ON A KRULL ORDER

Dedicated to Professor Gorô Azumaya on his 60th birthday

Yôichi MIYASHITA

(Received September 1, 1979)

Let R be a ring with $1(\neq 0), \tau$ an automorphism of R, and D a τ-derivation of R (i.e. $D(a b)=D(a) \tau(b)+a \cdot D(b)$ for all $a, b \in R$). Then a skew polynomial ring $A=R[t ; \tau, D]=R \oplus t R \oplus t^{2} R \oplus \cdots$ is well defined by at $=t \tau(a)+D(a)$ $(a \in R)$. Then if R is a two-sided simple ring, every ideal of A is invertible. On the other hand, as is well known, a (commutative) polynomial ring over a Krull domain is also a Krull domain. Furthermore, if R is a (non-commutative) Krull order in the sense of Marubayashi, then so is $R[t]$ ([11]). This is the case when $\tau=i d$ and $D=0$. In this paper we define a new "Krull order", and prove the following. If R is a Krull order then A is also a Krull order. Further we obtain some results on the structure of the group of reflexive fractional ideals of A. Any two-sided simple ring is a Krull order in our sense. In the case when R is a prime Goldie ring, R is a Krull order if and only if R is a maximal order and the ascending chain condition on integral reflexive ideals holds.

As a matter of fact, we prove main results in a more general situation. Namely we take some "positively filtered ring" instead of $R[t ; \tau, D]$. By virtue of this, for example, if M is an invertible R-bimodule over a Krull order R then the tensor ring $T(M)$ is a Krull order. We believe this generalizatiln is proper for this kind of study. However, if we assume R to be a prime Goldie ring, arguments may become more brief. But this exclude the case when R is a twosided simple ring from our study. As is seen in §1, we take, as a starting point, the set of ideals which have trivial dual modules. This may be a feature of our study on Krull orders. Main results are analogous to those on a polynomial ring over a unique factorization domain.

For the completeness of this paper, we need some arguments on the construction of a positively filtered ring. But we postpone these until the forthcoming paper. However the case when $A=R[t ; \tau, D]$ is treated in 4. Appendix. In all that follows, all rings are associative, but not necessarily commutative. Every ring has $1(\neq 0)$, which is preserved by homomorphisms, inherited by subrings and acts as the identity operator on modules.

1. Preliminary results

Let A, B be rings. If M is a left (resp. right) A-module, we write ${ }_{A} M$
(resp. M_{A}). If N is a left A-, right B-bimodule we write ${ }_{A} N_{B}$, and we briefly call N an A - B-module.

Let Q be a ring, and M an additive submodule of Q. We define the left order of M (in Q) as $O_{l}(M)=\{x \in Q: x M \subseteq M\}$. Similarly we define the vight order of M as $O_{r}(M)=\{x \in Q: M x \subseteq M\}$. Then, $\{x \in Q: M x M \subset M\}$ $=\left\{x \in Q: M x \subseteq O_{l}(M)\right\}=\left\{x \in Q: x M \subseteq O_{r}(M)\right\}$, which is denoted by M^{-1}. Evidently M^{-1} is an $O_{r}(M)-O_{l}(M)$-submodule, $M^{-1} M$ is an ideal of $O_{r}(M)$, and $M M^{-1}$ is an ideal of $O_{l}(M)$. Let R be a subring of Q. By $T(Q ; R)(\operatorname{abbr} . T(R))$ we denote the set of all ideals I satisfying the following conditions.
(i) I is faithful as a left R-module as well as a right R-module.
(ii) If $x I \subseteq R$ or $I x \subseteq R(x \in Q)$ then $x \in R$.

Evidently $T(R)$ satisfies the following.
(i) $R \in T(R)$.
(ii) If $I \in T(R)$, and I^{\prime} is an ideal of R such that $I \subseteq I^{\prime}$ then $I^{\prime} \in T(R)$.
(iii) If $I_{1}, I_{2} \in T(R)$ then $I_{1} I_{2} \in T(R)$, and so $I_{1} \cap I_{2} \in T(R)$ (by (ii)).
(iv) If $I \in T(R)$ then $O_{l}(I)=R=O_{r}(I)$. Therefore if $x I=0$ or $I x=0(x \in Q)$ then $x=0$.

Proposition 1.1. Let A, B be subrings of Q, and M an A - B-submodule of Q. Then the following conditions are equivalent.
(1) There are B - A-submodules $M^{\prime}, M^{\prime \prime}$ of Q such that $M M^{\prime} \in T(A), M^{\prime \prime} M$ $\in T(B)$.
(2) $M M^{-1} \in T(A)$, and $M^{-1} M \in T(B)$.
(3) $O_{l}(M)=O_{r}\left(M M^{-1}\right)=A$, and $\quad O_{r}(M)=O_{l}\left(M^{-1} M\right)=B$. Further ${ }_{A} M$, $M_{B}, M M_{A}^{-1}$, and ${ }_{B} M^{-1} M$ are faithful modules.
(4) $O_{l}(M)=O_{r}\left(M^{-1}\right)=A$, and $O_{r}(M)=O_{l}\left(M^{-1}\right)=B$. Further ${ }_{A} M, M_{B}$, M_{A}^{-1}, and ${ }_{B} M^{-1}$ are faithful modules.

Proof. The implication $(2) \Rightarrow(1)$ is trivial, and it is easy to see that $(2) \Rightarrow$ (3), (3) \Rightarrow (4). (1) \Rightarrow (2) Evidently $O_{l}(M)=A$, and $O_{r}(M)=B$. Therefore $M^{\prime} \subseteq$ M^{-1}, and $M^{\prime \prime} \subseteq M^{-1}$. Hence $M M^{\prime} \subseteq M M^{-1}$, and $M^{\prime \prime} M \subseteq M^{-1} M$. Thus we obtain (2). (4) \Rightarrow (2) If $M^{-1} M y \subseteq B$ then $M^{-1} M y M^{-1} \subseteq M^{-1}$, hence $M y M^{-1} \subseteq$ $O_{r}\left(M^{-1}\right)=A$. Therefore $y M^{-1} \subseteq M^{-1}$, so $y \in O_{l}\left(M^{-1}\right)=B$. On the other hand, if $z M^{-1} M \subseteq B$ then $z M^{-1} \subseteq M^{-1}$, hence $z \in O_{l}\left(M^{-1}\right)=B$. If $b M^{-1} M=0(b \in B)$ then $b M^{-1} \subseteq O_{l}(M)=A$, and so $b M^{-1}=0$. Hence $b=0$. Thus ${ }_{B} M^{-1} M$ is faithful. Similarly $M^{-1} M_{B}$ is faithful. Hence $M^{-1} M \in T(B)$. Symmetrically we have $M M^{-1} \in T(A)$. This completes the proof.

Let A, B be subrings of Q. By $F(Q ; A, B)($ abbr. $F(A, B))$ we denote the set of all A - B-submodules M satisfying the condition (1) of Proposition 1.1. We put $F(Q)=\bigcup_{A, B} F(Q ; A, B)$, where A, B run through all subrings of Q. In the sequel, if $M \in F(Q ; A, B)$ then we write ${ }_{A} M_{B} \in F(Q)$, conveniently. Note that $T(Q ; A) \subseteq F(Q ; A, A)$, and that if ${ }_{A} M_{B} \in F(Q)$ then $x M=0$ or $M x=0(x \in$
Q) implies $x=0$.

Proposition 1.2. Let ${ }_{A} M_{B},{ }_{B} N_{C} \in F(Q)$.
(i) ${ }_{B} M_{A}^{-1} \in F(Q)$, and $M I M^{-1} \in T(A)$ for any $I \in T(B)$.
(ii) ${ }_{A} M N_{C} \in F(Q)$.

Proof. (i) It follows from Proposition 1.1 that ${ }_{B} M_{A}{ }^{-1} \in F(Q)$. Let $I \in T(B)$. If $M I M^{-1} x \subseteq A(x \in Q)$ then $I M^{-1} x \subseteq M^{-1}$, and so $I M^{-1} x M \subseteq M^{-1} M \subseteq B$. Therefore $M^{-1} x M \subseteq B$, hence $M^{-1} x \subseteq M^{-1}$. Thus $x \in O_{r}\left(M^{-1}\right)=A$. On the other hand, $y M I M^{-1} \subseteq A$ implies that $M^{-1} y M I M^{-1} M \subseteq B$, and so $M^{-1} y M \subseteq B$. Hence $M^{-1} y \subseteq M^{-1}$, and therefore $y \in A$. Thus $M I M^{-1} \in T(A)$. (ii) If $x M N \subseteq M N$ then $M^{-1} x M N N^{-1} \subseteq M^{-1} M N N^{-1} \subseteq B$, and so $M^{-1} x M \subseteq B$. Then $x \in A$ as in (i). Thus $O_{l}(M N)=A$, and similarly $O_{r}(M N)=C$. Now, $M N N^{-1} M^{-1} M N \subseteq$ $M M^{-1} M N \subseteq M N$, and so $N^{-1} M^{-1} \subseteq(M M)^{-1}$. Therefore $M N N^{-1} M^{-1} \subseteq$ $(M N)(M N)^{-1}$, and $N^{-1} M^{-1} M N \subseteq(M N)^{-1}(M N)$. Since $N N^{-1} \in T(B)$ and $M^{-1} M \in T(B)$, it follows from (i) that $(M N)(M N)^{-1} \in T(A)$ and $(M N)^{-1}(M N) \in$ $T(C)$. By Proposition 1.1, we have ${ }_{A} M N_{C} \in F(Q)$.

If ${ }_{A} M_{B} \in F(Q)$ then ${ }_{B} M_{A}^{-1} \in F(Q)$, and so ${ }_{A}\left(M^{-1}\right)_{B}^{-1} \in F(Q)$. since $M M^{-1} \subseteq$ A we have $M \subseteq\left(M^{-1}\right)^{-1}$. Then $M^{-1} \supseteq\left(\left(M^{-1}\right)^{-1}\right)^{-1}$. On the other hand, $M^{-1} \subseteq$ $\left(\left(M^{-1}\right)^{-1}\right)^{-1}$. Hence $M^{-1}=\left(\left(M^{-1}\right)^{-1}\right)^{-1}$. We put $M^{*}=\left(M^{-1}\right)^{-1}$. Then $M \subseteq M^{*}$ $=M^{* *}$ for any $M \in F(Q)$.

Proposition 1.3. For any ${ }_{A} M_{B} \in F(Q), M^{*}==\{x \in Q: I x \subseteq M$ for some $I \in T(A)\}=\{x \in Q: x J \subseteq M$ for some $J \in T(B)\}$.

Proof. If $x \in M^{*}$ then $M^{-1} x \subseteq B$, and so $M M^{-1} x \subseteq M$, where $M M^{-1} \in$ $T(A)$. Converselv if $I x \subseteq M$ for some $I \in T(A)$, then $I x M^{-1} \subseteq M M^{-1} \subseteq A$, so $x M^{-1} \subseteq A$. Hence $x \in\left(M^{-1}\right)^{-1}=M^{*}$. Symmetrically we obtain the latter half.

Evidently, for any subring A or $Q, T(Q ; A)=\left\{I \in F(Q ; A, A): I^{*}=A\right\}$.
Proposition 1.4. Let ${ }_{A} M_{B},{ }_{B} N_{C} \in F(Q)$. Then $(M N)^{-1}=\left(N^{-1} M^{-1}\right)^{*}$, and $\left(M^{*} N\right)^{*}=(M N)^{*}=\left(M N^{*}\right)^{*}$.

Proof. Since $N^{-1} M^{-1} \subseteq(M N)^{-1}$, we have $\left(N^{-1} M^{-1}\right)^{*} \subseteq\left((M N)^{-1}\right)^{*}=(M N)^{-1}$. On the other hand, $x \in(M N)^{-1}$ implies that $M N x \subseteq A$, and so $N x \subseteq M^{-1}$. Then $N^{-1} N x \subseteq N^{-1} M^{-1}$, hence $x \in\left(N^{-1} M^{-1}\right)^{*}$, because of $N^{-1} N \in T(C)$. Thus $(M N)^{-1}$ $=\left(N^{-1} M^{-1}\right)^{*}$. Using this, $(M N)^{*}=\left(\left(N^{-1} M^{-1}\right)^{*}\right)^{-1}=\left(N^{-1} M^{-1}\right)^{-1}$. As $\left(M^{*}\right)^{-1}$ $=M^{-1}$, we have $\left(M^{*} N\right)^{*}=\left(N^{-1} M^{-1}\right)^{-1}=(M N)^{*}$. Simılarly $\left(M N^{*}\right)^{*}=\left(N^{-1} M^{-1}\right)^{-1}$ $=(M N)^{*}$.

If ${ }_{A} M_{B} \in F(Q)$ and $M^{*}=M$, we call M a reflexive $A-B$-submodule of Q. By $F^{*}(Q ; A, B)$ (abbr. $\left.F^{*}(A, B)\right)$ we denote the set cf all reflexive $A-B$-submodules of Q, and we put $F^{*}(Q)=\bigcup_{A, B} F^{*}(Q ; A, B)$, where A, B run through all subrings of Q. By $F_{i}(Q ; A)\left(\right.$ abbr. $\left.F_{i}(A)\right)$ we denote $\{M \in F(Q ; A, A): M \subseteq A\}$, and we denote $F_{i}(Q ; A) \cap F^{*}(Q ; A, A)$ by $F_{i}^{*}(Q ; A)$ (abbr. $\left.F_{i}^{*}(A)\right)$. If $I \in$
$F_{i}(A)$ (resp. $\left.I \in F_{i}^{*}(A)\right)$ we call I an integral ideal (resp. reflexive ideal) of A.
Let ${ }_{A} M_{B},_{B} N_{C} \in F^{*}(Q)$. We define $M \circ N$ by $(M N)^{*}$. Then, from Proposition 1.2 and Proposition 1.4, we have the folllwing.

Theorem 1.5. The set of all reflexive submodules of $Q, F^{*}(Q)$ is a Brandt groupoid. The set of identities of $F^{*}(Q)$ is the set of all subrings of Q.

Let A, B be subrings of Q, and ${ }_{A} M_{B}$ an $A-B$-submodule of Q. If there are $B-A$-submodules $M^{\prime}, M^{\prime \prime}$ of Q such that $M M^{\prime}=A$ and $M^{\prime \prime} M=B$, we call M an invertible A - B-submodule of Q. Then it is easily seen that ${ }_{A} M_{B} \in F^{*}(Q ; A, B)$ and $M^{-1}=M^{\prime}=M^{\prime \prime}$. Here we note the following

Proposition 1.6. Let ${ }_{A} M_{B},{ }_{B} N_{C} \in F^{*}(Q)$. If ${ }_{A} M_{B}$ or ${ }_{B} N_{C}$ is an invertible submodule then $M \circ N=M N$.

Proof. We first assume that ${ }_{B} N_{C}$ is invertible. If $x M N \subseteq C$ then $x M \subseteq N^{-1}$, so $N x M \subseteq N N^{-1}=B$. Therefore $N x \subseteq M^{-1}$, and so $x \in N^{-1} M^{-1}$. Thus $(M N)^{-1}$ $=N^{-1} M^{-1}$. Similarly $(M N)^{-1}=N^{-1} M^{-1}$, when ${ }_{A} M_{B}$ is invertible. Hence $M \circ N$ $=\left(N^{-1} M^{-1}\right)^{-1}=M^{*} N^{*}=M N$, when ${ }_{A} M_{B}$ or ${ }_{B} N_{C}$ is invertible (cf. Proposition 1.4).

Remark. Let ${ }_{A} M_{B}$ be invertible in Q. Then $Q \otimes_{A} M \leftrightarrows Q, q \otimes m \mapsto q m(q \in$ $Q, m \in M$) (, and symmetrically $M \otimes_{B} Q \Im Q$). In fact, if $1=\Sigma_{i} m_{i}^{\prime} m_{i}\left(m_{i}^{\prime} \in M^{-1}\right.$, $m_{i} \in M$) then the inverse of the homomorphism $Q \otimes_{A} M \rightarrow Q$ is given by the map $q \mapsto \sum_{i} q m_{i}^{\prime} \otimes m_{i}(q \in Q)$. As is well known, M is an invertible A - B-bimodule, that is, M_{B} is finitely generated, projective, and a generator, and $A \leftrightarrows \operatorname{End}_{B}(M)$ by the map induced by ${ }_{A} M$ (cf. [3]).

Let A, B be subrings of Q. If there exists an $A-B$-submodule $M \in F^{*}(Q$; A, B) we wite $A \sim B$ (in Q). Then " \sim " is an equivalence relation on the subrings of Q.

If $O_{l}(I)=O_{r}(I)=A$ holds for any ideal I of A such that both ${ }_{A} I$ and I_{A} are faithful, we say that A is maxmial in Q.

Proposition 1.7. For any subring A of Q, the following conditions are equivalent:
(1) A is maximal in Q.
(2) ${ }_{A} I_{A} \in F(Q ; A, A)$ for every ideal I of A such that both ${ }_{A} I$ and I_{A} are faithful.

Proof. The implication $(2) \Rightarrow(1)$ is trivial, and $(1) \Rightarrow(2)$ follows from Proposition 1.1 (3).

Proposition 1.8. Let $_{A} U_{B} \in F^{*}(Q ; A, B)$.
(i) If A is maximal in Q then so is B.
(ii) There is a groun isomorphism $F^{*}(Q ; A, A) \leftrightarrows F^{*}(Q ; B, B), M \mapsto\left(U^{-1} M U\right)^{*}$
$=U^{-1} \circ M \circ U\left(M \in F^{*}(Q ; A, A)\right)$.
(iii) If A is a prime ring then so is B.

Proof. (i) Let I^{\prime} be an ideal of B such that ${ }_{B} I^{\prime}, I_{B}^{\prime}$ are faithful. Put $I=$ $U I^{\prime} U^{-1}$. It is easy to see that both ${ }_{A} I$ and I_{A} are faithful. Therefore, by assumption, $O_{l}(I)=O_{r}(I)=A$. It $x I^{\prime} \subseteq I^{\prime}$ then $U x U^{-1} I=U x U^{-1} U I^{\prime} U^{-1} \subseteq U x I^{\prime} U^{-1}$ $\subseteq U I^{\prime} U^{-1}=I$, and so $U x U^{-1} \subseteq O_{l}(I)=A$. Then $x U^{-1} \subseteq U^{-1}$, so $x U^{-1} U \subseteq U^{-1} U$. Hence $x \in B$. Thus $O_{l}\left(I^{\prime}\right)=B$. Similarly $O_{r}\left(I^{\prime}\right)=B$. Hence B is maximal in Q. (ii) This follows from Theorem 1.5. (iii) Let I, J be ideals of B, and assume that $I J=0$. Then $U I U^{-1} \cdot U J U^{-1}=0$, and so $U I U^{-1}=0$ or $U I U^{-1}=0$. If $U I U^{-1}=0$ then $U I=0$, so $I=0$. Hence B is a prime ring.

Proposition 1.9. Let A, B be subrings of Q such that $A \sim B$ in Q, and assume that A is a prime ring and is maximal in Q. Let M be an $A-B$-submodule of Q. Assume that there are elements u, v of Q such that $0 \neq u M \subseteq B$ and $0 \neq$ $M v \subseteq A . \quad$ Then ${ }_{A} M_{B} \in F(Q ; A, B)$.

Proof. By Proposition 1.8, B is a prime ring, and is maximal in Q. Since $B u M$ and $M v A$ are non-zero ideals of B and A respectively, we have $O_{r}(M)=B$ and $O_{l}(M)=A$. Since $M^{-1} \ni u, v, M^{-1} M$ and $M M^{-1}$ are non-zero ideals of B and A, respectively. Then, by Proposition 1.1 (3), $M \in F(Q ; A, B)$.

Now we define a Krull subring of Q. A subring A of Q is said to be a Krull subring of Q if A is maximal in Q and the ascending chain condition on reflexive ideals of A holds. The following proposition follows from Proposition 1.8.

Proposition 1.10. Let A, B be subrings of Q such that $A \sim B$ in Q. If A is a Krull subring of Q then so is B.

Let A be any subring of Q. Let $P \in F_{i}^{*}(Q ; A)$, and let $P \neq A$. Then P is said to be irreducible if $P=I_{1} \circ I_{2}\left(I_{1}, I_{2} \in F_{i}^{*}(Q ; A)\right)$ implies that $P=I_{1}$ or $P=$ I_{2}, and P is said to be maximal if $P \subsetneq I^{\prime} \in F_{i}^{*}(Q ; A)$ implies that $I^{\prime}=A$. Assume that P is maximal in $F_{i}^{*}(Q ; A)$, and let $P=I_{1} \circ I_{2}$. Then $P=\left(I_{1} I_{2}\right)^{*} \subseteq I_{i}^{*}=I_{i}$ $(i=1,2)$, hence $P=I_{i}$ or $I_{i}=A$. Therefore P is irreducible. Conversely, if P is irreducible then P is maximal. Thus "maximal" and "irreducble" are equivalent.

Assume that A is maximal in Q, and let P be irreducible in $F_{i}^{*}(Q ; A)$. If $I J \subseteq P$ for some ideals I, J of A then $(I+P)(J+P) \subseteq P$. If $I \subseteq P$ and $J \subseteq P$ then $I+P, J+P \in T(Q ; A)$ by Proposition 1.7, so that $(I+P)(J+P) \in T(Q ; A)$. Then have a contradiction $P \in T(Q ; A)$. Hence P is a prime ideal. Conversely if $P \in F_{i}^{*}(Q ; A)$ is a (proper) prime ideal then P is irreducble. Therefore, as is well known, if P, P^{\prime} are irreducible in $F_{i}^{*}(A)$ then $P \circ P^{\prime}=P^{\prime} \circ P$. Then, in the usual way, we have the following.

Proposition 1.11. Let A be a Krull subring of Q. Then any irreducible re-
flexive ideal of A is a prime ideal, and $F_{i}^{*}(Q ; A)$ is commutative. Any element of $F_{i}^{*}(Q ; A)$ is uniquely represented as a product of irreducible elements of $F_{i}^{*}(Q ; A)$.

Proposition 1.12. Let A be a Krull subring of Q, and let ${ }_{A} M_{B} \in F(Q ; A, B)$. Assume that A is a prime ring. Then any non-zero $A-B$-submodule of M belongs to $F(Q ; A, B)$, and there are elements x_{1}, \cdots, x_{r} of M such that $M^{*}=\left(\sum_{i=1, \cdots, r} A x_{i} B\right)^{*}$.

Proof. By Proposition 1.8, B is a prime ring and is maximal in Q. Let M_{0} be a non-zero A - B-submodule of M. Then, since $M^{-1} M_{0}$ and $M_{0} M^{-1}$ are non-zero ideals of B and A respectively, we have $M_{0} \in F(Q ; A, B)$, by virtue of Proposition 1.9. Now let $0 \neq x_{1} \in M$. Then $A x_{1} B \in F(Q ; A, B)$, and ($\left.A x_{1} B\right)^{*}$ $\subseteq M^{*}$. If $\left(A x_{1} B\right)^{*} \subsetneq M^{*}$ then there is an element $x_{2} \in M$ with $x_{2} \nsubseteq\left(A x_{1} B\right)^{*}$. If $\left(A x_{1} B+A x_{2} B\right)^{*} \subsetneq M^{*}$, then $\left(A x_{1} B+A x_{2} B\right)^{*} \subsetneq\left(A x_{1} B+A x_{2} B+A x_{3} B\right)^{*}$ for some $x_{3} \in M$. Continueing this process we obtain $x_{1}, \cdots, x_{r} \in M$ such that $M^{*}=$ $\left(\sum_{i} A x_{i} B\right)^{*}$, because $A C C$ holds on $\left\{N \in F^{*}(Q ; A, B): N \subseteq M^{*}\right\}$. (In fact, $N \subseteq M^{*}$ means $N \circ\left(M^{*}\right)^{-1} \subseteq A$, and conversely.)

Proposition 1.13. Let Q^{\prime} be any overring of Q, and A a prime subring of Q. Assume that, for any non-zero ideal I of $A, I Q=Q I=Q$ holds. Then $T(Q ; A)=T\left(Q^{\prime} ; A\right)$, and $F(Q ; A, A)=\left\{M \in F\left(Q^{\prime} ; A, A\right): M \subseteq Q, M Q=Q M\right.$ $=Q\}$. Therefore $F_{i}(Q ; A)=F_{i}\left(Q^{\prime} ; A\right)$, and $F_{i}^{*}(Q ; A)=F_{i}^{*}\left(Q^{\prime} ; A\right)$.

Proof. Evidently $T(Q ; A) \supseteq T\left(Q^{\prime} ; A\right)$. Let $I \in T(Q ; A)$, and let $I x \subseteq A$ $\left(x \in Q^{\prime}\right)$. Then $Q x=Q I x \subseteq Q A=Q$, so $x \in Q$. Hence $x \in A$. Similarly $y I \subseteq$ $A\left(y \in Q^{\prime}\right)$ implies that $y \in A$. Thus $I \in T\left(Q^{\prime} ; A\right)$. Let $M \in F(Q ; A, A)$, and put $M^{\prime}=\{x \in Q: \quad M x M \subseteq M\}$. Then $M M^{\prime}, M^{\prime} M \in T(Q ; A)=T\left(Q^{\prime} ; A\right)$. Then, by Proposition 1.1 (1), we have $M \in F\left(Q^{\prime} ; A, A\right)$. Furthermore, $Q \supseteq$ $M Q \supseteq M M^{\prime} Q=Q$, and so $M Q=Q$. Similarly $Q M=Q$. Conversely, let $N \in F\left(Q^{\prime} ; A, A\right), N \subseteq Q$, and $N Q=Q N=Q$. If $z N \subseteq A\left(z \in Q^{\prime}\right)$ then $z Q=$ $z N Q \subseteq A Q=Q$, and so $z \in Q$. Hence $N \in F(Q ; A, A)$. The remainder is obvious.

Corollary. Assume the same assumptions as in Proposition 1.13. If A is maximal in Q (resp. a Krall subring of Q) then A is maximal in Q^{\prime} (resp. a Krull subring of Q^{\prime}), and conversely.

Proof. This follows from Proposition 1.7 and Proposition 1.13.
Let A be a subring of Q. By $S(Q ; A)$ (abbr. $S(A)$) we denote $\cup I^{-1}$, where I runs through reflexive ideals of A. Evidently $S(Q ; A)$ is a subring containing A. We call $S(Q ; A)$ the Asano overring of A in Q.

Proposition 1.14. Let A be a prime Krull subring of Q. Assume that $I \cdot S(Q ; A)=S(Q ; A) I=S(Q ; A)$ for any non-zero ideal I of A. Then any irreducible reflexive ideal of A is a (non-zero) minimal prime ideal of A, and con-
versely (cf. [11]).
Proof. Let $P \in F_{i}^{*}(Q ; A)$ be irreducible. Then P is a prime ideal. If there exists a non-zero prime ideal P^{\prime} of A such that P^{\prime} 宁 P. Then $\left(P^{\prime} P^{-1}\right) P \subseteq$ P^{\prime} implies that $P^{\prime} P^{-1} \subseteq P^{\prime}$. Then we have a contradiction $P^{-1} \subseteq A$. Hence P is minimal in the set of all non-zero prime ideals of A. Conversely, let P be a minimal prime ideal. Since $P \cdot S(Q ; A)=S(Q ; A) \ni 1$, there are reflexive ideals I_{1}, \cdots, I_{r} of A such that $I_{1} \cdots I_{r} \subseteq P$. Then $I_{i} \subseteq P$ for some i. Hence some irreducible component $P^{\prime \prime}$ of I_{i} is contained in P. Then, by the minimality of P, we have $P^{\prime \prime}=P$. This completes the proof.

Note that, in the above case, A is a Krull subring of $S(Q ; A)$, and $S(Q ; A)$ is a left and right Utumi's quotient ring of A.

Proposition 1.15. Let A be a prime subring of Q, and assume that A is maximal in Q. Let M be a non-zero left A-submodule of Q. Put $O_{r}(M)=B$ and $M^{\prime}=\{x \in Q: M x \subseteq A\}$.
(α) If $M^{\prime} M \in T(B)$ then $M \in F(Q ; A, B)$.
(β) Assume that M satisfies the following conditions:
(i) $x M^{\prime} \neq 0$ for any non-zero $x \in M$.
(ii) M_{B} is faithful.
(iii) $\left\{y \in Q: y M^{\prime} \subseteq A\right\}=M$.

Then $M \in F^{*}(Q ; A, B)$ (, and conversely). (Cf. [6].)
Proof. (α) As $M^{\prime} M \in T(B)$, we have $M M^{\prime} M \neq 0$, so $M M^{\prime} \neq 0$. Hence $M M^{\prime} \in F_{i}(Q ; A)$, and so $O_{l}(M)=A$. Therefore $M^{\prime}=M^{-1}$. If $M M^{\prime} x \subseteq A$ then $M^{\prime} x \subseteq M^{\prime}$, so $M M^{\prime} x \subseteq M M^{\prime}$. Hence $x \in A$. If $y M M^{\prime} \subseteq A$, then $M M^{\prime} y M M^{\prime}$ $\subseteq M M^{\prime}$, and so $M M^{\prime} y \subseteq A$. Hence $y \in A$. Thus $M M^{\prime} \in T(A)$. Hence $M \in$ $F(Q ; A, B)$. (β) Since $M M^{\prime}$ is a non-zero ideal of A, we have $M M^{\prime} \in F_{i}(A)$, and $M^{\prime}=M^{-1}$. If $x M^{\prime} \subseteq M^{\prime}$ then $M x M^{\prime} \subseteq M M^{\prime} \subseteq A$, hence $M x \subseteq M$ by (iii). Therefore $x \in B$. If $x M^{\prime}=0$ then $x \in M$, hence $x=0$ by (i). Thus $O_{l}\left(M^{\prime}\right)=$ B, and ${ }_{B} M^{\prime}$ is faithful. Therefore (4) of Proposition 1.1 holds. Hence $M \in F^{*}$ ($Q ; A, B$), by (iii).

2. A positively filtered ring over a Krull order

Let R be a subring of a ring Q. If R, Q satisfy the following conditions we call R a Krull order of Q.
(i) R is a Krull subring of Q.
(ii) Q is a left and right quotient ring of R.
(iii) $I Q=Q I=Q$ for any non-zero ideal I of R.

Remark. If R is a prime Goldie ring, and Q is the maximal quotient ring of R then (ii), (iii) hold. Evidently every two-sided simple ring is a Krull order of itself.

Let R be a Krull order of Q. Let M be a non-zero R - R-submodule of Q. Then $M \cap R \neq 0$, and so $Q(M \cap R)=Q=(M \cap R) Q$. Therefore $Q M=Q=M Q$. Hence Q is a simple $R-Q$-module as well as a simple $Q-R$-module. In particular, Q is a two-sided simple ring. Let $M \in F(Q ; R, R)$. Then $Q M=$ $Q \ni 1$, so that $I \subseteq M$ for some dense left ideal I of R. Then $I R \subseteq M$, and so $0 \neq I R \cdot M^{-1} \subseteq R$. Put $I R \cdot M^{-1}=J$. Then $R \supseteq I R \cdot M^{-1} M=J M$, hence $M \subseteq J^{-1}$. Since $(I R)^{*} \circ M^{-1}=J^{*}$ we have $M^{*}=(I R)^{*} \circ J^{-1}$. Conversely, let N bc a nonzero R - R-submodule of Q such that $N \subseteq J_{1}^{-1}$ for some non-zero ideal J_{1} of R. Then, by Proposition 1.12, $N \in F(Q ; R, R)$. Summing up, we have

Proposition 2.1. Let R be a Krull order of Q.

(i) Both $Q_{Q} Q_{R}$ and ${ }_{R} Q_{Q}$ are simple.
(ii) F cr a non-zero R - R-snbmodule N of $Q, N \in F(Q ; R, R)$ if and only if $N \subseteq I^{-1}$ for some non-zero ideal I of R.
(iii) $F^{*}(Q ; R, R)=\left\{I \circ J^{-1}: I, J \in F_{i}^{*}(Q ; R)\right\}$, which is an abelian group.

For any ring A we denote by $Q_{l}(A)$ (resp. $Q_{r}(A)$) the left (resp. right) maximal quotient ring of A. Further we put $Q(A)=Q_{l}(A) \cap Q_{r}(A)$, more precisely, $Q(A)=\left\{x \in Q_{r}(A) ; I v \subseteq A\right.$ for some dense left ideal $\left.I\right\}$. By Corollary of Proposition 1.13, if R is a Krull order of Q, then R is a Krull order of $Q(R)$ $(\supseteq Q)$.

In the remainder of this paper we assume the followings: R is a Krull order of $Q . \quad X$ is $Q-Q$-module containing Q, as a $Q-Q$-submodule, and such that X / Q is an invertible $Q-Q$-module. $\quad Y$ is an R - R-submodule of X containing R, such that Y / R is an invertible $R-R$-module, and such that $X=Q \otimes_{R} Y=Y$ $\otimes_{R} Q . \quad Q\langle X\rangle$ is an overring of Q satisfying the following conditions:
(i) $Q\langle X\rangle \supseteq X$ as a $Q-Q$-submodule, and $Q\langle X\rangle=\bigcup_{i \geq 0} X^{i}$, where $X^{0}=Q$.
(ii) For any integer $i \geqq 1$, the canonical map

$$
(X / Q) \otimes_{Q} \cdots \otimes_{Q}(X / Q)(i \text {-times }) \rightarrow X^{i} / X^{i-1}
$$

$\left(x_{1}+Q\right) \otimes \cdots \otimes\left(x_{i}+Q\right) \mapsto x_{1} \cdots x_{i}+X^{i-1}$ is an isomorphism (cf. [13]).
We put $R\langle Y\rangle=\bigcup_{i \geqq 0} Y^{i}$, where $Y^{0}=R$. If $i<0$ then we put $X^{i}=Y^{i}$ $=0$. Evidently $Q \otimes_{R}(Y / R) \leftrightarrows X / Q . q \otimes(y+R) \mapsto q y+Q$, and $(Y / R) \otimes_{R} Q \leftrightarrows X / Q$, $(y+R) \otimes q \mapsto y q+Q$. Therefore $Q \otimes_{R}(\stackrel{i}{\otimes}(Y / R)) \stackrel{i}{\rightarrow} \otimes_{Q}(X / Q)$ as Q - R-modules, and $\left(\otimes_{R}(Y / R)\right) \otimes_{R} Q \underset{\rightarrow}{\sim} \otimes_{Q}(X / Q)$ as R-Q-modules, where $\otimes_{R}(Y / R)=(Y / R) \otimes_{R} \cdots$ $\otimes_{R}(Y / R)$ (i-times). For any $i \geqq 1$, the following diagram is commutative:

Since ${ }_{R} \stackrel{i}{\otimes}_{R}(Y \mid R)$ is projective, the canonical map $\stackrel{i}{\otimes_{R}(Y \mid R) \rightarrow Q \otimes_{R}\left(\otimes_{R}(Y \mid R)\right)}$ i
$\left(\leftrightarrows \otimes_{Q}(X / Q)\right)$ is a monomorphism, so that α is an isomorphism. Therefore δ is a monomorphism, that is, $Y^{i} \cap X^{i-1}=Y^{i-1}$. In particular, $Y \cap Q=R$. Using the diagram

by induction on i, we can prove that each ε_{i} is an isomorphism. Therefore $Q \otimes_{R} R\langle Y\rangle=Q\langle X\rangle$, and symmetrically $R\langle Y\rangle \otimes_{R} Q=Q\langle X\rangle$. We put $\bar{Q}=Q\langle X\rangle$ and $\tilde{R}=R\langle Y\rangle$.

Remark. Let $Q=Q(R)$, and let Y be an $R-R$-module containing R, as an $R-R$-submodule, and such that Y / R is an invertible $R-R$-module. Then, X, $Q\langle X\rangle$, and $R\langle Y\rangle$ as above exist, and those are uniquely determined by $Y \supseteq R$. The proof is given in $\S 4$, in the case when $Y / R_{R} \leftrightarrows R_{R}$.

First we prove the following
Theorem 2.2. If R is a Krull order then $R\langle Y\rangle$ is also a Krull order.
We need many lemmas.
Lemma 2.3. For any integer $i \geqq 1$, there is a one to one correspondence from the set of all R - R-submodules of Q to the set of all R - R-submodules of X^{i} / X^{i-1}, such that $M \mapsto\left(M Y^{i}+X^{i-1}\right) / X^{i-1}$.

Proof. This follows from [12; Proposition 3.3 and its proof].
Corollary 1. For any integer $i \geqq 1, X^{i} / X^{i-1}$ is a simple $Q-R$-module as well as a simple $R-Q-m o d u l e$.

Proof. This follows from the fact that $Q_{Q} Q_{R} Q_{Q}$ are simple.
Corollary 2. For any integer $i \geqq 1$, there is a one to one correspondence $M \mapsto M^{\prime}$ from the set of all R - R-submodules of Q to itself, which is defined by $M^{\prime} Y^{i}+$ $X^{i-1}=Y^{i} M+X^{i-1}$. (Note that this map is multiplicative.)

Lemma 2.4. Let M be an $R-Q$-submodule of $X^{r}(r \geqq 1)$ such that $X^{r-1} \oplus$ $M=X^{r} . \quad$ Then $Q M \subseteq M$.

Proof. Any y in $Q M$ is written as a sum $y=y_{1}+y_{2}\left(y_{1} \in X^{r-1}, y_{2} \in M\right)$, and $I y \subseteq M$ for some dense left ideal I of R. Then, for any $a \in I, a y_{1}=a y-a y_{2} \in$ $X^{r-1} \cap M=\{0\}$. Hence $I y_{1}=0$. Since ${ }_{Q} X^{r-1}$ is projective, we have $y_{1}=0$. Thus
$y=y_{2} \in M$.
Lemma 2.5. Let A be an $R-\bar{Q}$-submodule of \bar{Q}. Then $Q A \subseteq A$.
Proof. We may assume that $0 \neq A \neq \bar{Q}$. Then, since ${ }_{R} Q_{Q}$ is simple, we have $Q \cap A=0$. Therefore there exists an integer r such that $X^{r-1} \cap A=0$ and $X^{r} \cap A \neq 0$. Since X^{r} / X^{r-1} is a simple $R-Q$-module, we have $X^{r-1} \oplus\left(X^{r} \cap A\right)=$ X^{r}, hence $\bar{Q}=X^{r-1} \oplus\left(\left(X^{r} \cap A\right) \otimes_{Q} \bar{Q}\right)$ by [13; Corollary 1 of Proposition 1]. Then $A=A \cap \bar{Q}=X^{r-1} \cap A+\left(X^{r} \cap A\right) \otimes_{Q} \bar{Q}=\left(X^{r} \cap A\right) \otimes_{Q} \bar{Q} . \quad$ By Lemma 2.4, $Q\left(X^{r} \cap A\right) \subseteq X^{r} \cap A$, and so $Q A \subseteq A$.

Corollary. If A is an ideal of \bar{R} then $Q A=A Q$ (, so that $Q A$ is an ideal of $\bar{Q})$.

Proof. Noting that $\bar{Q}=Q \bar{R}=\bar{R} Q, A Q$ is an $R-\bar{Q}$-submodule. Hence $Q A \subseteq A Q$. Symmetrically we obtain $A Q \subseteq Q A$.

The following is well known, but we give its proof for completeness.
Lemma 2.6. Let B be a ring, and I an ideal of B. Then the following conditions are equivalent:
(1) I is an invertible $B-B$-module.
(2) I is invertible in $Q(B)$.

Proof. The implication $(2) \Rightarrow(1)$ is well known. (1) $\Rightarrow(2)$ Put $\{a \in$ $\left.Q_{r}(B): a I \subseteq B\right\}=I^{\prime}$. Then, since I is a dense right ideal, $I^{\prime} \leftrightarrows$ Hom $\left(I_{B}, B_{B}\right)$ canonically (cf. [16]). Since I_{B} is a generator, we have $I^{\prime} I=B$. Since I_{B} is finitely generated and projective, we have $I I^{\prime}=B$, Then, since I is a dense left ideal, $I^{\prime} \subseteq Q_{l}(B)$, and so $I^{\prime} \subseteq Q(B)$. Thus I is invertible in $Q(B)$.

Lemma 2.7. Every non-zero ideal of \bar{Q} is invertible. (Cf. [14; Examples].)
Proof. Let A be any non-zero ideal of \bar{Q}. We may assume that $A \neq \bar{Q}$. Then there is an integer $r \geqq 1$ such that $X^{r-1} \cap A=0$ and $X^{r} \cap A \neq 0$. Put $M=$ $X^{r} \cap A$. Then, as in the proof of Lemma 2.5, $X^{r-1} \oplus M=X^{r}$, and $A=M \otimes_{Q} \bar{Q}$ $=\bar{Q} \otimes_{Q} M$. Since $M \leftrightarrows X^{r} / X^{r-1}, M$ is an invertible $Q-Q$-module. Then it is easily seen that $\bar{Q} \xrightarrow{\rightarrow}$ End $\left(A_{\bar{Q}}\right)$ by the map induced by ${ }_{\bar{Q}} A$, so that ${ }_{\bar{Q}} A_{\bar{Q}}$ is invertible, because $A_{\bar{Q}}=M \otimes_{Q} \bar{Q}_{\bar{Q}}$ is finitely generated, projective, and a generator (cf. [12; Lemma 3.1]).

If every non-zero ideal of a ring B is invertible, B is said to be an Asano order. Noting Lemma 1.6, an Asano order is a Krull order. A Krull order R is an Asano order if and only if $T(Q(R) ; R)=\{R\}$.

Lemma 2.8. (i) $S(\bar{R}) \subseteq S(\bar{Q}) \subseteq Q(\bar{R})=Q(\bar{Q})$. (ii) For any non-zero ideal A of $\bar{R}, A \cdot S(\bar{Q})=S(\bar{Q}) A=S(\bar{Q})$. Therefore \bar{R} is a prime ring.

Proof. Since ${ }_{Q} \bar{Q}$ is projective, $\{x \in \bar{Q}: I x=0\}=0$ for any dense left
ideal I of R. Then, as $Q \bar{R}=\bar{Q}$, we have $\bar{Q} \subseteq Q_{l}(\bar{R})$. Symmetrically $\bar{Q} \subseteq Q_{r}(\bar{R})$, and hence $\bar{Q} \subseteq Q(\bar{R})$. Thus $Q(\bar{R})=Q(\bar{Q})$. Since $A Q(=A Q)$ is a non-zero ideal of \bar{Q}, we have $S(\bar{Q}) A=S(\bar{Q}) Q A=S(\bar{Q})$. Similarly $A \cdot S(\bar{Q})=S(\bar{Q})$. Therefore \bar{R} is a prime ring, and $A^{-1} \subseteq S(\bar{Q})$. Hence $S(\bar{R}) \subseteq S(\bar{Q})$.

In virtue of Propositions 1.13 and 2.8, the notations $T(R), F_{i}(R), F_{i}^{*}(R)$, $T(\bar{R}), F_{i}(\bar{R})$, and $F_{i}^{*}(\bar{R})$ do not produce ambiguity.

By ρ_{i} we denote the correspondence $M \mapsto M^{\prime}$ given in Corollary 2 of Lemma 2.3. Then $\rho_{i}(M) Y^{i}+X^{i-1}=Y^{i} M+X^{i-1}$, and if $M \subseteq R$ then $\rho_{i}(M) Y^{i}$ $+Y^{i-1}=Y^{i} M+Y^{i-1}$, because of $X^{i-1} \cap Y^{i}=Y^{i-1}$. Further, note that $\rho_{i}\left(M^{\prime}\right)$ $\rho_{i}\left(M^{\prime \prime}\right)=\rho_{i}\left(M^{\prime} M^{\prime \prime}\right)$ for any $M^{\prime}, M^{\prime \prime}$. Put $\rho_{1}=\rho$. Then it is easy to verify that $\rho_{i}=\rho^{i}$ for all $i \geqq 1$.

For any R - R-submodule M of $Q(\bar{R})$, we put $M^{*}=\{x \in Q(\bar{R}): x I \subseteq M$ for some $I \in T(R)\}$. Note that $R^{*}=R$ and $\bar{Q}^{*}=\bar{Q}$.

Lemma 2.9. (i) $\rho(T(R))=T(R)$. (ii) For any R - R-submodule M of Q, $\rho\left(M^{*}\right)=(\rho(M))^{*}$ holds. Therefore $\rho\left(F_{i}^{*}(R)\right)=F_{i}^{*}(R)$.

Proof. (i) For any ideal I of R and any $x \in Q, I \cdot R x R \subseteq R$ (or $R x R \cdot I \subseteq R$) if and only if $\rho(I) \rho(R x R) \subseteq R$ (or $\rho(R x R) \rho(I) \subseteq R$), because of $\rho(R)=R$. Therefore we obtain (i). (ii) If $x \in M^{*}$ then $x I \subseteq M$ for some $I \in T(R)$. Then $\rho(R x R)$ $\rho(I) \subseteq \rho(M)$, and so $\rho(R x R) \subseteq \rho(M)^{*}$ by (i). Thus $\rho\left(M^{*}\right) \subseteq(\rho(M))^{*}$. Similarly $\rho^{-1}\left(M^{*}\right) \subseteq\left(\rho^{-1}(M)\right)^{*}$. Then $\rho^{-1}\left((\rho(M))^{*}\right) \subseteq M^{*}$, whence $(\rho(M))^{*} \subseteq \rho\left(M^{*}\right)$.

Lemma 2.10. \bar{R} is maximal in $Q(\bar{R})$.
Proof. Let A be any non-zero ideal of \bar{R}, and let $y A \subseteq A(y \in Q(\bar{R}))$. Then $y A Q \in A Q$, and so $y \in \bar{Q}$, because $A Q$ is an invertible ideal of \bar{Q}. Put $W=$ $\{x \in \bar{Q}: x A \subseteq A\}$. Then W is an \bar{R} - \bar{R}-submodule containing \bar{R}. For any $i \geqq 0$, there exists a unique $R-R$-submodule W_{i} of Q such that ($W \cap X^{i}$) $+X^{i-1}$ $=W_{i} Y^{i}+X^{i-1}$, by Lemma 2.3. Similarly, for $A,\left(A \cap X^{i}\right)+X^{i-1}=A_{i} Y^{i}+$ X^{i-1}, where A_{i} is an R - R-submodule of Q. Since $W \supseteq \bar{R}$, we have $W \cap X^{i}$ $\supseteq Y^{i}$, and so $W_{i} \supseteq R$. Since $A \subseteq \bar{R}$, we have $A \cap X^{i}=A \cap Y^{i}$, and so $A_{i} \subseteq R$. It is easy to verify that $W_{j} \cdot \rho^{j}\left(A_{i}\right) Y^{i+j} \subseteq A_{i+j} Y^{i+j}+X^{i+j-1}$ for all $i, j \geqq 0$. Therefore $W_{j} \cdot \rho^{j}\left(A_{i}\right) \subseteq A_{i+j}$ for all $i, j \geqq 0$. Noting that $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots$, we pat $I=\bigcup_{i \geqq 0} A_{i}$. Then I is a non-zero ideal of R, and $W_{j} \rho^{j}(I) \subseteq I$ for all $j \geqq 0$. By Lemma 2.9, $\rho^{j}\left(I^{*}\right)=\left(\rho^{j}(I)\right)^{*}$, and so $W_{j} \cdot \rho^{j}\left(I^{*}\right) \subseteq I^{*}$. By Lemma 2.9 (ii), the number of irreducible components of $\rho^{j}\left(I^{*}\right)$ is equal to the one of I^{*}. As $R \subseteq W_{j}$, we have $\rho^{j}\left(I^{*}\right) \subseteq I^{*}$, hence $\rho^{j}\left(I^{*}\right)=I^{*}$. Thereby $W_{j} \subseteq R$, and so $W \cap X^{j} \subseteq Y^{j}+X^{i-1}$. Noting that $W \supseteq \bar{R}$, we obtain $W \cap X^{j}=Y^{j}+W \cap X^{j-1}$ for all $j \geqq 0$. Now $W \cap Q=W_{0} \subseteq R$, hence $W \cap X^{j} \subseteq Y^{j}$ for all $j \geqq 0$. Thus $W \subseteq \bar{R}$, as requered. Similarly $A x \subseteq A$ implies that $x \in \bar{R}$.

Lemma 2.11. For any $i \geqq 1,\left(Y^{i}\right)^{*}=Y^{i}$, and $\bar{R}^{*}=\bar{R}$.

Proof. Let f be any right R-homomorphism from \bar{R} to R. Extend f to a right Q-homomorphism \bar{f} from $\bar{Q}=\bar{R} \otimes_{R} Q$ to Q. If $y \in \bar{R}^{*}$ then $y I \subseteq \bar{R}$ for some $I \in T(R)$, and so $y \in \bar{Q}$. Then $\bar{f}(y) I \subseteq R$, and so $\bar{f}(y) \in R$ for any f. If (f_{λ}, $\left.u_{\lambda}\right)(\lambda \in \Lambda)$ is a projective coordinate system for \bar{R}_{R}, then so is $\left(\bar{f}_{\lambda}, u_{\lambda}\right)(\lambda \subset \Lambda)$ for \bar{Q}_{Q}. Therefore $y=\sum_{\lambda} u_{\lambda} f_{\lambda}(y) \in \bar{R}$. Hence $\bar{R}^{*}=\bar{R}$. If $x \in\left(Y^{i}\right)^{*}$ then $x J \subseteq$ Y^{i} for some $J \in T(R)$. Then, as $J Q=Q$, we have $x \in X^{i}$. Hence $x \in X^{i} \cap \bar{R}^{*}$ $=X^{i} \cap \bar{R}=Y^{i}$.

Lemma 2.12. Let A be any reflexive $\bar{R}-\bar{R}$-submodule of $Q(\bar{R})$. Then $A^{*}=A$.

Proof. If $x I \subseteq A$ for some $I \in T(R)$, then $A^{-1} x I \subseteq A^{-1} A \subseteq \bar{R}$. Using Lemma 2.11, $A^{-1} x \subseteq \bar{R}$. Therefore $x \in\left(A^{-1}\right)^{-1}=A$.

Lemma 2.13. Let A be any non-zero \bar{R} - R-submodule of \bar{R}. Then there exists a finitely generated \bar{R} - R-submodule A_{0} of A such that $A \subseteq \bigcup_{j \geqq 0} \beta^{j}\left(A_{0}\right)$, where $\beta(M)=M^{*}$ for any R - R-submodule M of $Q(\bar{R})$.

Proof. For any $i \geqq 0, Y^{i} / Y^{i-1}$ is an invertible R - R-bimodule. Therefore there exists a unique ideal A_{i} of R such that $\left(A \cap Y^{i}\right)+Y^{i-1}=Y^{i} A_{i}+Y^{i-1}$. In particular, $A \cap R=A_{0}$. Since $Y\left(A \cap Y^{i}\right) \subseteq A \cap Y^{i+1}$, we have an ascending chain $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots$. If $A_{i}=0$ then $A \cap Y^{i} \subseteq Y^{i-1}$, and so $A_{k} \neq 0$ for some k. Then $A_{k}^{*} \subseteq A_{k+1}^{*} \subseteq \cdots$, which are reflexive ideals of R. Therefore, for some integer $m \geqq k, A_{m}^{*}=A_{m+1}{ }^{*}=\cdots$. By Proposition 1.12, $A_{m}^{*}=\left(\sum_{j=1, \cdots, t} R z_{j} R\right)^{*}$ for some $z_{1}, \cdots, z_{t} \in A_{m}$. Noting that ${ }_{R} Y^{m}$ is finitely generated, we have that $\sum_{j} Y^{m} z_{j} R \subseteq \sum_{i} R b_{i} R+Y^{m-1}$ for some $b_{1}, \cdots, b_{s} \in A \cap Y^{m}$. Let $n \geqq m$. Then $A \cap Y^{n} \subseteq Y^{n} A_{n}^{*}+Y^{n-1}=Y^{n} A_{m}^{*}+Y^{n-1} \subseteq Y^{n-m}\left(\sum_{j} Y^{m} z_{j} R\right)^{*}+Y^{n-1}$. Therefore, if $a \in A \cap Y^{n}$ then $a J \subseteq Y^{n-m}\left(\sum_{j} Y^{m} z_{j} R\right)+Y^{n-1}$ for some $J \in T(R)$, and so $a J \subseteq$ $\sum_{i} Y^{n-m} b_{i} R+Y^{n-1}$. Then $a J \subseteq \sum_{i} Y^{n-m} b_{i} R+A \cap Y^{n-1}$. Thus $A \cap Y^{n} \subseteq\left(\sum_{i} Y^{n-m}\right.$ $\left.b_{i} R+A \cap Y^{n-1}\right)^{*}$ for any $n \geqq m$. By induction we obtain $A \cap Y^{n} \subseteq \beta^{n-m+1}$ ($\left.\sum_{i} Y^{n-m} b_{i} R+A \cap Y^{m-1}\right)(n \geqq m)$. However, from the above proof, this holds whenever $A_{m} \neq 0$ and $A_{m}^{*}=\cdots=A_{n}^{*}$. Therefore, for any $n \geqq 0$ with $A_{n} \neq 0$, $A \cap Y^{n} \subseteq\left(\sum_{i} R c_{i} R+A \cap Y^{n-1}\right)^{*}$ for some $c_{1}, \cdots, c_{v} \in A \cap Y^{n}$. On the other hand, if $A_{n}=0$ then $0=A_{0}=\cdots=A_{n}$, and so $A \cap Y^{n}=0$. Hence there exists a finitely generated $R-R$-submodule W of $A \cap Y^{m-1}$ such that $A \cap Y^{m-1} \subseteq \beta^{m}(W)$. Then, for any $n \geqq m, A \cap Y^{n} \subseteq \beta^{n-m+1}\left(\sum_{i} Y^{n-m} b_{i} R+\beta^{m}(W)\right) \subseteq \beta^{n+1}\left(\sum_{i} Y^{n-m} b_{i} R+W\right)$. This completes the proof.

Now we can complete the proof of Theorem 2.2 with the following
Lemma 2.14. The ascending chain condition on reflexive ideals of \bar{R} holds.
Proof. Let $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$ be an ascending chain of reflexive ideals of \bar{R}. Put $A=\bigcup_{i} A_{i}$. Then, by Lemma 2.13, $A \subseteq \bigcup_{j \geqq 0} \beta^{j}\left(A^{\prime}\right)$ for some finitely generated \bar{R} - R-submodule A^{\prime} of A. Then $A^{\prime} \subseteq A_{i}$ for some i. By Lemma
2.12, $\beta\left(A_{i}\right)=A_{i}$, and so $\beta^{j}\left(A^{\prime}\right) \subseteq A_{i}$ for all j. Hence $A=A_{i}$.

Next we proceed to the proof of the following
Theorem 2.15. For any non-zero ideal A of $Q\langle X\rangle, A \cap R\langle Y\rangle$ is a reflexive ideal of $R\langle Y\rangle$.

Lemma 2.16. The following conditions are equivalent.
(1) For any non-zero ideal A of $\bar{Q}, A \cap \bar{R}$ is a reflexive ideal of \bar{R}.
(2) For any $B \in T(\bar{R}), Q B=\bar{Q}$ holds.
(3) For any non-zero ideal C of $\bar{R},(Q C)^{-1}=C^{-1} Q=Q C^{-1}$ holds.

Proof. (1) \Rightarrow (2) If $Q B \subsetneq \bar{Q}$ then $B \subseteq Q B \cap \bar{R} \subsetneq \bar{R}$, and $Q B \cap \bar{R}$ is a reflexive ideal, a contradiction. (2) \Rightarrow (3) From $C Q=Q C$, we have $C^{-1} C Q C^{-1}=C^{-1} Q C C^{-1}$. Then, by assumption, $Q C^{-1}=C^{-1} Q$. Hence $(Q C)^{-1}=C^{-1} Q=Q C^{-1}$. (3) $\Rightarrow(1)$ Let $C \in T(\bar{R})$. Then $Q C=\bar{Q}$, because of $C^{-1}=\bar{R}$, Now, put $A \cap \bar{R}=A^{\prime}$. If $C x \subseteq A^{\prime}(x \in \bar{R})$, then $\bar{Q} x=Q C x \subseteq A$, and so $x \in A \cap \bar{R}=A^{\prime}$. Similarly $y C \subseteq A^{\prime}$ implies that $y \in A^{\prime}$. Hence A^{\prime} is a reflexive ideal, by Proposition 1.3.

Remark 1. The condition (2) is equivalent to that $B \cap R \neq 0$ for any $B \in$ $T(\bar{R})$.

Remark 2. If C is an ideal of \bar{R} such that $C \cap R \in T(R)$, then $C \in T(\bar{R})$. In fact, if $x C \in \bar{R}$ then $x(C \cap R) \subseteq \bar{R}$, and so $x \in \bar{R}$, by Lemma 2.11.

Lemma 2.17. For any $I \in F(Q ; R, R),\left(\bar{R} I^{-1}\right)^{*}=\bar{R} I^{-1}$ holds.
Proof. The proof is similar to the one of Lemma 2.11.
Let M be a monic $Q-Q$-submodule of degree n (i.e. $X^{n-1} \oplus M=X^{n}$). Then, by [13; Corollary 1 of Proposition 1], $X^{n+m}=X^{n-1} \oplus\left(X^{m} \otimes_{Q} M\right)$ for any $m \geqq 0$. Therefore $X^{m} \otimes_{Q} M \leftrightarrows X^{n+m} / X^{n-1}$ as $Q-Q$-bimodules, canonically. Since Y^{n+m} $\cap X^{n-1}=Y^{n-1}, Y^{n+m} / Y^{n-1}$ is canonically embedded in X^{n+m} / X^{n-1}, and $Q \otimes_{R}$ $\left(Y^{n+m} / Y^{n-1}\right) \leftrightarrows X^{n+m} / X^{n-1}$. Hence there exists a unique R - R-submodule V_{m} of $X^{m} \otimes_{Q} M$ such that the following diagram is commutative:

Namely, $V_{m}+X^{n-1}=Y^{n+m}+X^{n-1}$. Then $Q \otimes_{R} V_{m}=X^{m} \otimes_{Q} M$, and $V_{m}=X^{m} M \cap$ $\left(Y^{n+m}+X^{n-1}\right)$. Therefore $V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots$, where $V_{0}=M \cap\left(Y^{n}+X^{n-1}\right)$. By [13; Corollary 1 of Proposition 1], $\bar{Q}=X^{n-1} \oplus\left(\bar{Q} \otimes_{Q} M\right)$. Put $A=\bar{Q} \otimes_{Q} M$. Then $A \cap\left(\bar{R}+X^{n-1}\right)=\bigcup_{i} V_{i}$, and $A=\bigcup_{m \geq 0}\left(X^{m} \otimes_{Q} M\right)=\bigcup_{m \geqq 0}\left(Q \otimes_{R} V_{m}\right)=Q \otimes$ ${ }_{R} V$, where $V=\bigcup_{i} V_{i}$. By Lemma 2.13, $A \cap \bar{R} \subseteq \bigcup_{j \geqq 0} \beta^{j}\left(A^{\prime}\right)$ for some finitely
generated \bar{R} - R-submodule A^{\prime} of $A \cap \bar{R}$. However, by virtue of Lemma 2.11, $\beta(A \cap \bar{R})=A \cap \bar{R}$, whence $A \cap \bar{R}=\bigcup_{j \geq 0} \beta^{j}\left(A^{\prime}\right)$. As $\bar{R} A_{R}^{\prime}$ is finitely generated, $A^{\prime} \subseteq \bar{R} V_{s}$ for some s. Now we assume that M is invertible in $Q(\bar{R})$. Then, since V_{0} is an invertible R - R-module and $Q \otimes_{R} V_{\mathrm{f}}=M=V_{0} \otimes_{R} Q$, we know that ${ }_{R} V_{0 R}$ is invertible in $Q(\bar{R})$. In this situation, we need the following

Lemma 2.18. For any R-R-submodule W of $\bar{Q}, W^{*} V_{0}^{-1}=\left(W V_{0}^{-1}\right)^{*}$ holds.
Proof. By virtue of Proposition 1.2, there is a one to one mapping $I \mapsto$ $V_{0}^{-1} I V_{0}$ from $T(R)$ onto itself. Let x be in $W^{*} V_{0}^{-1}$. Then $x V_{0} \subseteq W^{*}$. Since $V_{0 R}$ is finitely generated, $x V_{0} I \subseteq W$ for some $I \in T(R)$. Then $x V_{0} I V_{0}^{-1} \subseteq W V_{0}^{-1}$, and so $x \in\left(W V_{0}^{-1}\right)^{*}$. Similarly we can prove that $\left(W V_{0}^{-1}\right)^{*} \subseteq W^{*} V_{0}^{-1}$,

We still assume that M is a monic $Q-Q$-submodule which is invertible in $Q(\bar{R})$, and notations are the same as before. Since $V_{s} \subseteq A=\bar{Q} M=\bar{Q} V_{0}$, we have $V_{s} V_{0}^{-1} \subseteq \bar{Q}$. Since both ${ }_{R} V_{s}$ and ${ }_{R} V_{0}^{-1}$ are finitely generated, ${ }_{R} V_{s} V_{0}^{-1}$ is also finitely generated, and so $V_{s} V_{0}^{-1} I \subseteq \bar{R}$ for some non-zero ideal I of R, because of $\bar{Q}=\bar{R} Q$. Then, as $A^{\prime} \subseteq \bar{R} V_{s}$, we have $A^{\prime} V_{0}^{-1} I \subseteq \bar{R}$, and so $A^{\prime} V_{0}^{-1} I I^{-1} \subseteq \bar{R} I^{-1}$. Then, by Lemma 2.18 and 2.17, $\beta^{j}\left(A^{\prime}\right) V_{0}^{-1}=\beta^{j}\left(A^{\prime} V_{0}^{-1}\right) \subseteq \bar{R} I^{-1}$ for all $j \geqq 0$. Hence, as $A \cap \bar{R}=U_{j \geqq 0} \beta^{j}\left(A^{\prime}\right)$, we obtain $(A \cap \bar{R}) V_{0}^{-1} I \subseteq \bar{R}$. Put $N=\{x \in$ $Q(\bar{R}):(A \cap \bar{R}) x \subseteq \bar{R}\} \quad$ and $\quad N^{\prime}=\{y \in Q(\bar{R}): A y \subseteq \bar{Q}\}$. Evidently $N^{\prime}=V_{0}^{-1} \bar{Q}$, and $V_{0}^{-1} I \subseteq N$ implies that $N^{\prime} \subseteq N \bar{Q}$. Next, let us prove that $N \bar{Q} \subseteq N^{\prime}$. Since ${ }_{R} V_{0}$ is finitely generated, there exists a non-zero ideal I^{\prime} such that $V_{0} I^{\prime} \subseteq \bar{R}$. Then $V_{0} I^{\prime}=I^{\prime \prime} V_{0}$ for some non-zero ideal $I^{\prime \prime}$ of R, for ${ }_{R} V_{0 R}$ is invertible. Therefore $A=\bar{Q} V_{0}=\bar{Q} I^{\prime \prime} V_{0}=\bar{Q} V_{0} I^{\prime} \subseteq \bar{Q}(A \cap \bar{R})$, whence $A=\bar{Q}(A \cap \bar{R})$. Hence $N \subseteq$ N^{\prime}. Thus $N^{\prime}=N \bar{Q}$. Finally, $z N \subseteq \bar{R}$ implies $z N^{\prime}=z N \bar{Q} \subseteq \bar{Q}$, and so $z \in$ $\bar{Q} V_{0}=A$. Since $\bar{R} \subseteq N$, we have $z \in \bar{R}$. Hence $z \in A \cap \bar{R}$. Therefore a left \bar{R}-submodule $A \cap \bar{R}$ satisfies (β) of Proposition 1.15. Thus we have the following

Proposition 2.19. Let M be a monic $Q-Q$-submodule which is invertible in $Q(\bar{R})$. Put $A=\bar{Q} M, A^{-1}=\{x \in Q(\bar{R}): A x \subseteq \bar{Q}\}$, and $(A \cap \bar{R})^{-1}=\{x \in Q(\bar{R})$: $(A \cap \bar{R}) x \subseteq \bar{R}\}$. Then $A=Q(A \cap \bar{R})$, and $A^{-1}=(A \cap \bar{R})^{-1} \bar{Q}$. Further, $A \cap \bar{R} \in$ $F^{*}(Q(\bar{R}) ; \bar{R}, B)$, where $B=O_{r}(A \cap \bar{R})$.

Evidently Theorem 2.15 follows from Proposition 2.16, Proposition 2.19 above and Lemma 20 below. (Cf. the proof of Lemma 2.7).

Lemma 2.20. Let A be any non-zero ideal of \bar{Q}. Then $A=\bar{Q} M=M \bar{Q}$ for some monic $Q-Q$-submodule M. Such a M is uniquely determined by A, and is invertible in $S(\bar{Q})$.

Proof. The first half follows from the proof of Lemma 2.7. Since $A=$ $M \otimes_{Q} \bar{Q}$, any right Q-homomorphism from M to Q can be extended to a right \bar{Q}-homomorphism from A to \bar{Q}. Since A is invertible, this is given by a left multiplication of an element of A^{-1}. Therefore if we put $M^{\prime}=\left\{x \in A^{-1}\right.$:
$x M \subseteq Q\}$, then $M^{\prime} M=Q$, because M_{Q} is a generator. Symmetrically $M M^{\prime \prime}=$ Q for some $Q-Q$-submodule $M^{\prime \prime}$ of A^{-1}. Hence M is invertible in $S(\bar{Q})$. Let N be any monic $Q-Q$-submodule with $A=\bar{Q} N$. Let $\operatorname{deg} N=r$. Then $\bar{Q}=$ $X^{r-1} \oplus A$, and $N=A \cap X^{r}$, by [13; Corollary 1 of Proposition 1]. Hence N is uniquely determined by A.

In all that follows we denote $F^{*}(Q(\bar{Q}) ; \bar{Q}, \bar{Q}), F(Q(\bar{Q}) ; \bar{Q}, \bar{Q}), F^{*}(Q(\bar{R}) ; \bar{R}$, $\bar{R})$, and $F(Q(\bar{R}), \bar{R}, \bar{R})$ by $F^{*}\{\bar{Q}\}, F\{\bar{Q}\}, F^{*}\{\bar{R}\}$, and $F\{\bar{R}\}$, respectively. Similarly we denote $F^{*}(Q ; R, R)$ and $F(Q ; R, R)$ by $F^{*}\{R\}$ and $F\{R\}$, respectively (cf. Proposition 1.13).

Let $M \in F\{\bar{R}\}$. Then $M I \subseteq \bar{R}$ for some $I \subset F_{i}(\bar{R})$, by Proposition 2.1. Using Corollary of Lemma 2.5, $Q M I=M I Q=M Q I$, and so $Q M Q=M Q$, for $Q I$ is invertible. Symmetrically $Q M Q=Q M$, whence $M Q=Q M$. Let $x \in$ $Q\left(M^{-1}\right)^{-1}$. Then $x C \subseteq Q M$ for some $C \in T(\bar{R})$. Since $C Q=\bar{Q}$, we have $x \in$ $Q M Q=M Q$. Thus $Q M=Q\left(M^{-1}\right)^{-1}$. Therefore a group homomorphism ψ from $F^{*}\{\bar{R}\}$ to $F^{*}\{\bar{Q}\}$ is well defined by $\psi(M)=Q M$. Let A, B be non-zero ideals of \bar{Q}. Then $A B \cap \bar{R} \supseteq(A \cap \bar{R}) \circ(B \cap \bar{R})$. Since $A B \cap \bar{R} \subseteq$ $B \cap \bar{R}$, we have $(A B \cap \bar{R})(B \cap \bar{R})^{-1} \subseteq \bar{R}$. By Proposition $2.19, B^{-1} \supseteq(B \cap \bar{R})^{-1}$, and so $(A B \cap \bar{R})(B \cap \bar{R})^{-1} \subseteq A \cap \bar{R}$. Therefore $A B \cap \bar{R} \subseteq(A \cap \bar{R}) \circ(B \cap \bar{R})$. Hence $A B \cap \bar{R}=(A \cap \bar{R}) \circ(B \cap \bar{R})$. Then a group homomorphism ϕ from $F^{*}\{\bar{Q}\}$ to $F^{*}\{\bar{R}\}$ is well defined by $\phi\left(A B^{-1}\right)=(A \cap \bar{R}) \circ(B \cap \bar{R})^{-1}$. Because of Proposition 2.19, $\psi \phi=i d$. Hence $F^{*}\{\bar{R}\} \leftrightarrows \operatorname{Im} \phi \times \operatorname{Ker} \psi$, and $F^{*}\{\bar{Q}\} \leftrightarrows \operatorname{Im} \phi$. Let I, J be in $F_{i}^{*}(\bar{R})$. If $I Q \subseteq J Q$ then $1 \in \bar{Q} \subseteq I^{-1} J Q$, and so $G \subseteq I^{-1} J$ for some $G \in F_{i}(R)$. Then $(\bar{R} G \bar{R})^{*} \subseteq I^{-1} \circ J$. Therefore $I^{-1} \circ J \in$ Ker ψ if and only if $(\bar{R} G \bar{R})^{*} \subseteq I^{-1} \circ J \subseteq\left((\bar{R} F \bar{R})^{*}\right)^{-1}$ for some $F, G \in F_{i}(R)$. In particular, $J \in \mathrm{Ker}$ ψ if and only if $J \cap R \neq 0$. In this case, $J \cap R \in F_{i}^{*}(R)$, by Lemma 2.12. Let $P^{\prime} \in F_{i}^{*}(\bar{Q})$ be irreducible. Then, by Corollary of Lemma $2.5, P^{\prime} \cap \bar{R}$ is a prime ideal, so that $P^{\prime} \cap \bar{R}$ is irreducible in $F_{i}^{*}(\bar{R})$, and $Q\left(P^{\prime} \cap \bar{R}\right)=P^{\prime}$ by Proposition 2.19. Conversely, if $P \in F_{i}^{*}(\bar{R})$ is irreducible and $Q P \neq \bar{Q}$ then, by the maximality of P in $F_{i}^{*}(\bar{R})$, we have $Q P \cap \bar{R}=P$, and $Q P$ is maximal. Let $J \in F_{i}^{*}(\bar{R})$, and $J=P_{1} \circ \cdots \circ P_{r}$, where each P_{i} is irreducible in $F_{i}^{*}(\bar{R})$. Then $Q J \cap \bar{R}=\left(Q P_{1} \cap \bar{R}\right) \circ \cdots \circ\left(Q P_{r} \cap \bar{R}\right)$, and each $Q P_{i} \cap \bar{R}$ is either P_{i} or \bar{R}. Let $I^{\prime}, I^{\prime \prime}$ be in $F_{i}^{*}(\bar{R})$. Then, $I^{\prime} \circ I^{\prime \prime-1} \in \operatorname{Ker} \psi \Leftrightarrow Q I^{\prime}=Q I^{\prime \prime} \Leftrightarrow Q I^{\prime} \cap \bar{R}=Q I^{\prime \prime} \cap \bar{R}$. Therefore Ker $\psi=\Perp(P)$, where P ranges over all irreducible reflexive ideals P such that $P \cap R \neq 0$ (or equivalently, $Q P=\bar{Q}$), and (P) denotes the infinite cyclic group generated by P.

Lemma 2.21. (i) Let $I \in F\{R\}$, and assume that $I \bar{R}=\bar{R} I$. Then $\bar{R} I \in$ $F\{\bar{R}\},(\bar{R} I)^{-1}=\bar{R} I^{-1}=I^{-1} \bar{R}$, and $\bar{R} I \cap X^{i}=I Y^{i}=Y^{i} I$ for all $i \geqq 0$. Therefore, $I \in F^{*}\{R\}$ then $\bar{R} I \in F^{*}\{\bar{R}\}$.
(ii) Let $J \in F_{i}^{*}(R)$ be irreducible, and asume that $J Y=Y J$. Then, if $a R b \subseteq$ $\bar{R} J(a, b \in \bar{R})$ then $a \in \bar{R} J$ or $b \in \bar{R} J$. Therefore $\bar{R} J$ is irreducible in $F_{i}^{*}(\bar{R})$.

Proof. (i) Since $0 \neq \bar{R} I \cdot I^{-1} \bar{R} \subseteq \bar{R}$ and $0 \neq \bar{R} I^{-1} \cdot I \bar{R}$, we have $\bar{R} I \in F\{\bar{R}\}$, by Proposition 1.9. Let $x \in(I \bar{R})^{-1}$. Then $x I \subseteq \bar{R}$, and so $x I I^{-1} \subseteq \bar{R} I^{-1}$. By Lemma 2.17, $x \in \bar{R} I^{-1}$. Hence $(I \bar{R})^{-1}=\bar{R} I^{-1}$, and symmetrically $(\bar{R} I)^{-1}=I^{-1} \bar{R}$. Since Y^{i+1} / Y_{R}^{i} is projective, $Y^{i+1}=Y^{i} \oplus W$ for some right R-submodule W of Y^{i+1}. Then $\bar{R}=Y^{i} \oplus\left(W \otimes_{R} \bar{R}\right)$, by [13; Proposition 1]. Then $\bar{Q}=\bar{R} \otimes_{R} Q=\left(Y^{i} \otimes_{R} Q\right)$ $\oplus\left(W \otimes_{R} \bar{R} \otimes_{R} Q\right)=X^{i} \oplus\left(W \otimes_{R} \bar{Q}\right)$, and $\bar{R} I=Y^{i} I \oplus W \bar{R} I$. Hence $X^{i} \cap \bar{R} I=Y^{i} I$, and symmetrically $X^{i} \cap I \bar{R}=I Y^{i}$. (ii) By (i), $J \bar{R} \in F_{i}^{*}(\bar{R})$. Let B, C be $R-R$-submodules of \bar{R} such that $B C \subseteq J \bar{R}$. Then, as $(B+J \bar{R})(C+J \bar{R}) \subseteq J \bar{R}$, we may assume that $B, C \supseteq J \bar{R}$. For any integer $i \geqq 1$, there are ideals B_{i}, C_{i} of R such that $\left(B \cap Y^{i}\right)+Y^{i-1}=B_{i} Y^{i}+Y^{i-1},\left(C \cap Y^{i}\right)+Y^{i-1}=C_{i} Y^{i}+Y^{i-1}$, because each Y^{i} / Y^{i-1} is an invertible R - R-bimodule. Then, as $J \bar{R} \cap Y^{i+j}=J Y^{i+j}$, we have $B_{j} \cdot \rho^{j}\left(C_{i}\right) \subseteq J$ for all i, where ρ is the one as before. Now, assume that $B \supseteqq J \bar{R}$. Then $B_{j} \nsubseteq J$ for some j, so that $\rho^{j}\left(C_{i}\right) \subseteq J$. Then $C_{i} \subseteq \rho^{-j}(J)=J$ for all i. Noting that $C_{0}=C \cap R \subseteq J$, this implies that $C \subseteq J \bar{R}$. This completes the proof.

Here we consider the following condition.
(\#) For any $I \in F_{i}^{*}(Q ; R), I Y=Y I$.
Lemma 2.22. Assume that the condition (\#) holds. Let $P \in F_{i}^{*}(\bar{R})$. Then P is an irreducible ideal such that $P \cap R \neq 0$ if and only if $P=I \bar{R}$ for some irreducible reflexive ideal I of R.

Proof. The "if" part follows from Lemma 2.21. Conversely, let $P \in$ $F_{i}^{*}(\bar{R})$ be irreducible, and let $P \cap R \neq 0$. Then $P \cap R \in F_{i}^{*}(R)$. If $I J \subseteq P \cap R$ for some $I, J \in F_{i}(R)$, then $I^{*} J^{*} \subseteq P \cap R$, because of $P \cap R \in F_{i}^{*}(R)$. Then $I^{*} \bar{R}$. $J^{*} \bar{R} \subseteq P$, whence $I^{*} \subseteq P$ or $J^{*} \subseteq P$, because P is a prime ideal. Hence $P \cap R$ is a prime ideal of R. Then, by Lemma 2.21, $(P \cap R) \bar{R}$ is irreducible. Hence $(P \cap R) \bar{R}=P$.

Assume that the condition (\#) holds. Let I, J be in $F^{*}\{R\}$. Then $(\bar{R} I) \circ(\bar{R} J)=\left((\bar{R} I \cdot \bar{R} J)^{-1}\right)^{-1}=\left((\bar{R} I J)^{-1}\right)^{-1}=\bar{R}(I \circ J)$, by Lemma 2.21. Therefore the mapping $\theta: I \mapsto \bar{R} I$ is a homomorphism from $F^{*}\{R\}$ to $\operatorname{Ker} \psi$. Evidently $I \subseteq \bar{R} I \cap Q$. Let $I=F \circ G^{-1}\left(F, G \in F_{i}^{*}(R)\right)$. Then $(\bar{R} I \cap Q) G \subseteq \bar{R} F \cap Q=\bar{R} F \cap$ $R=F$, because R_{R} is a direct summand of \bar{R}_{R}. Therefore ($\left.\bar{R} I \cap Q\right) G G^{-1} \subseteq F G^{-1}$, and so $\bar{R} I \cap Q \subseteq F \circ G^{-1}=I$. Hence $I=\bar{R} I \cap Q$. On the other hand, all irreducible $P \in F_{i}^{*}(\bar{R})$ with $P \cap R \neq 0$ generate Ker ψ. Therefore, by Lemma 2.22, θ is an isomorphism from $F^{*}\{R\}$ to $\operatorname{Ker} \psi$. Thus we obtain the following

Theorem 2.23. Assume that the condition (\#) holds. Then $\theta: F^{*}\{R\} \rightrightarrows$ Ker $\psi, I \mapsto \bar{R} I$, as groups. Further, $\bar{R} I \cap Q=I$ for all $I \in F^{*}\{R\}$.

Proposition 2.24. Assume that the condition (\#) holds. If $I \cdot S(R)=S(R) I$ $=S(R)$ for all $I \in F_{i}(R)$, then $A \cdot S(\bar{R})=S(\bar{R}) A=S(\bar{R})$ for all $A \in F_{i}(\bar{R})$. (Cf.

Proposition 1.14.)
Proof. From (\#), it follows that $S(R) \subseteq S(\bar{R})$. Let $A \in F_{i}(\bar{R})$. Then $A A^{-1} \cap R \neq 0$, because of Lemma 2.16. Therefore $S(R) \subseteq A A^{-1} S(R) \subseteq A \cdot S(\bar{R})$, hence $A \cdot S(\bar{R})=S(\bar{R})$. Symmetrically $S(\bar{R}) A=S(\bar{R})$.
3. In this section, we study further on reflexive $R-R$-submodules of $Q(\bar{R})$. For any additive submodules V, W of $Q(\bar{R})$, we put $(V \cdot W)=\{x \in Q(\bar{R})$: $x W \subseteq V\}$, and $(W \cdot . V)=\{x \in Q(\bar{R}): W x \subseteq V\}$.

Proposition 3.1. (i) If $N \in F(Q(\bar{R}) ; R, R)$ and $N \subseteq \bar{R}$, then $Q N=N Q$.
(ii) Let $N \in F(Q(\bar{R}) ; R, R)$, and assume that $Q N=N Q$. Then $Q N$ is an invertible $Q-Q$-submodule of $Q(\bar{R}),(Q N)^{-1}=Q N^{-1}=N^{-1} Q, Q N^{*}=N^{*} Q$, and $\bar{R} N^{*}=(\bar{R} N)^{*} . \quad$ Furthermore, $(\bar{R} N \cdot . R)=N^{-1} \bar{R}$, and $\left(\bar{R} . \cdot N^{-1} \bar{R}\right)=\bar{R} N^{*}$.
(iii) Let M be a $Q-Q$-submodule of Q, and assume that M is invertible in $Q(\bar{R})$. Then $M \cap \bar{R} \in F^{*}(Q(\bar{R}) ; R, R)$, and $Q(M \cap \bar{R})=M=(M \cap \bar{R}) Q$. Further there is an invertible R - R-submodule V_{0} of $Q(\bar{R})$ such that $V_{0}^{-1}(M \cap \bar{R}),(M \cap$ $\bar{R}) V_{0}^{-1} \in F^{*}\{R\}$ and $Q V_{0}=M=V_{0} Q$.

Proof. (i) First we prove that ${ }_{Q} Q N_{R}$ is simple. Let U be any non-zero $Q-R$-submodule of $Q N$. Then $Q=Q N N^{-1} \supseteq U N^{-1} \neq 0$, and so $Q=U N^{-1}$, because ${ }_{Q} Q_{R}$ is simple. Then $Q N=U N^{-1} N \subseteq U$, whence $U=Q N$. Thus ${ }_{Q} Q N_{R}$ is simple. Then there is an integer $n \geqq 0$ such that $Q N \cap X^{n-1}=0$ and $Q N \cap X^{n} \neq 0$. By making use of Corollary 1 of Lemma 2.3, we have $X^{n-1} \oplus$ $Q N=X^{n}$. Then, by Lemma 2.4, $Q N \supseteq N Q$. Symmetrically $Q N \subseteq N Q$, whence $Q N=N Q$, as desired. (ii) $Q N=N Q$ yields $N^{-1} Q=N^{-1} Q N N^{-1}=N^{-1}$ $N Q N^{-1}=Q N^{-1}$, and so $N^{-1} Q=Q N^{-1}$. Therefore ${ }_{Q} Q N_{Q}$ is invertible in $Q(\bar{R})$, and $(Q N)^{-1}=N^{-1} Q=Q N^{-1}$. Hence $Q N=\left((Q N)^{-1}\right)^{-1}=N^{*} Q=Q N^{*}$. Now, $\bar{R} \otimes$ ${ }_{R} Q N=\bar{R} \otimes_{R} Q \otimes_{Q} Q N=\bar{Q} \otimes_{Q} Q N \underset{\rightarrow}{\leftrightarrows} \cdot Q N=\bar{R} Q N$ (cf. Remark to Proposition 1.6), and therefore any right R-homomorphism f from \bar{R} to R can be extended to a right Q-homomorphism f from $\bar{R} Q N$ to $Q N$. Then, for any $x \in(\bar{R} N)^{*}$, we can see that $\bar{f}(x) \in N^{*}$, whence it follows that $x \in \bar{R} N^{*}$, because \bar{R}_{R} is projective. (Cf. the proof of Lemma 2.11.) Since $\bar{R} N^{*} \subseteq\left(\bar{R}_{N}\right)^{*}$ is evident we have $\bar{R} N^{*}=$ $(\bar{R} N)^{*}$. Symmetrically, $J y \subseteq N \bar{R}(J \in T(R))$ implies that $y \in N^{*} \bar{R}$. Let $\bar{R} N z$ $\subseteq \bar{R}$. Then $N^{-1} N z \subseteq N^{-1} \bar{R}$, and so $z \in N^{-1} \bar{R}$, because of $N^{-1}=\left(N^{-1}\right)^{*}$. If $u N^{-1} \bar{R} \subseteq \bar{R}$ then $u N^{-1} N \subseteq \bar{R} N$, whence $u \in(\bar{R} N)^{*}=\bar{R} N^{*}$. This completes the proof of (ii). (iii) Since ${ }_{Q} Q_{Q}$ is simple, an invertible $Q-Q$-module M is also simple. Then, as in the proof of (i), $X^{n-1} \oplus M=X^{n}$ for some $n \geqq 0$. Then $M \leftrightarrows X^{n} / X^{n-1}$, canonically. Let V_{0} be as in Lemma 2.18. Then $M=Q \otimes_{R} V_{0}$ $=V_{0} \otimes_{R} Q$, and ${ }_{R} V_{0 R}$ is invertible in $Q(\bar{R})$. Put $N=M \cap \bar{R}$. Then $N \neq 0$, for \bar{R}_{R} is essentialin \bar{Q}_{R}. Put $I=\left\{x \in Q: V_{0} x \subseteq N\right\}$. Then $N=V_{0} \otimes_{R} I$, because V_{0} is invertible. Since $V_{O R}$ is finitely generated, $J V_{0} \subseteq \bar{R}$ for some non-zero ideal J of R. Put Hom $\left(\bar{R}_{R}, R_{R}\right)\left(J V_{0}\right)=J^{\prime}$. Then, since \bar{R}_{R} is projective, J^{\prime} is a
non-zero ideal of R. Noting that $\bar{R} \otimes_{R} Q=\bar{Q}$, we have $J^{\prime} I \subseteq R$. Therefore, by Proposition 2.1, $I \in F\{R\}$. If $z I^{\prime} \subseteq I\left(z \in Q, I^{\prime} \in T(R)\right)$ then $V_{0} z I^{\prime} \subseteq V_{0} I=N$, and so $V_{0} z \subseteq M \cap \bar{R}=N$, that is, $z \in I$. Thus $I \in F^{*}\{R\}$, and hence $N=V_{0} I=V_{0}$ 。 $I \in F^{*}(Q(\bar{R}) ; R, R)$. Further, $N Q=V_{0} I Q=V_{0} Q=M$. Likewise $Q N=M$. It is evident that $I=V_{0}^{-1} N$. Symmetrically $N V_{0}^{-1} \in F^{*}\{R\}$.

Let $N^{\prime} \in F^{*}(Q(\bar{R}) ; R, R)$, and assume that $N^{\prime} \subseteq \bar{R}$. Put $Q N^{\prime} \cap \bar{R}=N$. Then $N \in F^{*}(Q(\bar{R}) ; R, R)$. Therefore if we put $J=N^{\prime} \circ N^{-1}$, then $J \in F_{i}^{*}(R)$, and $N^{\prime}=J \circ N$. Evidently $Q N \cap \bar{R}=N$. Further, as in (iii) above, $N=I V_{0}$, where $I \in F^{*}\{R\}$. Therefore $N^{\prime}=(J \circ I) V_{0}$, where $J \circ I \in F^{*}\{R\}$, and V_{0} is an invertible R - R-submodule of $Q(\bar{R})$ with $V_{0} Q=Q V_{0}=Q N^{\prime}$.

Proposition 3.2. Let $U \in F(Q(\bar{R}) ; R, R)$, and suppose that $\bar{R} U=U \bar{R}$ and $Q U=U Q$.
(i) $\bar{R} U \in F(Q(\bar{R}) ; \bar{R}, \bar{R}),(\bar{R} U)^{-1}=\bar{R} U^{-1}=U^{-1} \bar{R}, \quad$ and $\quad Q U^{-1}=U^{-1} Q$. Therefore $\left((\bar{R} U)^{-1}\right)^{-1}=\bar{R} U^{*}=U^{*} \bar{R}$, and $Q U^{*}=U^{*} Q$.
(ii) $Q U$ is written as a product $Q U=M_{2} M_{1}^{-1}$ with monic $Q-Q$-submodules M_{i} such that $\bar{Q} M_{i}=M_{i} \bar{Q}(i=1,2)$.
(iii) $U^{*} Y=Y U^{*}$.

Proof. (i), (ii) Put $M=Q U$. Then, by assumption, $\bar{Q} M=M \bar{Q}$. By Proposition 3.1, $U^{-1} Q=Q U^{-1}=M^{-1}$, and hence $\bar{Q} M \in F^{*}\{\bar{Q}\}$, because of $\bar{Q} M^{-1}=M^{-1} \bar{Q}=(\bar{Q} M)^{-1}$. Therefore $\bar{Q} M=\left(\bar{Q} M_{2}\right)^{-1}\left(\bar{Q} M_{1}\right)$ for some monic Q -Q-submodules M_{i} such that $\bar{Q} M_{i}=M_{i} \bar{Q} \quad(i=1,2)$, by Lemma 2.20. Since $\left(\bar{Q} M_{2}\right)^{-1}=\bar{Q} M_{2}^{-1}=M_{2}^{-1} \bar{Q}$, we have $\bar{Q} M=\bar{Q} M_{2}^{-1} M_{1}$ and so $\bar{Q} M_{2}^{-1} M_{1} M^{-1}=\bar{Q}$. Then $M_{2}^{-1} M_{1} M^{-1}$ is a monic $Q-Q$-submodule, and so $M_{2}^{-1} M_{1} M^{-1}=Q$, by [13; Corollary 1 of Proposition 1]. Hence $M=M_{2}^{-1} M_{1}$. As $\bar{R} U=U \bar{R}$, we have $U^{-1} \bar{R} U U^{-1}=U^{-1} U \bar{R} U^{-1}$, whence $U^{-1} \bar{R}=\bar{R} U^{-1}$ by Proposition 3.1 (ii). Since $U U^{-1} \in T(R)$, it follows from Remark 2 of Lemma 2.16 that $R U \cdot U^{-1} \bar{R} \in T(\bar{R})$. Similarly $\bar{R} U^{-1} \cdot U \bar{R} \in T(\bar{R})$. Hence $\bar{R} U \in F\{\bar{R}\}$. The remainder follows from Proposition 3.1 (ii). (iii) By (i), we may assume that $U=U^{*}$. Since $\bar{Q} M_{i}=M_{i} \bar{Q}$, it follows from [13; Corollary 1 of Proposition 1] that $X M_{i}=X^{n_{i}+1}$ $\cap \bar{Q} M_{i}=X^{n_{i}+1} \cap M_{i} \bar{Q}=M_{i} X$, where $n_{i}=\operatorname{deg} \quad M_{i}(i=1,2)$. Then, as $M=$ $M_{2}^{-1} M_{1}$, we have $X M=M X$. Since $U^{-1} \subseteq M^{-1}, U Y U^{-1} \subseteq M X M^{-1}=X$, and so $U Y U^{-1} \subseteq X \cap \bar{R}=Y$. Then $U Y U^{-1} U \subseteq Y U$. Now, $X M=X \otimes_{Q} M=Y \otimes_{R} M$, so that any right R-homomorphism from Y to R can be extended to a right Q-homomorphism form $X M$ to M. Then, since Y_{R} is projective, we have $(Y U)^{*}=Y U$. Therefore $U Y \subseteq Y U$, and symmetrically $Y U \subseteq U Y$. Thus $Y U$ $=U Y$. (Cf. the proof of Lemma 2.11.)

Theorem 3.3. Assume that the condition (\#) holds. Let M be a monic $Q-Q$-submodule of $Q\langle X\rangle$ such that $Q\langle X\rangle M=M Q\langle X\rangle$, and let $N=M \cap R\langle Y\rangle$. Then M is invertible in $S(Q\langle X\rangle), N \in F^{*}(Q(\bar{R}) ; R, R), M=Q N=N Q$, and $Q\langle X\rangle M \cap R\langle Y\rangle=R\langle Y\rangle N=N R\langle Y\rangle$.

Proof. By Lemma 2.20 and Proposition 3.1, M is invertible in $S(\bar{Q})$, $M=Q N=N Q$, and $N \in F^{*}(Q(\bar{R}) ; R, R)$. Put $A=\bar{Q} M \cap \bar{R}$ and $\bar{R} N=B$. Then $A \supseteq B$, and $Q B=B Q=\bar{Q} M=Q A=A Q$. By Proposition 2.16 and Theorem 2.15, $(Q A)^{-1}=Q A^{-1}=A^{-1} Q$. Therefore $Q A^{-1} B=Q A^{-1} \cdot Q B=(Q A)^{-1} Q A$ $=\bar{Q}$, hence $I \subseteq A^{-1} B$ for some $I \in F_{i}(R)$. Then $A I \subseteq B$, so $A I^{*} \subseteq B^{*}=B$ by Proposition 3.1. Therefore if we put $I=\{x \in R: A x \subseteq B\}$ then $I=I^{*}$. Assume that $I \neq R$. Then $I \subseteq P$ for some irreducible $P \in F_{i}^{*}(R)$. Put $B^{\prime}=\left(B^{\cdot} \cdot \bar{R}\right)$. Then, by Proposition 3.1 (ii), $B^{\prime}=N^{-1} \bar{R}$, and $B B^{\prime} A I \subseteq A I \subseteq \bar{R} P$. Now $A I$ $\bar{R} B^{\prime}=A I B^{\prime} \subseteq B B^{\prime} \subseteq \bar{R}$, and so $\bar{R} B^{\prime} \subseteq(A I)^{-1}$. Then, by Proposition 1.11, $\bar{R} B^{\prime} \in F\{\bar{R}\}$, and so $\bar{R} B^{\prime} \cdot A I \subseteq \bar{R}$ by virtue of the commutativity of $F^{*}\{\bar{R}\}$. Then, by Lemma 2.21 (ii), $B \subseteq \bar{R} P$ or $B^{\prime} A I \subseteq \bar{R} P$. However, if $B \subseteq \bar{R} P$ then $N P^{-1} \subseteq \bar{R} \cap M=N$, so $P^{-1} \subseteq R$, a contradiction. On the other hand, if $B^{\prime} A I \subseteq$ $\bar{R} P$ then $\bar{R} B^{\prime} A I P^{-1} \subseteq \bar{R}$, and so $\bar{R} B^{\prime} \cdot A \cdot \bar{R}\left(I \circ P^{-1}\right) \subseteq \bar{R}$. Therefore $A \cdot \bar{R}\left(I \circ P^{-1}\right) \cdot$ $\bar{R} B^{\prime} \subseteq \bar{R}$, hence $A\left(I \circ P^{-1}\right) \subseteq\left(\bar{R} . \cdot B^{\prime}\right)=B$ by Propositions 3.1 and 3.2. This is a contradiction. Thus $I=R$. Hence $A=B$, that is, $\bar{Q} M \cap \bar{R}=\bar{R}(M \cap \bar{R})$. Symmetrically $M \bar{Q} \cap \bar{R}=(M \cap \bar{R}) \bar{R}$. This complete the proof.

Theorem 3.4. Assume that the condition (\#) holds. If every reflexive ideal of R is invertible then so is $R\langle Y\rangle$.

Proof. Let A be any reflexive ideal of \bar{R}. Then A can be written as $A=(I \bar{R}) \circ(B \cap \bar{R})$, where $I \in F_{i}^{*}(R)$, and $B=Q A=A Q$ (cf. Theorem 2.23). By assumption, $I \bar{R}$ is invertible. On the other hand, $B=\bar{Q} M=M \bar{Q}$ for some monic Q - Q-submodule M, by Lemma 2.20. Put $M \cap \bar{R}=N$. Then $B \cap \bar{R}=$ $\bar{R} N=N \bar{R}$ by Theorem 3.3. By Proposition 3.1 (iii), N is written as a product $N=J V_{0}$, where $J \in F^{*}\{R\}$, and V_{0} is an invertible R - R-submodule of $Q(\bar{R})$. By Propositions 2.1 and 1.6, J is invertible, hence so is N. Then $B \cap \bar{R}$ is invertible. In fact, $(B \cap \bar{R})^{-1}=N^{-1} \bar{R}=\bar{R} N^{-1}$. Thus A is invertible.

Theorem 3.5. Assume that the condition (\#) holds. Put $\bar{S}=\left\{N \in F^{*}\right.$ $(Q(\bar{R}) ; R, R): Q N=N Q, \bar{R} N=N \bar{R}\}$. Then $\lambda: \bar{S} \leftrightarrows F^{*}\{\bar{R}\}$ as group, where. $\lambda(N)=\bar{R} N$.

Proof. By Proposition 3.2, λ is well defined, and is a group homomorphism. If $\bar{R} N=\bar{R}$ then $N, N^{-1} \subseteq \bar{R}$. On the other hand, $\bar{Q} \cdot Q N=\bar{Q}$, and so $Q N=Q$, as in the proof of Proposition 3.2. Hence $N, N^{-1} \subseteq Q$. Therefore $N, N^{-1} \subseteq \bar{R} \cap Q=R$. Thus $N=R$. Let $A \in F_{i}^{*}(\bar{R})$. Then $A=(\bar{R} I) \circ(\bar{R} N)$, where $I \in F_{i}^{*}(R)$, and N is as in Theorem 3.3. Therefore $\operatorname{Im} \lambda \supseteq F_{i}^{*}(\bar{R})$, and so $\operatorname{Im} \lambda=F^{*}\{\bar{R}\}$, because of Proposition 2.1.

Assume that the condition (\#) holds. Evidently $\lambda(N) \subseteq \bar{R}$ if and only if $N \subseteq \bar{R}$, so that λ induces a semi-group isomorphism from $S=\{N \in \bar{S}: N \subseteq$ $\bar{R}\}$ to $F_{i}^{*}(\bar{R})$. Further, by Theorem 3.3, $S_{p}=\{N \in S: Q N \cap \bar{R}=N\}$ is isomorphic to $\left\{A \in F_{i}^{*}(\bar{R}): Q A \cap \bar{R}=A\right\}$. Therefore $\bar{S}_{p}=\left\{N_{1} \circ N_{2}^{-1}: N_{1}, N_{2} \in\right.$
$\left.S_{p}\right\} \leftrightarrows \operatorname{Im} \phi\left(\underset{\leftrightarrows}{ } F^{*}\{\bar{Q}\}\right)$ as group. Hence the direct product $F^{*}\{\bar{R}\}=\operatorname{Im} \phi \times$ Ker ψ induces the direct product $\bar{S}=\bar{S}_{p} \times F^{*}\{R\}$. Let $N \in S_{p}$. Then N is written as a product $N=V_{0} I$, where $I \in F^{*}\{R\}$, and V_{0} is an invertible $R-R$ submodule of $Q(\bar{R})$ such that $Q V_{\theta}=V_{0} Q$. Then $\bar{R} N=N \bar{R}=V_{0} I \bar{R}=V_{0} \bar{R} I$, and so $\bar{R} V_{0} I I^{-1}=V_{0} \bar{R} I I^{-1}$. Hence $V_{0} \bar{R} \subseteq\left(\bar{R} V_{0}\right)^{*}=\bar{R} V_{0}$ by Proposition 3.1. Symmetrically $\bar{R} V_{0} \subseteq V_{0} \bar{R}$, whence $V_{0} \bar{R}=\bar{R} V_{0}$. Therefore \bar{S} is generated by $F^{*}\{R\}$ and the subgroup of all invertible R - R-submodules V of $Q(\bar{R})$ with $Q V=V Q, \bar{R} V=V \bar{R}$.

Finally we note the following
Lemma 3.6. If R is a prime Goldie ring and $Q=Q(R)$, then any monic $Q-Q$-submodule is invertible in $Q(\bar{R})$.

Proof. Let M be a monic $Q-Q$-submodule of degree n. We may assume that $n \geqq 1$. Then, since $M \bar{Q}=M \otimes_{Q} \bar{Q}$, any right Q-homomorphism f from M to Q can be extended to a right \bar{Q}-homomorphism \bar{f} from $M \bar{Q}$ to \bar{Q}. Since $Q(\bar{R})_{\bar{Q}}$ is injective (cf. §4. Appendix), \bar{f} is given by a left multiplication of an element of $Q(\bar{R})$. Since M_{Q} is a generator, if we put $M^{\prime}=\{x \in Q(\bar{R}): x M \subseteq Q\}$ then $M^{\prime} M=Q$. Symmetrically $M M^{\prime \prime}=Q$ for some $Q-Q$-submodule $M^{\prime \prime}$ of $Q(\bar{R})$. Hence ${ }_{Q} M_{Q}$ is invertible in $Q(\bar{R})$.

4. Appendix

Lemma 4.1 If ${ }_{R} R$ is Noetherian then so is $\overline{\bar{R}} \bar{R}$.
Proof. It suffices to prove that any left ideal of \bar{R} is finitely generated. Let I be any left ideal of \bar{R}. For any integer $n \geqq 0, Y^{n} / Y^{n-1}$ is an invertible R-R-bimodule, and hence there exists a unique left ideal I_{n} of R such that $I \cap$ $Y^{n}+Y^{n-1}=Y^{n} I_{n}+Y^{n-1}$. Then $I_{0}=I \cap R \subseteq I_{1} \subseteq I_{2} \subseteq \cdots$. Therefore, $I_{m}=I_{m+1}$ $=\cdots$ for some m. Put $J=I_{m}$. Since ${ }_{R} J$ and ${ }_{R} Y^{m}$ are finitely generated, ${ }_{R} Y^{m} J$ is also finitely generated, so that $Y^{m} J \subseteq \sum_{i} R a_{i}+Y^{m-1}$ for some a_{1}, \cdots, a_{r} of $I \cap Y^{m}$. Then, for any $n \geqq m, I \cap Y^{n} \subseteq Y^{n} J+Y^{n-1} \subseteq \sum_{i} Y^{n-m} a_{i}+Y^{n-1}$, and so $I \cap Y^{n}=$ $\sum_{i} Y^{n-m} a_{i}+I \cap Y^{n-1}$. Therefore $I \cap Y^{n} \subseteq \sum_{i} \bar{R} a_{i}+I \cap Y^{m-1}$ for all $n \geqq m$. Hence $I=\sum_{i} \bar{R} a_{i}+I \cap Y^{m-1}$. Since ${ }_{R} I \cap Y^{m-1}$ is finitely generated, ${ }_{\bar{R}} I$ is finitely generated.

If R is a prime Goldie ring and $Q=Q(R)$, then \bar{Q} is a prime Goldie ring, by Lemma 4.1. Hence, as is well known, $Q(\bar{Q})_{\bar{Q}}$ is injective.

In the sequel, R is any ring. Let σ, τ be automorphisms of R, and D an endomorphism of R as an additive group. If $D(x y)=\sigma(x) D(y)+D(x) \tau(y)$ for all $x, y \in R$, then D is said to be a (σ, τ)-derivation of R ([5]). If $\sigma=i d_{R}$, D is called a τ-derivation. Let I be a dense right ideal of R, and f a right R-homomorphism form I to $Q_{r}(R)$. Then, as is well known, there exists a unique element b of $Q_{r}(R)$ such that $f(x)=b x$ for all $x \in I$ (cf. [16]). Let ν
be any automorphism of R. Then ν is uniquely extended to an automorphism of $Q_{r}(R)$, and symmetrically of $Q_{l}(R)$. And these induce the same automorphism of $Q(R)$. Therefore we denote these automorphisms by ν, too.

Lemma 4.2. Let τ be an automorphism of R, and g an additive homomorphism from a dense right ideal I to $Q_{r}(R)$ such that $g(x a)=g(x) \tau(a)$ for all $x \in I$, $a \in R$. Then there exists a unique element b of $Q_{r}(R)$ such that $g(x)=b \cdot \tau(x)$ for all $x \in I$.

Proof. Put $h=g \tau^{-1}$. Then h is a right R-homomorphism from a dense right ideal $\tau(I)$ to $Q_{r}(R)$. Hence there exists a unique element b of $Q_{r}(R)$ such that $h(\tau(x))=b \cdot \tau(x)$ for all $x \in I$.

Lemma 4.3. Let D be a (σ, τ)-derivation of R. Then D is uniquely extended to a (σ, τ)-derivation of $Q_{r}(R)$, and symmetrically of $Q_{l}(R)$. And these induce the same (σ, τ)-derivation of $Q(R)$.

Proof. Let $b \in Q_{r}(R)$, and let I be a dense right ideal of R such that $b I \subseteq$ R. A map g from I to $Q_{r}(R)$ is defined by $g(x)=D(b x)-\cdots \sigma(b) D(x)(x \in I)$. Then g is as in Lemma 4.2, whence there exists a unique $b^{\prime} \in Q_{r}(R)$ such that $g(x)=b^{\prime} \cdot \tau(x)$ for all $x \in I$. Note that b^{\prime} does not depend on the choice of I. Put $D^{\prime}(b)=b^{\prime}$. Then D^{\prime} is a unique (σ, τ)-derivation of $Q_{r}(R)$ such that $D^{\prime} \mid R=D$. Similarly D is uniquely extended to a (σ, τ)-derivation $D^{\prime \prime}$ of $Q_{l}(R)$, and it is easy to verify that $D^{\prime}\left|Q(R)=D^{\prime \prime}\right| Q(R)$.

We denote $D^{\prime}, D^{\prime \prime}$, and $D^{\prime} \mid Q(R)$ by D, too.
Let D be a τ-derivation of R, and put $Q=Q(R)$. By Lemma 4.2, the skew polynomial ring $R[t ; \tau, D]$ defined by $a t=t \tau(a)+D(a)(a \in R)$ is a subring of the skew polynomial ring $Q[t ; \tau, D]$. Put $Y=R+t R$ and $X=Q+t Q$. Then, for any $i \geqq 1, \quad Y^{i}=R+t R+\cdots+t^{i} R$, and $X^{i}=Q+t Q+\cdots+t^{i} Q$. It is easy to see that these satisfy the conditions in $\S 2$.

References

[1] K. Asano: Zur Arithmetik in Schiefringen I, Osaka Math. J. 1 (1949), 98-134.
[2] K. Asano: Theory of rings and ideals, Tokyo, 1956 (in Japanese).
[3] H. Bass: Algebraic K-theory, Math. Lecture Notes. Benjamin, New York, 1968.
[4] N. Bourbaki: Algèbre commutative, chap. 7, Hermann, Paris, 1965.
[5] P.M. Cohn: Free rings and their relations, Academic Press, 1971.
[6] J.H. Cozzens: Maximal orders and reflexive modules, Trans. Amer. Math. Soc. 219 (1976), 323-336.
[7] J.H. Cozzens and F.L. Sandomierski: Maximal orders and localization I, J. Algebra 44 (1977), 319-338.
[8] A.W. Goldie: Semi-prime rings with maximum condition, Proc. London Math. Soc. 10 (1960), 201-220.
[9] H. Marubayashi: Non commutative Krull rings, Osaka J. Math. 12 (1975), 703714.
[10] H. Marubayashi: On bounded Krull prime rings, Osaka J. Math. 13 (1976), 491501.
[11] H. Marubayashi: Polynomial rings over Krull orders in simple Artinean rings, Hokkaido Math. J. 9 (1980), 63-78.
[12] Y. Miyashita: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 21 (1970), 97-121.
[13] Y. Miyashita: Non-singular bilinear maps which come from some positively filtered rings, J. Math. Soc. Japan 30 (1978), 7-14.
[14] J.C. Robson: Pri-rings and ipri-rings, Quart. J. Math. Oxford (2), 18 (1967), 125-145.
[15] J.C. Robson: Non-commutative Dedekind rings, J. Algebra 9 (1968), 249․ 265.
[16] B. Stenström: Rings and modules of quotients, Springer, Berlin, 1971.
[17] Y. Utumi: On quotient rings, Osaka J. Math. 8 (1956), 1-18.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305
Japan

