A CHARACTERIZATION OF THE SIMPLE GROUP ON

Ismail ȘuAyip GÜLOĞLU

(Received October 25, 1979)

The sporadic simple group $O N$ of order $2^{9} .3^{4} \cdot 5 \cdot 7^{3} \cdot 11.19 .31$ discovered by O'Nan [8] has exactly one conjugacy class of elements of order three and the centralizer of one of its elements of order three is isomorphic to the direct product of the alternating group A_{6} of degree six with an elementary abelian group of order nine. The purpose of this paper is to prove the converse under the following

Hypothesis. The only simple groups containing a standard subgroup A such that $A / Z(A)$ is isomorphic to $\operatorname{PSL}(3,4)$ are the sporadic simple grouts $H e, O N$ and Suz.

For the definition of a standard subgroup and for the proof of the above hypothesis under some additional conditions see [2].

Our result is the following
Theorem. Let G be a finite simple group with exactly one conjugacy class of elements of order three. If the centralizer of an element of order three is isomorphic to the direct product of an elementary abelian group of order nine with the alternating group of degree six, then G is isomorphic to ON.

The notation is hopefully standard. M_{10} stands for the subgroup of Aut A_{6} containing A_{6} as a subgroup of index two and having semidihedral Sylow 2-subgroups.

In the whole paper G denotes a finite simple group with exactly one conjugacy class of elements of order three. Let a be a fixed element of G of order and let $C_{G}(a)=R \times K$ where $R=O_{3}\left(C_{G}(a)\right)$ is elementary abelian of order nine and $K=C_{G}(a)^{\prime}$ is isomorphic to A_{6}.

The first lemma follows immediately from the structure of A_{6} and is given without proof.

Lemma 1. The following hold in $C_{G}(a)$:
(i) Every 2-element of $C_{G}(a)$ is contained in the characteristic subgroup K of $C_{G}(a)$.
(ii) $C_{G}(a)$ has exactly one conjugacy class of involutions and if $x \in C_{G}(a)$ is an involution, then $C_{G}(a, x)=R \times C_{K}(x)$, where $C_{K}(x)$ is dihedral of order eight and is a Sylow 2-subgroup of K and hence of $C_{G}(a)$.
(iii) No involution in G centralizes a subgroup of order 27.
(iv) $C_{G}(a)$ has exactly one conjugacy class of elements of order four and such an element normalizes a Sylow 3-subgroup of K.
(v) For any subgroup V of order four of $C_{G}(a)$ we have $C_{G}(a, V)=R \times V$.
(vi) Any 3-subgroup of $C_{G}(a)$ which is centralized by an involution of $C_{G}(a)$ is contained in $R=O_{3}\left(C_{G}(a)\right)$.
(vii) If y is an element of order three of K, then $C_{K}(y)$ is a Sylow 3-subgroup of K and is elementary abelian of order nine. $\quad R \times C_{K}(y)$ is a Sylow 3-subgroup of G.
(viii) Aut $A_{6} \cong P \Gamma L\left(2,3^{2}\right)$ has no involution which centralizes a Sylow 3subgroup of it. Aut $A_{6} / \operatorname{In} A_{6}$ is elementary abelian of order four.

Lemma 2. $N_{G}(R) / C_{G}(R)$ is isomorphic either to the cyclic group of order eight or to the quaternion group. $C_{G}(K) \cap N_{G}(R)$ is a Frobenius group of order 36 and $N_{G}(R) / N_{G}(R) \cap C_{G}(K)$ is isomorphic to M_{10}. Furthermore R is conjugate to a Sylow 3-subgroup of K.

Proof. Since all elements of order 3 are conjugate in G we get that $C_{G}(r)=$ $C_{G}(a)=C_{G}(R)$ for all $r \in R^{\ddagger}$. This implies that all elements of R^{*} are conjugate to a in $N_{G}(R)$. Thus $\left|N_{G}(R): C_{G}(a)\right|=8$. Since $N_{G} /(R) / C_{G}(R)$ acts regularly on R we obtain by [4,5.3.14] that it is isomorphic either to Z_{8}, the cyclic group of order 8 or to Q_{8}, the quaternion group.

Since K is a characteristic subgroup of $C_{G}(R)$ we see that $K \triangleleft N_{G}(R)$. Let $N=N_{G}(R) . \quad N / C_{N}(K)$ is isomorphic to a subgroup of Aut A_{6} containing A_{6}. Since G has exactly one class of elements of order three we see by the structure of a Sylow 2-subgroup (1.ii) of $C_{G}(a)$, that $\left(K \times C_{N}(K)\right) / C_{N}(K) \cong A_{6}$ is a proper subgroup of $N / C_{N}(K)$. Since Aut $A_{6} / \operatorname{In} A_{6}$ is elementary abelian we get that K is centralized by an involution.

Let x be an element of order 3 of $K . \quad C_{N}(x) / R \times C_{K}(x) \cong C_{N}(x) C_{G}(R) / C_{G}(R)$ is isomorphic to a subgroup of $N / C_{G}(R)$. Since Aut A_{6} has exactly one class of elements of order three we see that $C_{N}(x) / R \times C_{K}(x)$ is cyclic of order four. Here a Sylow 2-subgroup of $C_{N}(x)$ normalizes both R and $C_{K}(x)$ and operates regularly on R. By (1.iv) and (1.v) we get that a Sylow 2-subgroup of $C_{N}(x)$ must centralize $C_{K}(x)$. In particular $C_{K}(x)=O_{3}\left(C_{G}(x)\right)$ by (1.vi) and hence $C_{K}(x)$ is conjugate to R in G. On the other hand we get by (1.viii) that a Sylow 2-subgroup of $C_{N}(x)$ must induce the trivial automorphism on K, since it centralizes a Sylow 3-subgroup of K. Hence $C_{N}(x)=C_{N}(K) \times C_{K}(x)$ for any element x of order 3 of K, where $C_{N}(K)$ is a Frobenius group of order 36. This yields
that $N / C_{N}(K)$ is isomorphic to a subgroup of Aut A_{6} containing A_{6} with index two, in which the centralizer of every element of order three is of order nine. The only such extension is M_{10}, hence $N / C_{N}(K) \simeq M_{10}$.

From now on we let t denote an element of order four in $N_{G}(R) \cap C_{G}(K)$. Our aim is to construct $C_{G}(t)$.

Lemma 3. For any subgroup V of order four of $C_{G}(R)$ one of the following holds:
(i) $\quad C_{G}(V) \leq N_{G}(R)$
(ii) $C_{G}(V) / V \cong P S L(3,4)$
(iii) $C_{G}(V) / V \cong A_{6}$ or M_{10}.

Proof. By (1.iii) R is a Sylow 3-subgroup of $C=C_{G}(V)$. Since $(|r|,|V|)=1$ for any $r \in R^{\sharp}$ we get, $C_{\bar{C}}(\vec{\gamma})=C_{C}(r) V / V$ where $\bar{C}=C / V$. By (1.v) we get $C_{\bar{C}}(\boldsymbol{\gamma})=\bar{R}$, i.e. \bar{C} is a $3 C C$-group. By [1] the result follows.

Lemma 4. $C_{G}(t) \mid\langle t\rangle$ is isomorphic to $\operatorname{PSL}(3,4)$ and $C_{G}(t)$ does not split over $\langle t\rangle$. Furthermore $N_{G}(\langle t\rangle)=C_{G}(t)\langle z\rangle$ where z is an involution iaducing the unitary automorphism on $C_{G}(t)^{\prime} \mid Z\left(C_{G}(t)^{\prime}\right) \cong P S L(3,4)$.
(Here by the unitary automorphism α of $\operatorname{PSL}(3,4)$ we understand the involutory automorphism of $\operatorname{PSL}(3,4)$ which is used to define the unitary group. We have $C_{P S L(3,4)}(\alpha) \cong P S U(3,4)$.)

Proof. Let M be a Sylow 3-subgroup of K. Since M is conjugate to R by (2) we see that the conclusions of (3) also hold for $C_{G}(t)$ if we replace R by M. Since $K \leq C_{G}(t)$ we get that $C_{G}(t) \mid\langle t\rangle$ is isomorphic to $\operatorname{PSL}(3,4)$ or A_{6} M_{10}. Furthermore there exists an involution z in $C_{G}(M)$ which inverts t, hence $N_{G}(\langle t\rangle)=C_{G}(t)\langle z\rangle$.

Assume now that $C_{G}(t) \mid\langle t\rangle$ is isomorphic to A_{6} or M_{10}. Then $\langle t\rangle \times K$ and hence K is normal in $N_{G}(\langle t\rangle)$. z induces an automorphism on K which centralizes a Sylow 3-subgroup of K. By (1.viii) z must centralize K. Thus $\langle R, t, z\rangle \leq C_{G}(K)$ and hence $C_{G}(K) \cong A_{6}$, since $C_{G}(K) \leq C_{G}(M) \cong E_{9} \times A_{6}$.

Let now B_{1} be a subgroup of $C_{G}(K)$ which is isomorphic to the symmetric group S_{4} and which contains t and let B_{2} be a subgroup of K isomorphic to S_{4}. Let $T=O_{2}\left(B_{1} \times B_{2}\right)$ and $X=C_{G}(T)$. Then T is elementary abelian of order 16. In particular $3 X|X|$ by (1.ii). Let m_{i} be an element of order 3 in $B_{i}, i=1,2$. Then $\left\langle m_{1}, m_{2}\right\rangle$ is a Sylow 3 -subgroup of $B_{1} \times B_{2}$ and is elementary abelian. Since $C_{X}\left(m_{1}\right) \leq C_{G}\left(O_{2}\left(B_{1}\right)\right) \cap C_{G}\left(m_{1}\right)=O_{3}\left(C_{G}\left(m_{1}\right)\right) \times O_{2}\left(B_{2}\right)$ by (1.v) we get that $C_{X}\left(m_{1}\right)=O_{2}\left(B_{2}\right)=C_{T}\left(m_{1}\right)$. Similarly $C_{X}\left(m_{2}\right)=O_{2}\left(B_{1}\right)=C_{T}\left(m_{2}\right)$. In particular we see by $[4,10,2.1]$ that X / T and hence X is nilpotent. By [4, 6.2.4] we have

$$
X=\left\langle C_{X}(x) \mid 1 \neq x \in\left\langle m_{1}, m_{2}\right\rangle\right\rangle=\left\langle T, C_{X}\left(m_{1} m_{2}\right), C_{X}\left(m_{1} m_{2}^{-1}\right)\right\rangle
$$

where $C_{X}\left(m_{1} m_{2}\right) \sim C_{X}\left(m_{1} m_{2}^{-1}\right)$ in $N_{G}(T)$. Since $C_{X}\left(m_{1} m_{2}\right)$ is isomorphic to a nilpotent 3^{\prime}-subgroup of $C_{G}\left(m_{1} m_{2}\right)$ on which m_{1} operates fixed-point-freely we see that $C_{X}\left(m_{1} m_{2}\right) \cong 1$ or E_{4}.

Assume that $C_{X}\left(m_{1} m_{2}\right) \cong E_{4}$ and let $Y=C_{X}\left(O_{2}\left(B_{1}\right)\right)$. By the same argument as in (3) we see that $Y / O_{2}\left(B_{1}\right)$ is a $3 C C$-group containing $K O_{2}\left(B_{1}\right) / O_{2}\left(B_{1}\right) \cong$ A_{6}. Since $X \leq Y$ we get by the order of a Sylow 2 -subgroup of X and by [1] that $Y / O_{2}\left(B_{1}\right) \cong P S L(3,4) . \quad O_{2}\left(B_{1}\right)$ and hence Y is normalized by $N_{B_{1}}\left(\left\langle m_{1}\right\rangle\right) \cong S_{3}$ which centralizes the subgroup K of Y. Since $\operatorname{PSL}(3,4)$ has no nontrivial automorphism which centralizes a subgroup of it isomorphic to A_{6} (See $[6,(1.3)]$) we see that

$$
N_{G}\left(O_{2}\left(B_{1}\right)\right) / O_{2}\left(B_{1}\right)=B_{1} / O_{2}\left(B_{1}\right) \times Y / O_{2}\left(B_{1}\right) .
$$

But this contradicts the structure of $C_{G}(t)$, since $t \in B_{1}$. Thus $C_{X}\left(m_{1} m_{2}\right)=1$ and hence $C_{G}(T)=T$.

Let $Z=N_{G}(T)$ and $\bar{Z}=Z / T$. Then \bar{Z} is isomorphic to a subgroup of Aut $T \cong G L(4,2) \cong A_{8}$. In particular $\left\langle m_{1}, m_{2}\right\rangle \in S y l_{3} Z$. By [3] $C_{\bar{Z}}(\bar{x})=\langle\bar{x}\rangle \times \bar{L}$ for any $x \in\left\langle m_{1}, m_{2}\right\rangle$, where $1 \neq\left\langle\bar{m}_{1}, \bar{m}_{2}\right\rangle \cap \bar{L}=\bar{L}_{1}$ is a Sylow 3-subgroup of L. By the structure of A_{8} we have $C_{\bar{L}}\left(\bar{L}_{1}\right)=\bar{L}_{1} . \quad$ By [1] and the structure of A_{8} we see that L is isomorphic to one of the groups $Z_{3}, S_{3}, A_{4}, S_{4}$ or A_{5}. So we get that there exists a four subgroup \bar{S} of \bar{Z} which is normalized by $\left\langle\bar{m}_{1}, \bar{m}_{2}\right\rangle$ if there exists an element $x \in\left\langle m_{1}, m_{2}\right\rangle$ such that $C_{\bar{Z}}(\bar{x})$ is not contained in $N_{\bar{z}}\left(\left\langle\tilde{m}_{1}, \tilde{m}_{2}\right\rangle\right)$. Then $\left\langle m_{1}, m_{2}\right\rangle$ normalizes also $C_{T}(\bar{S}) \neq 1$. This implies by $[4,6.2 .4]$ that $C_{T}(\bar{S})=C_{T}\left(m_{1}\right)=O_{2}\left(B_{2}\right)$ or $C_{T}(\bar{S})=C_{T}\left(m_{2}\right)=O_{2}\left(B_{2}\right)$. As above we get then that $C_{G}\left(C_{T}(\bar{S})\right) / C_{T}(S)$ is isomorphic to $\operatorname{PSL}(3,4)$. On the other hand $M \sim R$ in G implies that $O_{2}\left(B_{1}\right) \sim O_{2}\left(B_{2}\right)$ since K has one class of four subgroups under the action of $N_{G}(R)$ by (2). This yields again a contradiction to the structure of $C_{G}(t)$. Thus we have that $C_{\bar{Z}}(\bar{x})$ is contained in $N_{\bar{Z}}\left(\left\langle\bar{m}_{1}, \bar{m}_{2}\right\rangle\right)$ for any $x \in\left\langle m_{1}, m_{2}\right\rangle$).

This yields by [10, lemma 3.1 and lemma 3.2] that either $\left\langle\bar{m}_{1}, \bar{m}_{2}\right\rangle$ is normal in \bar{Z} or \bar{Z} is isomorphic to S_{6}. In the first case [9, Proposition] gives that G is of sectional 2-rank at most four. But by [5] it is straight forward to check that no simple group of sectional 2-rank at most four satisfies the assumptions of the theorem. So $N_{G}(T) / T \cong S_{6}$. This subgroup structure of a simple group is investigated by Stroth in [11]. In particular there exists an involution \bar{y} in \bar{Z} such that $C_{\bar{z}}(\bar{y})=\langle\bar{y}\rangle \times \bar{B}$ where $\bar{B} \cong S_{4}$ and a Sylow 3-subgroup of \bar{B} operates fixed point freely on T. So we can assume that y is an involution in the centralizer of an element m of order 3 of $N_{G}(T)$ which operates regularly on T. Since $C_{T}(y)$ is normalized by m, we see that $C_{T}(y)$ is a four group. Furthermore $\left\langle C_{T}(y), y\right\rangle$ is normalized by the inverse image F of $C_{\bar{Z}}(\bar{y})$ in Z. Since $C_{T}\left(C_{T}(y), y\right)=C_{T}(y)$ we see by the structure of $G L(3,2)$ that the elementary
abelian group $\left\langle C_{T}(y), y\right\rangle$ of order 8 is centralized by a subgroup A of order 32 of F with $\bar{A}=\left(O_{2}\left(C_{\bar{z}} \bar{y}\right)\right)$. Since $A /\left\langle C_{T}(y), y\right\rangle$ is a four group we see that A^{\prime} is cyclic and is contained in $C_{T}(y)$. Since A is normalized by m which operates regularly on $C_{T}(y)$ we get that $A^{\prime}=1$. By the remark following [11, (1.1)] we see that A is the only abelian subgroup of order 32 of a Sylow 2-subgroup of $N_{G}(T)$ and by $[11,(1.5)]$ that $\Omega_{1}(A)=\left\langle C_{T}(y), y\right\rangle$. Now all involutions in $C_{T}(y) y$ are conjugate to y under the action of T. Since all involutions of T are conjugate in $N_{G}(T)$ we see that all involutions of $\Omega_{1}(A)$ are involutions which are centralized by some element of order three. Since $C_{G}(a)$ has only one conjugacy class of involutions by (1.ii) and all elements of order 3 in G are conjugate to a we see that all involutions of $\Omega_{1}(A)$ are conjugate in G. By [11,(4.1)] we get then that G is isomorphic to HiS . But HiS has Sylow 3-subgroups of order nine. This contradiction shows that $C_{G}(t) \mid\langle t\rangle$ is isomorphic to $\operatorname{PSL}(3,4)$.

Next we prove the remaining assertions of the lemma.
Assume that $C_{G}(t)$ splits over $\langle t\rangle$. Then $C_{G}(t)=\langle t\rangle \times E$ with $E \cong P S L(3,4)$. The involution z normalizes E and centralizes M, which is a Sylow 3-subgroup of E. Then z normalizes $N_{F}(M)$ which is a Frobenius group of order 72 with quaternion Sylow 2-subgroups. Then $C(M) \cap N_{E}(M)\langle z\rangle=M \times\langle z\rangle$ and hence $\langle z\rangle$ is centralized by $N_{E}(M)$. So a Sylow 2-subgroup of $N_{G}(M)$ is isomorphic to $D_{8} \times Q_{8}$ by Lemma 2, since $M \sim R$ in G. But this is not possible since $D_{8} \times Q_{8}$ has no factor group isomorphic to the semidihedral group of order 16 which is a Sylow 2-subgroup of $N_{G}(M)$. Thus $C_{G}(t)$ does not split over $\langle t\rangle$. In particular $t^{2} \in Z\left(C_{G}(t)^{\prime}\right)$ and $C_{G}(t)^{\prime} \mid Z\left(C_{G}(t)^{\prime}\right) \cong P S L(3,4)$.

As we have seen in the above paragraph z induces an automorphism on $C_{G}(t)^{\prime} \mid Z\left(C_{G}(t)^{\prime}\right) \cong P S L(3,4)$ which centralizes the normalizer of a Sylow 3-subgroup of it. So either z induces the unitary automorphism or $\left[z, C_{G}(t)^{\prime}\right]$ is contained in $Z\left(C_{G}(t)^{\prime}\right)$ by [6, (1.3)]. In the second case we have $\left[C_{G}(t)^{\prime}, z\right]=1$ for $C_{G}(t)^{\prime}$ is generated by its elements of odd order which are all centralized by z. Then $Z\left(C_{G}(t)^{\prime}\right)=\left\langle t^{2}\right\rangle$. And since $C_{G}\left(t^{2}, z\right) /\left\langle t^{2}, z\right\rangle$ is a 3CC-group we get by [1] that $C_{G}\left(t^{2}, z\right)=\langle z\rangle \times C_{G}(t)^{\prime}$. But this not possible since $\left\langle z, t^{2}\right\rangle$ is normalized in $C_{G}(M)$ by an element of order 3 which acts regularly on $\left\langle z, t^{2}\right\rangle$. This completes the proof of the lemma.

Lemma 5. We have $C_{G}\left(t^{2}\right)=N_{G}(\langle t\rangle)$ and hence $G \cong O N$.
Proof. Let $X=C_{G}\left(t^{2}\right)$ and $\bar{X}=X \mid\langle t\rangle^{2}$. Let M be a Sylow 3-subgroup of K. Then M is also a Sylow 3-subgroup of X by (1.iii) and we have for any $m \in M^{*}$ that $C_{X}(m)=M \times\langle t, z\rangle$. Since $O_{3^{\prime}}(X)=\left\langle O_{3^{\prime}}(X) \cap C_{X}(m) \mid 1 \neq m \in M\right\rangle$ we get by (4) that $O_{3^{\prime}}(X) \leq\langle t\rangle$. If $O_{3^{\prime}}(X)=\langle t\rangle$, then $X=N_{G}(\langle t\rangle)$. So let us assume that $O_{3^{\prime}}(X)=\left\langle t^{2}\right\rangle$.

By the structure of $C_{G}(t)$ we see that $O_{3}(\bar{X})=1$. Since $O_{3^{\prime}}(\bar{X})=1$ by our assumption we get that $3|\bar{Y}|$ for any minimal normal subgroup \bar{Y} of \bar{X}. So
$\bar{Y} \cap \bar{M} \neq 1$. Since $O_{3}(\bar{X})=1$ this yields that $\overline{\bar{C}_{G}(t)^{\prime}} \leq \bar{Y}$. By the structure of the centralizer of an element of order 3 in \bar{X} we obtain then that \bar{Y} is simple. The Frattini argument gives that $\bar{X}=\bar{Y} N_{\bar{X}}(\bar{M})$.

If \bar{Y} is a 3CC-group then $\overline{C_{G}(t)}=\langle\bar{t}\rangle \times \overline{C_{G}(t)^{\prime}} \cong Z_{2} \times \operatorname{PSL}(3,4)$ and $\bar{Y}=$ $\overline{C_{G}(t)^{\prime}} \cong P S L(3,4)$ by [1]. But then $C_{\bar{X}}(\bar{Y})=\langle\bar{t}\rangle$ is normal in \bar{X} which contradicts our assumption that $O_{3^{\prime}}(\bar{X})=1$. So \bar{Y} is not a $3 C C$-group. Then one of the following holds:
(i) $\overline{C_{G}(t)} \leq \bar{Y}$
(ii) $\overline{C_{G}(t)^{\prime}} \cong \operatorname{PSL}(3,4), C_{\bar{Y}}\left(\overline{C_{G}(t)^{\prime}}\right)=1$ and $\overline{C_{G}(t)^{\prime}}\langle\bar{z}\rangle$ or $\overline{C_{G}(t)^{\prime}}\langle\bar{z} \bar{t}\rangle$ is contained in \bar{Y}.

In case (i) $\overline{C_{G}(t)^{\prime}}$ is a standard subgroup of \bar{Y} and we get a contradiction by the Hypothesis. So we are in case (ii). Let $\bar{A}=\overline{C_{G}(t)^{\prime}} \cong P S L(3,4)$ and $\bar{y} \in\{\bar{z}, \bar{z} \bar{t}\} \cap \bar{Y}$. We have $C_{\bar{A}}(\bar{y})=N_{\bar{A}}(\bar{M})$ by (4). Since $C_{\bar{Y}}(\bar{m}, \bar{y})=\bar{M} \times\langle\bar{y}\rangle$ for each $m \quad M$ we see that $C_{\bar{Y}}(\bar{y}) /\langle y\rangle$ is a $3 C C$-group. By [1] and the structure of $N_{\bar{Y}}(M)$ we get that either $M \leq C_{\bar{Y}}(y)$ or $C_{\bar{Y}}(\bar{y}) \mid\langle\bar{y}\rangle \cong M_{10}$ or $C_{\bar{Y}}(\bar{y}) \mid\langle\bar{y}\rangle \cong P S L$ $(3,4)$. In the last case $C_{\bar{Y}}(\bar{y})^{\prime}$ is a standard subgroup of \bar{Y} and again the Hypothesis gives a contradiction. If $C_{\bar{Y}}(\bar{y}) \mid\langle\bar{y}\rangle \cong M_{10}$ then \bar{t} induces an automorphism on $C_{\bar{Y}}(\bar{y})^{\prime}\langle\bar{y}\rangle \mid\langle\bar{y}\rangle \cong A_{6}$ which centralizes a Sylow 3-subgroup of it. Since this is not possible in Aut A_{6}, \bar{t} must induce the trivial automorphism on $C_{\bar{Y}}(\bar{y})^{\prime}\langle\bar{y}\rangle \mid\langle\bar{y}\rangle$. But this contradicts the structure of the centralizer of z in $C_{G}(t)$. Thus $C_{\bar{Y}}(\bar{y})=\langle\bar{y}\rangle \times C_{\bar{A}}(\bar{y})$. A Sylow 2-subgroup of $C_{\bar{A}}(\bar{y})$ is isomorphic to Q_{8}. Therefore \bar{Y} is of sectional 2-rank at most four by [7]. By [6, (1.8)] we obtain again a contradiction.

Thus $O_{3^{\prime}}(X)=\langle t\rangle$ and $X \leq N_{G}(\langle t\rangle)$. This implies that $C_{G}(t)^{\prime}=A$ is a standard subgroup of G with $2||Z(A)|$ and $A| Z(A) \cong P S L(3,4)$. By [2] we get then that $G \cong O N$.

References

[1] Z. Arad: A classification of 3CC-groups and applications to Glauberman-Goldschmidt theorem, J. Algebra 43 (1976), 176-180.
[2] K.N. Cheng: Ph. D. Dissertation, Mainz, Germany (1976).
[3] W. Gaschütz: Zur Erweiterungstheorie endlicher Gruppen, J. Reine Angew. Math. 190 (1952), 93-107.
[4] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[5] D. Gorenstein and K. Harada: Finite groups whose 2-subgroups are generated by at most four elements, Mem. Amer. Math. Soc. 147 (1974).
[6] I.Ș. Güloğlu: A characterization of the simple group He, to appear in J. Algebra.
[7] K. Harada: On finite groups having self-centralizing 2-subgroups of small order, J. Algebra 33 (1975), 144-160.
[8] M. O'Nan: Some evidence for the existence of a new simple group, Proc. London

Math. Soc. (3) 32 (1976), 421-479.
[9] M. O'Nan: Some characterizations by centralizers of elements of order 3, J. Algebra 48 (1977), 113-141.
[10] A.R. Prince: A characterization of the simple groups $P S p(4,3)$ and $P S p(6,2)$, J. Algebra 45 (1977), 306-320.
[11] G. Stroth: Endliche einfache Gruppen mit einer 2-lokalen Untergruppe $E_{16} \cdot \Sigma_{16}$, J. Algebra 47 (1977), 455-479.

Department of Mathematics Middle East Technical University Ankara, Turkey

