A CHARACTERIZATION OF THE SIMPLE GROUP J4

Ismail Ṣuayip GÜloğlu

(Received June 12, 1979)
(Revised March 19, 1980)

In [4] Janko describes the properties of a simple group of order $2^{21} \cdot 3^{3} \cdot 5 \cdot 7$ $11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$ denoted by J_{4}. It has exactly one conjugacy class of elements of order 3 and if π is one of them, then the centralizer of π in J_{4} is isomorphic to the 6 -fold cover of the Mathieu group M_{22}. We show in this paper that these properties characterize the group J_{4}, we prove namely the

Theorem A. Let G be a finite group containing an element π of order 3 such that $C_{G}(\pi)$ is isomorphic to the 6-fold cover M_{22}. If G is not 3-normal then G is isomorphic to J_{4}.

In the first section we shall list some properties of the 6 -fold cover of M_{22}, which will be needed in the proof. The second section is then devoted to the proof of Theorem A. In the last section we remark that the following holds:

Theorem B There exists no simple group G which is not 3-normal and contains an element π such that $C_{G}(\pi)$ is isomorphic to the triple cover of M_{22}.

The Frattini subgroup of a group X is denoted by $D(X)$. The other notation is hopefully standard.

In the whole paper with the exception of the last section G denotes a simple group satisfying the assumptions of Theorem A and π is an element of G of order 3 such that $C_{G}(\pi)$ is isomorphic to the 6 -fold cover of M_{22}.

1. Some known results and structure of $\boldsymbol{N}_{\boldsymbol{G}}(\langle\boldsymbol{\pi}\rangle)$

We first list some well known results which will be used in the proof of our theorems.

Lemma 1.1 (Gaschütz). Let A be an abelian normal subgroup of the group X contained in the subgroup B of X with $(|X: B|,|A|)=1$. Then if A has a complement in B, A has a complement in X.

Proof. See [1].

Lemma 1.2 (Thompson). If the group X admits a fixed-point-free automorphism of prime order then X is nilpotent.

Proof. See [2; 10.2.1].
Lemma 1.3 (Thompson). Let T_{0} be a maximal subgroup of an S_{2}-subgroup of the group X. If X does not have a subgroup with index two then all involutions of X are conjugate to elements of T_{0} in X.

Proof. See [10. Lemma 5.38].
Lemma 1.4 (Burnside). Let P be an S_{p}-subgroup of the group X and assume that $N_{X}(P)=C_{X}(P)$. Then X has a normal p-complement.

Proof. See [2;7.4.3].
Lemma 1.5. Let P be a p-group and let Q be a noncyclic abelian q-group of automorphisms of P, q a prime distinct from p. Then $P=\left\langle C_{P}(x) \mid 1 \neq x \in Q\right\rangle$.

Proof. See [2; 5.3.16].
Lemma 1.6. Any involution t of the group X which does not lie in the maximal normal 2-subgroup of X inverts a nontrivial element of X of odd order.

Proof. Let t be an involution of X with $t \notin 0_{2}(X)$. Then there exists a conjugate t_{1} of t in X such that the dihedral group $\left\langle t, t_{1}\right\rangle$ is not a 2-group by [2;3.8.2]. Since the index of the cyclic subgroup $\left\langle t_{1} t\right\rangle$ has index two in $\left\langle t, t_{1}\right\rangle$ we see that $0\left(\left\langle t_{1} t\right\rangle\right)$ is nontrivial and is inverted by t since t inverts $t_{1} t$.

The following three lemmas are taken from [4; (2.1), (2.3), (2.4)].
Lemma 1.7. Let $X \cong M_{22}$ and let T be an S_{2}-subgroup of X. Then T possesses precisely two distinct elementary abelian subgroups E_{1} and E_{2} of order 16 and they are both normal in T. We have $N_{X}\left(E_{1}\right)$ is a splitting extension of E_{1} by A_{6}, $N_{X}\left(E_{2}\right)$ is a splitting extension of E_{2} by S_{5} and $N_{X}\left(E_{i}\right)$ acts transitively on $E_{i}^{*}, i=$ 1,2. The group X has the order $2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ and exactly one conjugacy class of involutions with the representative $e \in E_{1}$ and we have $C_{X}(e)=C(e) \cap N_{X}\left(E_{1}\right)$. An S_{3}-subgroup P of X is elementary abelian of order 9 and we have $C_{X}(P)=P$ and $N_{X}(P)=P Q$ where Q is quaternion aud acts regularly on P. The group X has exactly one conjugacy class of elements of order 3 and if σ is one of them, then $C_{X}(\sigma) \cong\langle\sigma\rangle \times A_{4}$ and $N_{X}(\langle\sigma\rangle)=\langle\sigma\rangle B$ where $B \cong S_{4}$.

Lemma 1.8. Let $X \cong \operatorname{Aut}\left(M_{22}\right)$ so that $X^{\prime} \cong M_{22}$ and $\left|X: X^{\prime}\right|=2$. The group X possesses exactly two conjugacy classes of involutions which are contained in $X-X^{\prime}$ with the representatives t_{1} and t_{2}. If E_{1} and E_{2} are the only elementary abelian subgroups of rank 4 of an S_{2}-subgroup of X^{\prime} as discribed in (1.7) then t_{1} and t_{2} can be chosen to lie in $C_{X}\left(E_{2}\right)=A=\left\langle E_{2}, t_{2}\right\rangle$ which is elementary abelian of
order 32. Then $N_{X}(A)=A B$ where $B \subseteq X^{\prime}, B \cong S_{5}$ and B operates transitively on E_{2}^{*} and operates on $A-E_{2}$ in two orbits of sizes 10 and 6 represented respectively by t_{1} and t_{2}, We have $N_{X}\left(E_{1}\right)$ is a splitting and faithful extension of E_{1} by S_{6}.

Lemma 1.9. Every maximal subgroup of the simple group M_{24} is isomorphic to one of the following groups:
$\operatorname{PSL}(2,23), M_{23}, \operatorname{Aut}\left(M_{22}\right), \operatorname{Aut}\left(M_{12}\right), \operatorname{PSL}(2,7)$,
The holomorph of an elementary abelian group of order 16,
An extension of M_{21} by S_{3},
A splitting and faithful extension of an elementary abelian group of order 64 by a subgroup Y where $\left|0_{3}(Y)\right|=3, Y / 0_{3}(Y) \cong S_{6},\left|Y: Y^{\prime}\right|=2, Y^{\prime \prime}=Y^{\prime}$ and $C_{Y}\left(0_{3}(Y)\right)=Y^{\prime}$,

A splitting and faithful extension of an elementary abelian group of order 64 by $S_{3} \times P S L(2,7)$.

In the next lemma we list some properties of $N_{G}(\langle\pi\rangle)$ which can be easily deduced from (1.7) and (1.8) and are essentially proved in [4]. Throughout the paper we shall fix the notation which will be introduced in the following lemma.

Lemma 1.10. The following hold in G :
(i) Let $H=N_{G}(\langle\pi\rangle)$. Then $\left|H: H^{\prime}\right|=2, H^{\prime \prime}=H^{\prime}=C_{H}(\pi), Z\left(H^{\prime}\right)$ is cyclic of order $6, H^{\prime} \mid Z\left(H^{\prime}\right) \cong M_{22}$ and $H \mid Z\left(H^{\prime}\right) \cong \operatorname{Aut}\left(M_{22}\right)$. Let us denote the involution in $Z\left(H^{\prime}\right)$ by z.
(ii) Let T be an S_{2}-subgroup of H and let $T_{0}=T \cap H^{\prime}$. Then T_{0} contains exactly two elementary abelian subgroups E_{1} and E_{2} of rank 5. These are normal in T and we have $C_{H^{\prime}}\left(E_{i}\right)=E_{i}\langle\pi\rangle, i=1,2$ and
$N_{H^{\prime}}\left(E_{1}\right)=E_{1} B_{1}$ where B_{1} is isomorphic to the triple cover of A_{6},
$C_{H}\left(E_{1}\right)=E_{1}\langle\pi\rangle, N_{H}\left(E_{1}\right) / C_{H}\left(E_{1}\right) \cong S_{6}$,
$N_{H^{\prime}}\left(E_{2}\right)=E_{2}\left(\langle\pi\rangle \times B_{2}\right)$ where $B_{2} \cong S_{5}$ and acts transitively on $\left(E_{2} \mid\langle z\rangle\right)^{*}$,
$N_{H}\left(E_{2}\right)=\langle\pi\rangle E_{2}^{*} B_{2}$ where E_{2}^{*} is an abelian group of order $64, B_{2}$ normalizes E_{2}^{*}, $\langle z\rangle \geq D\left(E_{2}^{*}\right), E_{2}^{*}$ is elementary abelian if and only if there exist involutions in $H-H^{\prime}$ and if so then E_{2}^{*} is the only elementary abelian subgroup of T of order 64. Furthermore $E_{2}^{*} \cap H^{\prime}=E_{2}$ and $E_{2}^{*} \leq T$.
(iii) Let P be an S_{3}-subgroup of B_{1}. Then P is an S_{3}-subgroup of G. $P=$ $\langle\pi, \sigma, \tau\rangle$ is extraspecial of order 27 and exponent 3 , where the generators of P are chosen in such a way that $C_{E_{1}}(\tau)=\langle z\rangle$ and $C_{E_{1}}(\sigma)=E_{0}$ is of order 8 . We have $N_{H^{\prime}}(P)=\langle z\rangle \times P Q$ where Q is quaternion and acts regularly on $P /\langle\pi\rangle$. There exists exactly one conjugacy class of elements of order 3 in $H-\langle\pi\rangle$ and exactly one conjugacy class of subgroups of order 9 in H^{\prime} represented by $M=\langle\pi, \sigma\rangle$. We have $C_{G}(M)=M \times E_{0}$ and $N_{H^{\prime}}(M) / C_{H^{\prime}}(M) \cong S_{3}$.
(iv) We have $C_{H^{\prime}}\left(E_{0}\right)=E_{1} M$.
(v) $E_{1} \cap E_{2}$ is of order 8 and we have $C_{H^{\prime}}\left(E_{1} \cap E_{2}\right)=\langle\pi\rangle \times E_{1} E_{2}$ and
$N_{H^{\prime}}\left(E_{1} \cap E_{2}\right)=C_{H^{\prime}}\left(E_{1} \cap E_{2}\right) U$ where $U \cong S_{3}$ and $O_{3}(U)$ acts regularly on $E_{1} E_{2} \mid\langle z\rangle$. Furthermore $E_{1} \cap E_{2} \subseteq T^{\prime}=\left\langle T^{\prime} \cap E_{1}, T^{\prime} \cap E_{2}\right\rangle$ and $T^{\prime} \cap E_{i}, i=1,2$, are the only elementary abelian subgroups of T^{\prime} of rank four. So $E_{1} \cap E_{2}$ is normal in $N_{G}(T)$. We have $C\left(E_{1}\right) \cap E_{2}^{*}=E_{1} \cap E_{2}$.

Proof. $C_{G}(\pi)$ is isomorphic to the 6 -fold cover M_{22}, i.e. $C_{G}(\pi)^{\prime}=C_{G}(\pi)$, $Z\left(C_{G}(\pi)\right)$ is cyclic of order 6 and $C_{G}(\pi) / Z\left(C_{G}(\pi)\right) \cong M_{22}$.

Let P be an S_{3}-subgroup of $C_{G}(\pi)$. Then $\langle\pi\rangle \subseteq Z(P)$ and P does not split over by $\langle\pi\rangle(1.1)$. So $D(P)=\langle\pi\rangle$ by (1.7) and hence P is an S_{3}-subgroup of G. Let R be an S_{2}-subgroup of $N(P) \cap C_{G}(\pi)$. Since R operates transitively on $(P / D(P))^{\frac{1}{2}}$ by (1.7) we see that P is extraspecial of order 27 and exponent 3 . Furthermore we have $R /\langle z\rangle \cong Q_{8}$ where z is the involution in $Z\left(C_{G}(\pi)\right)$. So R must split over $\langle z\rangle$ and we get $N(P) \cap C_{G}(\pi)=\langle z\rangle \times P Q$ where $Q \cong Q_{8}$ and acts regularly on $P / D(P)$. In particular there exists exactly one conjugacy class of elements of order 3 in $C_{G}(\pi)-\langle\pi\rangle$ and hence exactly one conjugacy class of subgroups of order 9 .

Since G is not 3-normal, π must be conjugate to an element in $P_{-\cdot}\langle\pi\rangle$ and hence to π^{-1}. So $\left|N_{G}(\langle\pi\rangle): C_{G}(\pi)\right|=2$. Let $H=N_{G}(\langle\pi\rangle)$. Then $H^{\prime}=C_{G}(\pi)$ and $H / Z\left(H^{\prime}\right)$ is isomorphic to $\operatorname{Aut}\left(M_{22}\right)$ or $Z_{2} \times M_{22}$ since $\left|\operatorname{Aut}\left(M_{22}\right): M_{22}\right|=2$ by (1.8). But the second case is not possible since otherwise there would exist a 2-element in $H-H^{\prime}$ which operates trivially on $P / D(P)$ and inverts $D(P)$ and this is absurd. So $H / Z\left(H^{\prime}\right) \cong \operatorname{Aut}\left(M_{22}\right)$.

Let T be an S_{2}-subgroup of H. Then all assertions of (ii) are proved in [4; Proposition 1 and 3] and we shall use them in the following.

Since an S_{3}-subgroup of $B_{1} \subseteq H$ is also an S_{3}-subgroup of H we can assume that $P \subseteq B_{1}$. By the action of the non-cyclic abelian 3-group $P / D(P)$ on the 2-group E_{1} we see that there is an element σ in P with $E_{0}=E_{1} \cap C(\sigma)$ is elementary abelian of order 8 and an element τ in P with $\langle z\rangle=E_{1} \cap C(\tau)$. Let $M=\langle\pi, \sigma\rangle$. Then $C_{G}(M)=E_{0} \times M$ and $N_{H^{\prime}}(M) / C_{H^{\prime}}(M) \cong S_{3}$ by (1.7). This completes the proof of the first three assertions of the lemma.

For the proof of (iv) let $\bar{H}^{\prime}=H^{\prime} \mid Z\left(H^{\prime}\right)$, which is isomorphic to M_{22}. By (1.7) we have $C_{\bar{H}}(\bar{\sigma})=\langle\bar{\sigma}\rangle x \bar{E}_{0}\langle\bar{\tau}\rangle$ where $\bar{E}_{0}\langle\bar{\tau}\rangle$ is isomorphic to A_{4} and $N_{\bar{H}^{\prime}}(\langle\bar{\sigma}\rangle) \mid\langle\bar{\sigma}\rangle$ is isomorphic to S_{4}. This gives that $C_{\bar{H}}\left(\bar{E}_{0}\right) \cap N_{\bar{H}^{\prime}}(\langle\bar{\sigma}\rangle)=\bar{E}_{0}\langle\bar{\sigma}\rangle$ By Burnside's transfer theorem we get $C_{\bar{H}^{\prime}}\left(\bar{E}_{0}\right)=0_{3^{\prime}}\left(C_{\bar{H}^{\prime}}\left(\bar{E}_{0}\right)\right)\langle\bar{\sigma}\rangle$. By the structure of $M_{22}, \bar{K}=0_{3^{\prime}}\left(C_{\bar{H}}\left(\bar{E}_{0}\right)\right)$ is a 2-group containing \bar{E}_{1}.

Suppose that $\bar{K} \neq \bar{E}$. Then the non-trivial group \bar{K} / \bar{E}_{1} is normalized by $\bar{P}=\langle\bar{\sigma}, \bar{\tau}\rangle$. Since P is not cyclic there is by (1.5) a non-trivial element \bar{x} in \bar{P} such that $C_{\bar{K} / \bar{E}_{1}}(\bar{x})=C_{\bar{K}}(\bar{x}) \bar{E}_{1} / \bar{E}_{1} \neq 1$. As $\bar{\sigma}$ operates regularly on \bar{K} / \bar{E}_{1} and normalizes $C_{\bar{K} / \bar{E}_{1}}(\bar{x})$ we get that $\bar{K} / \bar{E}_{1}=C_{\bar{K} / \bar{E}_{1}}(\bar{x})$ is elementary abelian of order four since $|\bar{K}| \bar{E}_{1} \mid \leq 8$. By the structure of the centralizer of an element of order three in M_{22} we get that $C_{\bar{K}}(\bar{x})$ is four group and that $\bar{K}=\bar{E}_{1} C_{\bar{K}}(\bar{x})$.
$\bar{S}=C\left(C_{\bar{R}}(x)\right) \cap \bar{E}_{1}$ is non-trivial and is normalized by \bar{x} which operates
regularly on it. This yields that $|\bar{S}| \geq 4$. So $\bar{D}=C_{\bar{K}}(\bar{x}) \bar{S}$ is elementary abelian of rank at least four. Since an S_{2}-subgroup of M_{22} contains exactly two elementary abelian subgroups of rank four by (1.7) we see that \bar{D} is conjugate in \bar{H}^{\prime} to \bar{E}_{2}. But \bar{D} is normalized by \bar{P} whereas an S_{3}-subgroup of $N_{\bar{H}}\left(\bar{E}_{2}\right)$ is of order 3. This contradiction shows that $\bar{K}=\bar{E}_{1}$ and hence $C_{H^{\prime}}\left(E_{0}\right)=E_{1} M$.

For the proof of (v) observe that $E_{1} E_{2} / E_{1}$ is a non-trivial elementary abelian 2-group of $N_{H^{\prime}}\left(E_{1}\right) / E_{1}=\bar{B}_{1}$ which is isomorphic to the triple cover of A_{6}. Since an S_{2}-subgroup of \bar{B}_{1} is dihedral of order 8 there exists a four group \bar{V} of \bar{B}_{1} containing \bar{E}_{2}. By the structure of \bar{B}_{1} and by (1.1) we get that $N(\bar{V}) \cap \bar{B}_{1}=$ $\langle\bar{\pi}\rangle x \bar{V} \bar{U}$ where $\bar{U} \cong S_{3}$ and operates faithfully on \bar{V}. Let U_{0} be an S_{3}-subgroup of the inverse image of \bar{U}. By (1.6) we can assume that U_{0} is inverted by an involution x in $T_{0}-E_{1} E_{2}$ such that $\left\langle U_{0}, x\right\rangle$ maps into \bar{U} and $\left\langle U_{0}, x\right\rangle \cong S_{3} . \quad U_{0}$ normalizes the inverse image V of \bar{V}. Since $E_{1} E_{2} \subseteq V$ and E_{1} and E_{2} are the only elementary abelian 2-groups of T_{0} hence of V of rank 5 we see that U_{0} normalizes both E_{1} and E_{2} and hence $E_{1} E_{2}$. This implies that $\bar{V}=\bar{E}_{2}$ and $E_{1} \cap E_{2}$ is of order 8. Furthermore U_{0} maps onto an S_{3}-subgroup of $N_{H^{\prime}}\left(E_{2}\right) / E_{2}$ Since B_{2} operates transitively on $\left(E_{2} /\langle z\rangle\right)^{\frac{1}{2}}$ by (ii) we obtain that U_{0} operates regularly on $E_{1} /\langle z\rangle$. Since T_{0} does not split over $\langle z\rangle$ we see that $\langle\xi\rangle$ is properly contained in $\left(E_{1} E_{2}\right)^{\prime}=\left[E_{1}, E_{2}\right] \subseteq E_{1} \subset E_{2}$ by (ii). Since U_{0} operates regularly on $E_{1} \cap E_{2}\langle z\rangle$ we get that $\left(E_{1} E_{2}\right)^{\prime}=E_{1} \cap E_{2}$ and hence $D\left(E_{1} E_{2}\right)=$ $E_{1} \cap E_{2}$. Since U_{0} acts regularly on $E_{1} \cap E_{2} /\langle z\rangle$ we see that $E_{1} \cap E_{2}$ is not centralized by x and hence $C_{H^{\prime}}\left(E_{1} \cap E_{2}\right)=\langle\pi\rangle \times E_{1} E_{2}$. By (iv) we get that $E_{1} \cap E_{2}$ is not normalized by an S_{3}-subgroup of H^{\prime}, because otherwise it would be centralized by a subgroup of order 9 and would be conjugate to E_{0} by (iii). This implies that U_{0} operates regularly also on $E_{1} \mid\langle z\rangle$, because otherwise an S_{3}-subgroup of B_{1} containing $\left\langle\pi, U_{0}\right\rangle$ would normalize $\left\langle\left[E_{1}, U_{0}\right], z\right\rangle=E_{1} \cap E_{2}$. So U_{0} acts regularly on $E_{1} E_{2} \mid\langle z\rangle$ and we have $C\left(E_{1}\right) \cap E_{2}=E_{1} \cap E_{2}$.

So we have seen that the elementary abelian group $E_{1} E_{2} / E_{1} \cap E_{2}$ of rank 4 is normalized by $\left\langle U_{0}, x\right\rangle \cong S_{3}$ such that U_{0} operates regularly on it. This shows that $T_{0}^{\prime} / E_{1} \cap E_{2}=C\left(x\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} E_{2} / E_{1} \cap E_{2}\right)\right.$ and hence that $T_{0}^{\prime}=\left\langle T_{o}^{\prime} \cap E_{1}\right.$, $\left.T_{0}^{\prime} \cap E_{2}\right\rangle$ where $T_{0}^{\prime} \cap E_{i}, i=1,2$, is of order 16. Since $T / E_{1} \cong Z_{2} x D_{8}$ we see that there exists an element t in $\left(T-T_{0}\right) \cap E_{2}^{*}$ such that $T / E_{1}=\left\langle t E_{1}\right\rangle x\left(T_{0} / E_{1}\right)$. Thus $\left[t, T_{0}\right] \subseteq E_{1} \cap E_{2}^{*}=E_{1} \cap E_{2}$. This implies that $T^{\prime}=T_{0}^{\prime}$. Since T_{0} contains exactly two elementary abelian subgroups of order $32, T^{\prime}$ is no abelian. This yields that $T^{\prime} \cap E_{i}, i=1,2$, are the only elementary abelian subgroups of T^{\prime} of order 16. Since T^{\prime} is normal in $N_{G}(T)$ we get that $E_{1} \cap E_{2}=\left(T^{\prime} \cap E_{1}\right) \cap\left(T^{\prime} \cap E_{2}\right)$ is normal in $N_{G}(T)$.

This completes the proof of the lemma.

2. Proof of Theorem A

In this section we prove Theorem A in a sequence of lemmas. We shall
use the notation introduced in (1.10).
Lemma 2.1. We have $N_{G}(M) / C_{G}(M) \cong G L(2,3)$ and $N_{G}(M)$ is contained in $N_{G}\left(E_{0}\right)$.

Proof. Since G is not 3-normal and there exists precisely one conjugacy class of elements of order 3 in $H-\langle\pi\rangle$ represented by σ we have that $\pi \sim \sigma$ in G. So there exists an element g in G such that $\sigma^{g}=\pi$ and $C_{P}(\sigma)^{g}=M^{g} \subseteq P$. Since there exists in H^{\prime} exactly one conjugacy class of subgroups of order 9 we can assume that $M^{g}=M$. So $\pi \sim \sigma$ in $N_{G}(M)$.

Since M^{*} is the union of $N_{H^{\prime}}(M)$-orbits of sizes 1,1 and 6 represented by π, π^{-1}, σ respectively we get that $\left|N_{G}(M) / C_{G}(M)\right|=|G L(2,3)|$ and hence $N_{G}(M) / C_{G}(M) \cong G L(2,3)$.

Since $E_{0}=0_{2}\left(C_{G}(M)\right)$ by (1.10.iii) we see that $E_{0} \triangleleft N_{G}(M)$.
Lemma 2.2. We have $C_{G}\left(E_{1}\right)=0_{2}\left(C_{G}\left(E_{1}\right)\right)\langle\pi\rangle$ where $0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is either equal to E_{1} or is an elementary abelian group of order 2^{11}.

Proof. By (1.10.ii) we have $C_{H}\left(E_{1}\right)=E_{1}\langle\pi\rangle$. Burnside's transfer theorem yields then that $C_{G}\left(E_{1}\right)=0_{3^{\prime}}\left(C_{G}\left(E_{1}\right)\right)\langle\pi\rangle$ since $\langle\pi\rangle$ is an S_{3}-subgroup of $C_{G}\left(E_{1}\right)$ by (1.10.iii).

Let $K=0_{3^{\prime}}\left(C_{G}\left(E_{1}\right)\right)$. Since $C_{H}\left(E_{1}\right)=E_{1}\langle\pi\rangle$ we see that π operates regularly on K / E_{1}. Thus K / E_{1} is nilpotent by (1.2). As $E_{1} \subseteq Z(K)$ we get that K is nilpotent. Furthermore K is normalized by P and hence we have $K=\left\langle C_{K}(x)\right|$ $1 \neq x \in M>$, by (1.5).

We have $E_{0}=C(x) \cap E_{1} \subseteq Z\left(C_{K}(x)\right)$ for any $x \in M-\langle\pi\rangle$. Since $N_{G}(M)$ is contained in $N_{G}\left(E_{0}\right)$ by (2.1) we see that $C\left(E_{0}\right) \cap C_{G}(x)=0_{2}\left(C\left(E_{0}\right) \cap C_{G}(x)\right) M$ for any $1 \neq x \in M$, where the maximal normal 2-subgroup of $C\left(E_{0}\right) \cap C_{G}(x)$ is elementary abelian of order 32 by (1.10.iv). So $C_{K}(x)$ is an elementary abelian 2 -group of order at most 32 . On the other hand π operates regularly on $C_{K}(x) E_{0}$ for $x \in M-\langle\pi\rangle$. This implies that we have either $C_{K}(x)=0_{2}\left(C\left(E_{0}\right) \cap\right.$ $\left.C_{G}(x)\right)$ or $C_{K}(x)=E_{0}$ for $x \in M-\langle\pi\rangle$. Since all elements of the set $\left\{C_{K}(x) \mid\right.$ $x \in M-\langle\pi\rangle\}$ are conjugate to each other via τ we have either

$$
C_{K}(x)=E_{0} \quad \text { for all } x \in M-\langle\pi\rangle \text {, i.e. } K=E_{1}
$$

or

$$
\begin{aligned}
& C_{K}(x)=0_{2}\left(C\left(E_{0}\right) \cap C_{G}(x)\right) \quad \text { for all } 1 \neq x \in M, \text { i.e. } \\
& K=\left\langle 0_{2}\left(C\left(E_{0}\right) \cap C_{G}(x)\right) \mid 1 \neq x \in M\right\rangle
\end{aligned}
$$

where $0_{2}\left(C\left(E_{0}\right) \cap C_{G}(x)\right)$ is elementary abelian of order 32 for all $1 \neq x \in M$. We can assume that we are in the second case.

Let S be an S_{2}-subgroup of $N_{G}(M)$. Then S acts transitively on M^{*} and normalizes E_{0}. So S acts transitively on the set $\left\{0_{2}\left(C\left(E_{0}\right) \cap C_{G}(x)\right) \mid 1 \neq x \in M\right\}$
and hence normalizes K. Since $E_{1}=0_{2}\left(C\left(E_{0}\right) \cap C_{G}(\pi)\right) \subseteq Z(K)$ we get that $K \subseteq Z(K)$ and hence that K is elementary abelian of order 2^{11} since

$$
\bar{K}=K / E_{1}=C_{\bar{K}}(\sigma) \times C_{\bar{K}}(\sigma \pi) \times C_{\bar{K}}\left(\sigma \pi^{-1}\right)
$$

is of order 2^{6}.
Lemma 2.3. If $0_{2}\left(C_{G}\left(E_{1}\right)\right)=E_{1}$, then T is an S_{2}-subgroup of G.
Proof. By (2.2) and the assumption of this lemma we have $C_{G}\left(E_{1}\right)=$ $E_{1} \times\langle\pi\rangle$. Then $N_{G}\left(E_{1}\right)$ normalizes $\langle\pi\rangle$ and hence we get $N_{G}\left(E_{1}\right)=N_{H}\left(E_{1}\right)$. Thus T is an S_{2}-subgroup of $N_{G}\left(E_{1}\right)$.

Suppose that T is not an S_{2}-subgroup of G. Then there exists a 2-group $T\langle x\rangle$ in G with $|T\langle x\rangle: T|=2$. If $E_{1}^{x} \subseteq T_{0}$ we get $E_{1}^{x}=E_{1}$ by (1.10.ii). This contradicts the fact that T is an S_{2}-subgroup of $N_{G}\left(E_{1}\right)$. So $E_{1}^{x} \subseteq T_{0}$ and thus $T-T_{0}$ contains involutions. Then E_{2}^{*} is the only elementary abelian subgroup of T of order 64 by (1.10.ii) and hence x normalizes E_{2}^{*}.

Since x normalizes $T^{\prime} \cap E_{2}^{*}=T^{\prime} \cap E_{2}$ and since T^{\prime} contains exactly two elementary abelian subgroups of rank four, namely $T^{\prime} \cap E_{i}, i=1,2$, we see that x also normalizes $T^{\prime} \cap E_{1}$. Since $E_{1} \cap E_{2} \triangleleft N_{G}(T)$ by (1.10.v) we get that $E_{1} E_{2}^{*}=$ $C_{T}\left(E_{1} \cap E_{2}\right) \triangleleft N_{G}(T)$ and hence $X=E_{1} E_{2}^{*} \cap C\left(T^{\prime} \cap E_{1}\right)=E_{1} C_{E_{2}^{*}}\left(T^{\prime} \cap E_{1}\right)$ is normalized by x. (1.10.v) gives then that $Z(X)=T^{\prime} \cap E_{1}$ and that E_{1} and $\left(T^{\prime} \cap E_{1}\right) \times$ $\left(E_{2}^{*} \cap C\left(T^{\prime} \cap E_{1}\right)\right)$ are the only elementary abelian subgroups of X of rank five. Since $E_{2}^{*} \cap C\left(T^{\prime} \cap E_{1}\right)$ is normalized by x we get that $E_{1}^{x}=E_{1}$ which is a contradiction. Thus T is a Sylow 2-subgroup of G.

Lemma 2.4. If T is an S_{2}-subgroup of G then the centralizer of the involution z in G is H.

Proof. Let $C=C_{G}(z)$ and denote the homomorphic image of any subset X of C in $C /\langle z\rangle$ by \bar{X}. Obviously H is contained in C.

Then T is an S_{2}-subgroup of C by our assumption and \bar{T} is isomorphic to an S_{2}-subgroup of Aut (M_{22}. Since $H \subseteq C$ all involutions in \bar{T}_{0} are conjugate to $\bar{e} \in Z(\bar{T})$ in \bar{C} and all involutions in $\bar{T}-\bar{T}_{0}$ are conjugate to involutions in $\bar{E}_{2}^{*}-\bar{E}_{2}$ in \bar{C} where $\bar{E}_{2}^{*}=C_{\bar{T}}\left(\bar{E}_{2}\right)$ is the only elementary abelian subgroup of \bar{T} of order 32 by (1.7) and (1.8). Furthermore we have $N_{\bar{H}}\left(\bar{E}_{2}^{*}\right)=\bar{E}_{2}^{*} \bar{B}_{2}$ where $\bar{B}_{2} \cong S_{5}$ and $\left(\bar{E}_{2}^{*}\right)^{\frac{z}{2}}$ splits into \bar{B}_{2}-orbits of sizes 15,6 and 10 represented respectively by \bar{e}, \bar{t}_{1} and \bar{t}_{2} where \bar{t}_{1} and \bar{t}_{2} are in $\bar{E}_{2}^{*}-\bar{E}_{2}$ by (1.8).

If \bar{C} has no subgroups of index two then $\bar{t}_{i}, i=1,2$, must be conjugate to an element of \bar{T}_{0} hence to \bar{e} in \bar{C} by (1.3), Thompson's transfer lemma. But this conjugation must take place in $N_{\bar{c}}\left(\bar{E}_{2}^{*}\right)$ since \bar{E}_{2}^{*} is the only elementary abelian subgroup of \bar{T} of rank 5 . So we get by the above paragraph that all involutions of \bar{E}_{2}^{*} are conjugate to each other in $N_{\bar{C}}\left(\bar{E}_{2}^{*}\right)$. In particular 31 divides the order of the group $N_{\bar{C}}\left(\bar{E}_{2}^{*}\right) / C_{\bar{C}}\left(\bar{E}_{2}^{*}\right)$.

Let $\tilde{N}=N_{\bar{C}}\left(\bar{E}_{2}^{*}\right) / C_{\bar{C}}\left(\bar{E}_{2}^{*}\right) . \quad$ Then \tilde{N} is isomorphic to a subgroup of $G L(5,2)$, has dihedral S_{2}-subgroups of order 8 and contains a subgroup \tilde{B}_{2} which is isomorphic to S_{5}. So $\bar{N} / 0(\hat{N})$ is either isomorphic to A_{7} or to a subgroup of $P \Gamma L(2, q)$ containing $P S L(2, q)$ where q is an odd prime power by [3].

Assume first that $31|0(\widetilde{N})|$. Let \tilde{S} be an S_{31}-subgroup of $0(\widetilde{N})$. Since 31^{2} does not divide the order of $G L(5,2)$ and since \bar{N} is isomorphic to a subgroup of $G L(5,2)$ we see that \tilde{S} is cyclic of order 31. By Frattini's argument we get that $N_{\tilde{N}}(\tilde{S})$ covers $\tilde{N} / 0(\widetilde{N})$ and hence that $N_{\tilde{N}}(\tilde{S}) / N_{0(\tilde{N})}(\tilde{S})$ contains a subgroup isomorphic to S_{5} by the above paragraph. Since $\operatorname{Aut}(\tilde{S})$ is cyclic we conclude that \tilde{S} is centralized by an element \tilde{a} of order 5. But $C(\tilde{a}) \cap \bar{E}_{2}^{*}$ is nontrivial and is normalized by \tilde{S}. But this is not possible since \tilde{S} operates regularly on \bar{E}_{2}^{*}. Thus $31 \times|0(N)|$ and hence $31||N / 0(N)|$.

So $\widetilde{N} / 0(\mathbb{N})$ is isomorphic to a subgroup of $P \Gamma L(2, q)$ containing $\operatorname{PSL}(2, q)$. Since \tilde{N} is isomorphic to a subgroup of $G L(5,2)$ and $|G L(5,2)|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$ this is possible only if $q=31$. But $|P S L(2,31)|=2^{5} \cdot 3 \cdot 5 \cdot 31$ whereas $|\tilde{N}|_{2}=8$. This contradiction shows that \bar{C} contains a subgroup \bar{C}_{0} with index 2 .

We have $1 \neq \bar{C}_{0} \cap \bar{T}$. Thus $Z(\bar{T})=\langle\bar{e}\rangle$ is contained in \bar{C}_{0}. Since all involutions of \bar{T}_{0} are conjugate to \bar{e} in $\bar{H}^{\prime} \subseteq \bar{C}$ and since \bar{T}_{0} is generated by its involutions we get $\bar{T}_{0} \subseteq \bar{C}_{0}$. In particular \bar{T}_{0} is an S_{2}-subgroup of \bar{C}_{0} and $\bar{H}^{\prime} \subseteq \bar{C}_{0}$.

Let now \bar{Y} be a minimal normal subgroup of \bar{C}_{0}. Since $0(\bar{Y})$ is characteristic in \bar{Y} we get either $0(\bar{Y})=\bar{Y}$ or $0(\bar{Y})=1$.

Suppose that $0(\bar{Y})=1$. Then $\bar{T}_{0} \cap \bar{Y}$ is nontrivial and hence $\bar{T}_{0} \leq \bar{Y}$ as above. Thus $\bar{H}^{\prime} \subseteq \bar{Y}$. So \bar{Y} is a direct product of isomorphic, non-abelian simple groups. Since \bar{P} is an S_{3}-subgroup of \bar{Y} and $Z(\bar{P})$ is cyclic we see that \bar{Y} is simple. $\quad \bar{T}_{0}$ is an S_{2}-subgroup of the simple group \bar{Y} and is isomorphic to an S_{2}-subgroup of M_{22}. So we get by [6; Corollary 1.3] that \bar{Y} is isomorphic to one of the following groups: $M_{22}, M_{23}, M c L, \operatorname{PSL}(4, q), q \equiv 3(\bmod 8)$, $\operatorname{PSU}(4,1), q \equiv 5(\bmod 8)$. An S_{3}-subgroup of $M c L$ is of order $3^{6}, M_{22}$ and M_{23} have abelian S_{3}-subgroups, and $P S L(4, q)$ and $\operatorname{PSU}(4, q)$ have S_{3}-subgroups which are not isomorphic to P by [6; Lemma 2.1 and 2.2]. This contradiction shows that $0(\bar{Y})=\bar{Y}$.

If $\bar{Y} \cap \bar{H}^{\prime}=1$ then $\bar{\pi}$ acts regularly on \bar{Y} and hence \bar{Y} is nilpotent by (12). We have $\bar{Y}=\left\langle C_{\bar{Y}}(\bar{x}) \mid 1 \neq \bar{x} \in \bar{M}\right\rangle$ by (1.5). Since $C_{\bar{Y}}(\bar{x})$ is isomorphic to a subgroup of \bar{H}^{\prime} for any $\bar{x} \in \bar{M}$ we get that $\pi(\bar{Y}) \subseteq\{5,7,11\}$ and $C_{\bar{Y}}(\bar{x})$ is cyclic of prime order or 1 by (1.7). Since $\bar{\pi}$ acts regularly on $C_{\bar{Y}}(\bar{x})$ we get that $C_{\bar{Y}}(x)$ is of order 7 for $\bar{x} \in \bar{M}-\langle\bar{\pi}\rangle$. Since \bar{P} operates nontrivially on \bar{M} and normalizes $Z(\bar{Y}) \neq 1$ we get by (1.5) $Z(\bar{Y})=\left\langle C_{Z(\bar{Y})}(\bar{x}) \mid 1 \neq \bar{x} \in \bar{M}\right\rangle=\bar{Y}$. Thus \bar{Y} is elementary abelian of order 7^{3}. Since $|G L(3,7)|=2^{6} \cdot 3^{4} \cdot 7^{3} \cdot 19$ we get that \bar{H}^{\prime} cannot operate faithfully on \bar{Y}, i.e. \bar{H}^{\prime} centralizes \bar{Y}. But this is not possible. Thus $\bar{Y} \cap \bar{H}^{\prime} \neq 1$. Since \bar{Y} is of odd order and $\bar{Y} \cap \bar{H}^{\prime}$ is normal in \bar{H}^{\prime} we get
that $\bar{Y} \cap \bar{H}^{\prime}=\langle\bar{\pi}\rangle$ and hence by (1.4) $\bar{Y}=0_{3^{\prime}}(\bar{Y})\langle\bar{\pi}\rangle$ since $\bar{H}^{\prime}=N(\langle\bar{\pi}\rangle) \cap \bar{C}_{0}$. Since \bar{Y} is a minimal normal subgroup of \bar{C}_{0} we obtain $0_{3}(\bar{Y})=1$ and hence $\langle\bar{\pi}\rangle\left\langle\bar{C}_{0}\right.$. This yields that $\bar{C}_{0}=\bar{H}^{\prime}$ and thus $C_{G}(z)=H$.

Lemma 2.5. $\quad 0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is elementary abelian of order 2^{11}.
Proof. Assume that $0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is not of order 2^{11}. Then we get by (2.2) that $0_{2}\left(C_{G}\left(E_{1}\right)\right)=E_{1}$ and hence by (2.3) and (2.4). that T is an S_{2}-subgroup of G and $C_{G}(z)=H$.

Let $F=C_{G}\left(E_{0}\right)$ and $\bar{F}=F / E_{0} . M$ is an S_{3}-subgroup of F by (1.10.iii). We show first that $0_{3^{\prime}}(F)=E_{0}$.

Let $K=0_{3^{\prime}}(F)$. Then K is a characteristic subgroup of F and hence normal in $N_{G}\left(E_{0}\right)$. Furthermore we have by (1.5) that $K=\left\langle C_{K}(x) \mid 1 \neq x \in M\right\rangle$. Since $N_{G}(M) \subseteq N_{G}\left(F_{0}\right)$ by (2.1) and $N_{G}(M)$ operates transitively on M^{*} we see that $N_{G}(M)$ operates transitively on the set $\left\{C_{K}(x) \mid 1 \neq x \in M\right\}$. Since $E_{0} \subseteq$ $Z\left(C_{K}(x)\right)$ for any $x \in M$ we get by (1.10.iv) as in the proof of (2.2) that K / E_{0} is an elementary abelian group of order 2^{8} if $K \neq E_{0}$. But this is not possible since T is an $S_{2^{2}}$-subgroup of G. So $K=E_{0}$ and hence $0_{3^{\prime}}(\bar{F})=1$.

We have $N_{\bar{F}}(\bar{M})=\bar{M} \bar{Q}$ where \bar{Q} is a 2 -group which acts regularly on \bar{M} by (2.1). Since $N_{\bar{F}}(\bar{M})$ is normalized by an element \bar{a} of order 3 contained in $N_{G}\left(E_{0}\right) / E_{0}$ we can assume by Frattini's argument that \bar{a} normalizes \bar{Q}. By the structure of $\operatorname{Aut}(M) \cong G L(2,3)$ we see that \bar{Q} is not of order 4 because otherwise \bar{a} would centralize \bar{Q}. So \bar{Q} is either isomorphic to the quaternion group is cyclic of order two. In the second case we get $\bar{F}=0_{3^{\prime}}(\bar{F}) N_{\bar{F}}(\bar{M})$ by [9, II]. Since $0_{3^{\prime}}(\bar{F})=1$ this implies that $\bar{F}=N_{\bar{F}}(\bar{M})$ which is not poosible since $\bar{E}_{1} \subseteq \bar{F}$. So we have $N_{\bar{F}}(\bar{M})=\bar{M} \bar{Q}$ where \bar{Q} is quaternion and acts regularly on \bar{M}.

Let \bar{Y} be a minimal normal subgroup of \bar{F}. Since $0_{3^{\prime}}(\bar{F})=1$ we have $\bar{M} \cap \bar{Y} \neq 1$. Since \bar{Q} operates transitively on M^{*} we obtain $\bar{M} \subseteq \bar{Y}$. As \bar{M} not normal in \bar{F}, \bar{Y} is not solvable. Furtheımore \bar{Y} is the unique minimal normal subgroup of \bar{F}. Thus \bar{Y} is normal in $N_{G}\left(E_{0}\right) / E_{0}$. So there exists an element \bar{a} of order 3 in $N_{G}\left(E_{0}\right) / E_{0}$ which normalizes $N_{\bar{Y}}(M)$. The argument we used above to show that an S_{2}-subgroup of $N_{\bar{F}}(\bar{M})$ is quaternion applies also to this situation and we get that $N_{\bar{Y}}(M)=N_{\bar{F}}(M)$. Since \bar{Q} is quaternion we see that \bar{Y} must be simple. By Frattini's argument we get furthermore that $\bar{Y}=\bar{F}$.

We have $C_{\bar{F}}(\bar{\pi})=\bar{E}_{1} \bar{M} \cong Z_{3} x A_{4}$ and all elements of \bar{M}^{*} are conjugate to $\bar{\pi}$ in \bar{F}. So [7] gives that \bar{F} is isomorphic to one of the following groups: $\operatorname{PSL}(3,7)$, $\operatorname{PSU}\left(3,5^{2}\right), M_{22}, M_{23}, H S, \operatorname{PSL}(5,2), \operatorname{PSp}(4,4), M_{24}, R, J_{2}$. The last three of these groups have S_{3}-subgroups of order 27 but \bar{F} has an S_{3}-subgroup of order 9. $\operatorname{PSL}(5,2), \operatorname{PSp}(4,4), M_{22}, M_{23}, H S$ have 2-subgroups of order $\geq 2^{7}$. But T is an S_{2}-subgroup of G and is of order 2^{9}. We have $19||P S L(3,7)|$ and $5^{3}| | P S U\left(3,5^{2}\right) \mid$ but $F \subseteq C_{G}(z)=H$ and $|H|=2^{9} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$. This is a
contradiction.
This contradiction completes the proof of the lemma.
Lemma 2.6. G is isomorphic to J_{4}.
Proof. By (2.2) and (2.5) we have $C_{G}\left(E_{1}\right)=K\langle\pi\rangle$ where K is elementary abelian of order 2^{11} and is normal in $C_{G}\left(E_{1}\right)$. Let $N=N_{G}(K)$. Then we have
(i) $\quad C_{G}(K)=K$ since $C_{G}(K) \subseteq C_{G}\left(E_{1}\right)=K\langle\pi\rangle$.
(ii) $N_{G}\left(E_{1}\right) \subseteq N$ where $N_{H^{\prime}}\left(E_{1}\right) / E_{1}$ is isomorphic to the triple cover of A_{6} and $N_{H}\left(E_{1}\right) / E_{1}\langle\pi\rangle \cong S_{6}$ by (1.10.1i).
(iii) $C_{N}(M)=M x E_{0}$ and $N_{N}(M)=N_{G}(M)$ as we have seen in the proof of (2.2).

We first show that $0_{3^{\prime}}(N)=K$. Since $0_{3^{\prime}}(N)$ is normalized by M we get by (1.5) that $0_{3^{\prime}}(N)=\left\langle C(x) \cap 0_{3^{\prime}}(N) \mid 1 \neq x \in M\right\rangle$. We have $C_{K}(\pi)=E_{1}$ and $C(\pi) \cap$ $0_{3^{\prime}}(N) / C_{K}(\pi) \subseteq 0_{3^{\prime}}\left(N_{H^{\prime}}\left(E_{1}\right) / E_{1}\right)=1$. Thus $C(\pi) \cap 0_{3^{\prime}}(N)=C_{K}(\pi)$. By (iii) this yields that $C_{K}(x)=C(x) \cap 0_{3^{\prime}}(N)$ for all $1 \neq x \in M$ and hence $0_{3^{\prime}}(N)=K$.

Let $\bar{N}=N / K$ and let \bar{Y} be a minimal normal subgroup of \bar{N}. Since $0_{3^{\prime}}(\bar{N})=1$ we see that $\bar{P} \cap \bar{Y} \neq 1$. Thus $Z(\bar{P})$ is contained in \bar{Y} which implies that $\bar{M} \subseteq \bar{Y}$ by (iii). By (ii) we see that \bar{Y} is not solvable. Since $C_{\bar{N}}(\bar{\pi})$ is isomorphic to the triple cover of A_{6} by (ii) and $\langle\pi\rangle \subsetneq C_{\bar{Y}}(\bar{\pi}) \unlhd C_{\bar{N}}(\bar{\pi})$ we get that $C_{\bar{Y}}(\bar{\pi})=C_{\bar{N}}(\bar{\pi})$. In particular \bar{Y} is simple since \bar{P} is an S_{3}-subgroup of \bar{Y} and $Z(\bar{P})$ is cyclic. Since $C_{\bar{N}}(\bar{\pi}) \subseteq \bar{Y}$ we get $N(\bar{M}) \cap C_{\bar{N}}(\bar{\pi}) \subseteq N_{Y}(M)$ where $N(\bar{M}) \cap C_{\bar{N}}(\bar{\pi}) / \bar{M}$ is isomorphic to S_{3} by (1.10.iii). Since $N_{\bar{N}}(\bar{M}) / \bar{M}$ is isomorphic to $G L(2,3)$ by (iii) and (2.1) and since $N_{\bar{Y}}(\bar{M}) \unlhd N_{\bar{N}}(\bar{M})$ we get by the sructure of $G L(2,3)$ that $N_{\bar{Y}}(\bar{M}) \unlhd N_{\bar{N}}(\bar{M})$. So we have seen that \bar{Y} is a simple group containing an element $\bar{\pi}$ of order 3 such that $C_{\bar{Y}}(\bar{\pi}) /\langle\bar{\pi}\rangle$ is isomorphic to $A_{6} \simeq P S L(2,9)$ and an elementary abelian subgroup \bar{M} of order 9 all identity elements of which are conjugate to $\bar{\pi}$ in \bar{Y}. So [7] gives that \bar{Y} is isomorphic to M_{24} or R or J_{2}. But J_{2} is 3-normal by [5] and R cannot operate faithfully on an elementary abelian 2-group of order 2^{11} since $29\left||R|\right.$ and $29 X\left(2^{k}-1\right)$ for $1 \leq k \leq 11$. So $\bar{Y} \cong M_{24}$. On the other hand \bar{P} is an S_{3}-subgroup the normal subgroup \bar{Y} of \bar{N} and hence $N_{\bar{N}}(\bar{P})$ covers \bar{N} / \bar{Y}. Since $N_{\bar{N}}(\bar{P}) \subseteq N_{\bar{N}}(Z(\bar{P}))$ and $N_{\bar{H}}(\bar{P}) / \bar{P}$ is a 2-group we get that \bar{N} / \bar{Y} is a 2-group. Since $\operatorname{Aut}\left(M_{24}\right)=M_{24}$ we obtain then that $\bar{N}=\bar{Y}$, for otherwise every element in $\bar{N}-\bar{Y}$ would induce a nontrivial outer automorphism of M_{24} by the structure of $N_{\bar{N}}(P)$.

Now we can apply [8; Theorem A] and obtain that K splits into two N classes of involutions the sizes of which are either 759 and 1288 or 1771 and 276. Since $z \in K$ is centralized by an S_{3}-subgroup of N the number of conjugates of z in N is either $1288=2^{3} \cdot 7 \cdot 23$ or $1771=7 \cdot 11 \cdot 23$. In the first case we have $\left|C_{N}(z) / K\right|=2^{4} \cdot 3^{3} \cdot 5 \cdot 11$. By (1.9) we get then that $C_{N}(z) / K \cong \operatorname{Aut}\left(M_{12}\right)$. We have $\left(C_{N} /(z) / K\right)^{\prime} \cong M_{12}$ and $N_{H^{\prime}}\left(E_{1}\right) K / K$ is contained in $\left(C_{N}(z) / K\right)^{\prime}$. This implies that M_{12} contains an element of order 3 which centralizes a dihedral
group of order 8. But M_{12} has exactly two classes of involutions the centralizers of which in M_{12} are isomorphic to a faithful extension of $Q_{8} * Q_{8}$ by S_{3} or to $Z_{2} \times S_{5}$. So there exists no dihedral subgroup of M_{12} of order 8 which is centralized by an element of order 3. This contradiction shows that K splits into two N-orbits of sizes 1771 and 276.

So z lies in the center of an S_{2}-subgroup of N. We shall show that $0\left(C_{G}(z)\right)=W$ is trivial. Since $H \subseteq C_{G}(z)$ and $W \cap H \subseteq 0(H)=\langle\pi\rangle$ we have either $W^{\prime} \cap H=1$ or $W \cap H=\langle\pi\rangle$. In the second case we get by (1.4) that $W=$ $0_{3^{\prime}}(W)\langle\pi\rangle$ and hence $C_{G}(z)=W H$ by the Frattini's argument. But this is not possible since $2^{21}| | C_{G}(z) \mid$. So $W \cap H=1$. Then W is nilpotent by (1.2) and we have $W=\left\langle C_{W}(x) \mid 1 \neq x \in M\right\rangle$ by (1.5). Since G has exactly one conjugacy class of elements of order $3, C_{W}(x)$ is conjugate to a subgroup of H. Since π operates regularly on $C_{W}(x)$ for any $x \in M^{*}$ we get that $C_{W}(x)$ is cyclic of order 7 or 1. Since P normalizes W and acts nontrivially on $M-\langle\pi\rangle$ we get that $Z(W)=W$ is elementary abelian of order 7^{3} or 1 . In any case H^{\prime} centralizes W. This implies that $W=1$.

So we can apply [8; Theorem B] and see that either $|G|=\left|M(24)^{\prime}\right|$ or $G \cong J_{4}$. But the first case is not possible since $3^{16}| | M(24)^{\prime} \mid$. So G is isomorphic to J_{4}. This completes the proof of the lemma and the proof of Theorem A.

3. Proof of Theorem B

A slight modification of the proof of Theorem A gives Theorem B. We shall only indicate where differences are to be made.

Let G be a simple group which is not 3-normal and contains an element π such that $C_{G}(\pi)$ is isomorphic to the triple cover of M_{22}. Then Lemma (1.10) is valid for G where H is to be replaced by $H /\langle z\rangle$. We shall use the same notation as in the second section which was introduced in (1.10) with their corresponding new meanings. Then we have

Lemma 3.1. We have $N_{G}(M) / C_{G}(M) \cong G L(2,3)$ and $N_{G}(M)$ is contained in $N_{G} /\left(E_{0}\right)$ where $E_{0}=0_{2}\left(C_{G}(M)\right)$ is a four group.

Proof. The same as in (2.1).
Lemma 3.2. We have $C_{G}\left(E_{1}\right)=0_{2}\left(C_{G}\left(E_{1}\right)\right)\langle\pi\rangle$ where tither $0_{2}\left(C_{G}\left(E_{1}\right)\right)=E_{1}$ or $0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is elementary abelian of order 2^{10}.

Proof. The same as in (2.2).
Lemma 3.3. If $0_{2}\left(C_{G}\left(E_{1}\right)\right)=E_{1}$ then T is an S_{2}-subgroup of G.
Proof. The same as in (2.3).

Lemma 3.4. T is not an S_{2}-subgroup of G and hence $0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is of order 2^{10}.

Proof. The argument we have used in (2.4) to show that $C_{G}(z)$ contains a subgroup C_{0} with index two applies also to this case and yields that G has a subgroup with index two. But this is a contradiction since G is simple.

Conclusion 3.5. G does not exist.
Proof. Otherwise we get as in (2.6) that $N_{G}(K) / K$ is isomorphic to J_{2} or M_{24} or R, where $K=0_{2}\left(C_{G}\left(E_{1}\right)\right)$ is elementary abelian of order 2^{10}. But M_{24} and R cannot operate faithfully on a 2-group of order 2^{10}. Since J_{2} is 3-normal by [5] we obtain a contradiction since we can see that $N_{G}(K)$ is not 3-normal as in (2.6).

This completes the proof of Theorem B.

References

[1] W. Gaschütz: Zur Erweiterungstheorie endlicher Gruppen, J. Reine Angew. Math. 190 (1952), 93-107.
[2] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[3] D. Gorenstein and J. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra 2 (1965), 85-151.
[4] Z. Janko: A new finite simple group of order 86.775.571.046.077.562.880 which possesses M_{24} and the full covering group of M_{22} as subgroups, J. Algebra 42 (1976), 564-596.
[5] Z. Janko: Some new simple groups of finite order, Ist. Naz. Alta Math., Symposia Mathematica vol. I., Odensi, Gubbio (1968), 25-64.
[6] D.R. Mason: Finite simple groups with Sylow 2-subgroups of type PSL(4,q), q odd, J. Algebra 26 (1973), 75-97.
[7] M.E. O'Nan: Some characterizations by centralizers of elements of order 3, J. Algebra 48 (1977), 113-141.
[8] A Reifart: Some simple groups related to M_{2}, J. Algebra 45 (1977), 199-209.
[9] S. Smith and A.P. Typer: On finite groups with a certain Sylow normalizer I, II, J. Algebra 26 (1973), 343-367.
[10] J.G. Thompson: Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-438.

Department of Mathematics

 Middle East Technical University Ankara, Turkey