $B'AI \subseteq R$  $\overline{RP}$  then  $\overline{RB'AIP^{-1}} \subseteq \overline{R}$ , and so  $\overline{RB'} \cdot A \cdot \overline{R}(I \circ P^{-1}) \subseteq \overline{R}$ . Therefore  $A \cdot \overline{R}(I \circ P^{-1}) \cdot \overline{R}$ .  $\overline{R}B' \subseteq \overline{R}$ , hence  $A(I \circ P^{-1}) \subseteq (\overline{R} \cdot B') = B$  by Propositions 3.1 and 3.2. This is a contradiction. Thus I=R. Hence A=B, that is,  $\bar{Q}M \cap \bar{R}=\bar{R}(M \cap \bar{R})$ . Symmetrically  $M\bar{Q} \cap \bar{R} = (M \cap \bar{R})\bar{R}$ . This complete the proof.

**Theorem 3.4.** Assume that the condition ( $\sharp$ ) holds. If every reflexive ideal of R is invertible then so is  $R \langle Y \rangle$ .

Proof. Let A be any reflexive ideal of  $\overline{R}$ . Then A can be written as  $A = (I\overline{R}) \circ (B \cap \overline{R})$ , where  $I \in F_i^*(R)$ , and B = QA = AQ (cf. Theorem 2.23). By assumption,  $I\overline{R}$  is invertible. On the other hand,  $B = \overline{Q}M = M\overline{Q}$  for some monic Q-Q-submodule M, by Lemma 2.20. Put  $M \cap \overline{R} = N$ . Then  $B \cap \overline{R} = \overline{R}N = N\overline{R}$  by Theorem 3.3. By Proposition 3.1 (iii), N is written as a product  $N = JV_0$ , where  $J \in F^*\{R\}$ , and  $V_0$  is an invertible R-R-submodule of  $Q(\overline{R})$ . By Propositions 2.1 and 1.6, J is invertible, hence so is N. Then  $B \cap \overline{R}$  is invertible. In fact,  $(B \cap \overline{R})^{-1} = N^{-1}\overline{R} = \overline{R}N^{-1}$ . Thus A is invertible.

**Theorem 3.5.** Assume that the condition ( $\sharp$ ) holds. Put  $\bar{S} = \{N \in F^* (Q(\bar{R}); R, R): QN = NQ, \bar{R}N = N\bar{R}\}$ . Then  $\lambda: \bar{S} \cong F^*\{\bar{R}\}$  as group, where  $\lambda(N) = \bar{R}N$ .

Proof. By Proposition 3.2,  $\lambda$  is well defined, and is a group homomorphism. If  $\overline{R}N = \overline{R}$  then  $N, N^{-1} \subseteq \overline{R}$ . On the other hand,  $\overline{Q} \cdot QN = \overline{Q}$ , and so QN = Q, as in the proof of Proposition 3.2. Hence  $N, N^{-1} \subseteq Q$ . Therefore  $N, N^{-1} \subseteq \overline{R} \cap Q = R$ . Thus N = R. Let  $A \in F_i^*(\overline{R})$ . Then  $A = (\overline{R}I) \circ (\overline{R}N)$ , where  $I \in F_i^*(R)$ , and N is as in Theorem 3.3. Therefore Im  $\lambda \supseteq F_i^*(\overline{R})$ , and so Im  $\lambda = F^*\{\overline{R}\}$ , because of Proposition 2.1.

Assume that the condition (#) holds. Evidently  $\lambda(N) \subseteq \overline{R}$  if and only if  $N \subseteq \overline{R}$ , so that  $\lambda$  induces a semi-group isomorphism from  $S = \{N \in \overline{S} : N \subseteq \overline{R}\}$  to  $F_i^*(\overline{R})$ . Further, by Theorem 3.3,  $S_p = \{N \in S : QN \cap \overline{R} = N\}$  is isomorphic to  $\{A \in F_i^*(\overline{R}) : QA \cap \overline{R} = A\}$ . Therefore  $\overline{S}_p = \{N_1 \circ N_2^{-1} : N_1, N_2 \in \overline{S}\}$   $S_p\} \cong \operatorname{Im} \phi(\cong F^*\{\overline{Q}\})$  as group. Hence the direct product  $F^*\{\overline{R}\} = \operatorname{Im} \phi \times \operatorname{Ker} \psi$  induces the direct product  $\overline{S} = \overline{S}_p \times F^*\{R\}$ . Let  $N \in S_p$ . Then N is written as a product  $N = V_0 I$ , where  $I \in F^*\{R\}$ , and  $V_0$  is an invertible R-R-submodule of  $Q(\overline{R})$  such that  $QV_0 = V_0 Q$ . Then  $\overline{R}N = N\overline{R} = V_0 I\overline{R} = V_0 \overline{R} I$ , and so  $\overline{R}V_0 II^{-1} = V_0 \overline{R} II^{-1}$ . Hence  $V_0 \overline{R} \subseteq (\overline{R}V_0)^* = \overline{R}V_0$  by Proposition 3.1. Symmetrically  $\overline{R}V_0 \subseteq V_0 \overline{R}$ , whence  $V_0 \overline{R} = \overline{R}V_0$ . Therefore  $\overline{S}$  is generated by  $F^*\{R\}$  and the subgroup of all invertible R-R-submodules V of  $Q(\overline{R})$  with QV = VQ,  $\overline{R}V = V\overline{R}$ .

Finally we note the following

**Lemma 3.6.** If R is a prime Goldie ring and Q = Q(R), then any monic Q-Q-submodule is invertible in  $Q(\overline{R})$ .

Proof. Let M be a monic Q-Q-submodule of degree n. We may assume that  $n \ge 1$ . Then, since  $M\bar{Q} = M \otimes_Q \bar{Q}$ , any right Q-homomorphism f from M to Q can be extended to a right  $\bar{Q}$ -homomorphism  $\bar{f}$  from  $M\bar{Q}$  to  $\bar{Q}$ . Since  $Q(\bar{R})_{\bar{Q}}$  is injective (cf. §4. Appendix),  $\bar{f}$  is given by a left multiplication of an element of  $Q(\bar{R})$ . Since  $M_Q$  is a generator, if we put  $M' = \{x \in Q(\bar{R}) : xM \subseteq Q\}$  then M'M = Q. Symmetrically MM'' = Q for some Q-Q-submodule M'' of  $Q(\bar{R})$ . Hence  $_{Q}M_{Q}$  is invertible in  $Q(\bar{R})$ .

# 4. Appendix

**Lemma 4.1** If <sub>R</sub>R is Noetherian then so is  $_{\overline{R}}\overline{R}$ .

Proof. It suffices to prove that any left ideal of R is finitely generated. Let I be any left ideal of  $\overline{R}$ . For any integer  $n \ge 0$ ,  $Y^n/Y^{n-1}$  is an invertible R-R-bimodule, and hence there exists a unique left ideal  $I_n$  of R such that  $I \cap Y^n + Y^{n-1} = Y^n I_n + Y^{n-1}$ . Then  $I_0 = I \cap R \subseteq I_1 \subseteq I_2 \subseteq \cdots$ . Therefore,  $I_m = I_{m+1} = \cdots$  for some m. Put  $J = I_m$ . Since  ${}_R J$  and  ${}_R Y^m$  are finitely generated,  ${}_R Y^m J$  is also finitely generated, so that  $Y^m J \subseteq \sum_i Ra_i + Y^{m-1}$  for some  $a_1, \cdots, a_r$  of  $I \cap Y^m$ . Then, for any  $n \ge m$ ,  $I \cap Y^n \subseteq Y^n J + Y^{n-1} \subseteq \sum_i Y^{n-m}a_i + Y^{n-1}$ , and so  $I \cap Y^n = \sum_i Y^{n-m}a_i + I \cap Y^{n-1}$ . Therefore  $I \cap Y^n \subseteq \sum_i \overline{R}a_i + I \cap Y^{m-1}$  for all  $n \ge m$ . Hence  $I = \sum_i \overline{R}a_i + I \cap Y^{m-1}$ . Since  ${}_R I \cap Y^{m-1}$  is finitely generated,  ${}_R I$  is finitely generated.

If R is a prime Goldie ring and Q=Q(R), then  $\overline{Q}$  is a prime Goldie ring, by Lemma 4.1. Hence, as is well known,  $Q(\overline{Q})_{\overline{Q}}$  is injective.

In the sequel, R is any ring. Let  $\sigma$ ,  $\tau$  be automorphisms of R, and D an endomorphism of R as an additive group. If  $D(xy)=\sigma(x)D(y)+D(x)\tau(y)$ for all  $x, y \in R$ , then D is said to be a  $(\sigma, \tau)$ -derivation of R ([5]). If  $\sigma=id_R$ , D is called a  $\tau$ -derivation. Let I be a dense right ideal of R, and f a right R-homomorphism form I to  $Q_r(R)$ . Then, as is well known, there exists a unique element b of  $Q_r(R)$  such that f(x)=bx for all  $x \in I$  (cf. [16]). Let  $\nu$  be any automorphism of R. Then  $\nu$  is uniquely extended to an automorphism of  $Q_r(R)$ , and symmetrically of  $Q_l(R)$ . And these induce the same automorphism of Q(R). Therefore we denote these automorphisms by  $\nu$ , too.

**Lemma 4.2.** Let  $\tau$  be an automorphism of R, and g an additive homomorphism from a dense right ideal I to  $Q_r(R)$  such that  $g(xa)=g(x)\tau(a)$  for all  $x \in I$ ,  $a \in R$ . Then there exists a unique element b of  $Q_r(R)$  such that  $g(x)=b\cdot\tau(x)$  for all  $x \in I$ .

Proof. Put  $h=g\tau^{-1}$ . Then *h* is a right *R*-homomorphism from a dense right ideal  $\tau(I)$  to  $Q_r(R)$ . Hence there exists a unique element *b* of  $Q_r(R)$  such that  $h(\tau(x))=b\cdot\tau(x)$  for all  $x\in I$ .

**Lemma 4.3.** Let D be a  $(\sigma, \tau)$ -derivation of R. Then D is uniquely extended to a  $(\sigma, \tau)$ -derivation of  $Q_r(R)$ , and symmetrically of  $Q_l(R)$ . And these induce the same  $(\sigma, \tau)$ -derivation of Q(R).

Proof. Let  $b \in Q_r(R)$ , and let I be a dense right ideal of R such that  $bI \subseteq R$ . R. A map g from I to  $Q_r(R)$  is defined by  $g(x)=D(bx)-\sigma(b)D(x)$   $(x \in I)$ . Then g is as in Lemma 4.2, whence there exists a unique  $b' \in Q_r(R)$  such that  $g(x)=b'\cdot\tau(x)$  for all  $x \in I$ . Note that b' does not depend on the choice of I. Put D'(b)=b'. Then D' is a unique  $(\sigma, \tau)$ -derivation of  $Q_r(R)$  such that D'|R=D. Similarly D is uniquely extended to a  $(\sigma, \tau)$ -derivation D'' of  $Q_i(R)$ , and it is easy to verify that D'|Q(R)=D''|Q(R).

We denote D', D'', and D'|Q(R) by D, too.

Let D be a  $\tau$ -derivation of R, and put Q=Q(R). By Lemma 4.2, the skew polynomial ring  $R[t; \tau, D]$  defined by  $at=t\tau(a)+D(a)$   $(a\in R)$  is a subring of the skew polynomial ring  $Q[t; \tau, D]$ . Put Y=R+tR and X=Q+tQ. Then, for any  $i\geq 1$ ,  $Y^i=R+tR+\cdots+t^iR$ , and  $X^i=Q+tQ+\cdots+t^iQ$ . It is easy to see that these satisfy the conditions in §2.

### References

- [1] K. Asano: Zur Arithmetik in Schiefringen I, Osaka Math. J. 1 (1949), 98-134.
- [2] K. Asano: Theory of rings and ideals, Tokyo, 1956 (in Japanese).
- [3] H. Bass: Algebraic K-theory, Math. Lecture Notes. Benjamin, New York, 1968.
- [4] N. Bourbaki: Algèbre commutative, chap. 7, Hermann, Paris, 1965.
- [5] P.M. Cohn: Free rings and their relations, Academic Press, 1971.
- [6] J.H. Cozzens: Maximal orders and reflexive modules, Trans. Amer. Math. Soc. 219 (1976), 323-336.
- [7] J.H. Cozzens and F.L. Sandomierski: Maximal orders and localization I, J. Algebra 44 (1977), 319-338.

- [8] A.W. Goldie: Semi-prime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201-220.
- [9] H. Marubayashi: Non commutative Krull rings, Osaka J. Math. 12 (1975), 703-714.
- [10] H. Marubayashi: On bounded Krull prime rings, Osaka J. Math. 13 (1976), 491-501.
- [11] H. Marubayashi: Polynomial rings over Krull orders in simple Artinean rings, Hokkaido Math. J. 9 (1980), 63-78.
- [12] Y. Miyashita: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 21 (1970), 97-121.
- [13] Y. Miyashita: Non-singular bilinear maps which come from some positively filtered rings, J. Math. Soc. Japan 30 (1978), 7-14.
- [14] J.C. Robson: Pri-rings and ipri-rings, Quart. J. Math. Oxford (2), 18 (1967), 125-145.
- [15] J.C. Robson: Non-commutative Dedekind rings, J. Algebra 9 (1968), 249-265.
- [16] B. Stenström: Rings and modules of quotients, Springer, Berlin, 1971.
- [17] Y. Utumi: On quotient rings, Osaka J. Math. 8 (1956), 1-18.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan