ON A PROJECTIVE PLANE CURVE WHOSE COMPLEMENT HAS LOGARITHMIC KODAIRA DIMENSION $-\infty$

Masayoshi MIYANISHI and Tohru SUGIE

(Received September 14, 1979)

Introduction. Let k be an algebraically closed field of characteristic zero and let D be a reduced curve on the projective plane \boldsymbol{P}_{k}^{2} such that its complement $X:=\boldsymbol{P}_{k}^{2}-D$ has logarithmic Kodaira dimension $-\infty$ (cf. Iitaka [3, 4] for the definition and relevant results). We call such a curve D a projective plane curve with complementary logarithmic Kodaira dimension $-\infty$, a plane curve with $C L K D-\infty$, for short. The purpose of the present article is to give a characterization of plane curves with $C L K D-\infty$. Namely, we shall prove the following:

Theorem. Let D be a reduced plane curve with. $C L K D-\infty$. Then the following assertions hold true:
(1) There exists an irreducible linear pencil Λ on \boldsymbol{P}_{k}^{2} such that D is a union of (irreducible components of) members of Λ, where Λ satisfies the following properties:
$1^{\circ} \Lambda$ has only one base point P_{0}, and, for a general member C of Λ, C $\left\{P_{0}\right\}$ is isomorphic to the affine line \boldsymbol{A}_{k}^{1}; the point P_{0} is, therefore, a one-place point of C.
2° All members of Λ are irreducible, and Λ has at most two multiple members.
3° Let d be the degree of a general member C of Λ; if $d=1$ then Λ is the pencil of lines through P_{0}; if $d>1$, let l_{0} be the tangent line of a general member C, i.e., a line of maximal contact with C at P_{0}; if $d l_{0} \in \Lambda$ then $d l_{0}$ is the unique multiple member of Λ; if $d l_{0} \notin \Lambda$ then Λ has two multiple members aF and $b G$, where F and G are irreducible and a, b are integers $\geqq 2$ such that $a=\operatorname{deg} G, b=$ $\operatorname{deg} F, d=a b$ and G.C.D. $(a, b)=1 ; D$ is said to be of the first kind or of the second kind according as $d l_{0} \in \Lambda$ or $d l_{0} \notin \Lambda$, respectively.
(2) There exists a Cremona transformation $\varphi: \boldsymbol{P}_{k}^{2} \rightarrow \boldsymbol{P}_{k}^{2}$ of degree d such that:
1° The pencil Λ corresponds (under φ) to the pencil of lines through a point $Q_{0} ;$
2° if D is of the first kind, the line l_{0} is the unique exceptional curve for φ; if
L_{0} is the line through Q_{0} corresponding to $d l_{0}$ then L_{0} is the unique exceptional curve for φ^{-1};
3° if D is of the second kind, the curves F and G exhaust the exceptional curves for φ; if L_{1} and L_{2} are lines through Q_{0} corresponding to aF and $b G$ under φ, then L_{1} and L_{2} exhaust the exceptional curves for φ^{-1}.

Conversely, let Λ be an irreducible linear pencil on \boldsymbol{P}_{k}^{2} satisfying the property 1° of the assertion (1), and let D be the union of (irreducible components of) members of Λ. Then D is a plane curve with $C L K D-\infty$.

If D is of the first kind, the theorem implies that the Cremona transformation φ induces a biregular automorphism of the afflne plane $\boldsymbol{P}_{k}^{2}-l_{0} \leftrightarrows \boldsymbol{P}_{k}^{2}-L_{0}$ and that $X:=\boldsymbol{P}_{k}^{2}-D$ contains an open set which is 1 somorphic (under φ) to the affine plane with finitely many parallel lines deleted off. So far, we have only one example for D of the second kind. That is, a quintic rational curve with only one cusp of multiplicity 2, which was obtained by Yoshihara [8]. In the final section, we discuss Yoshihara's example together with some detailed observations on plane curves D of the second kind with $C L K D-\infty$.

Our termiology and notation conform with those of Miyanishi [5] and Miyanishi-Sugie [7]. We only modify some of the definitions given in [5] so as to suit the present situation.
(1) Let V_{0} be a nonsingular projective surface, let P_{0} be a point on V_{0} and let l_{0} be an irreducible curve on V_{0} such that P_{0} is a simple point of l_{0}. Let d_{0} and d_{1} be positive integers such that $d_{1}<d_{0}$. Define positive integers $d_{2}, \cdots, d_{\infty}$ and $q_{1}, \cdots, q_{\infty}$ by the following Euclidean algorithm:

$$
\begin{array}{cl}
d_{0}=d_{1} q_{1}+d_{2} & 0<d_{2}<d_{1} \\
d_{1}=d_{2} q_{2}+d_{3} & 0<d_{3}<d_{2} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
d_{\omega-2}=d_{\omega-1} q_{\omega-1}+d_{\omega} & 0<d_{\omega}<d_{\omega-1} \\
d_{\omega-1}=d_{\omega} q_{\infty} & 1<q_{\infty} .
\end{array}
$$

Let $N=q_{1}+\cdots+q_{\infty}$. Define the infinitely near points P_{i} 's of $P_{0}($ for $1 \leqq i<N)$ and the quadratic transformation $\sigma_{i}: V_{i} \rightarrow V_{i-1}$ with center $P_{i-1}($ for $1 \leqq i \leqq N$) inductively in the following fashion:
(i) P_{i} is an infinitely near point of order one of P_{i-1} for $1 \leqq i<N$;
(ii) let $E_{i}=\sigma_{i}^{-1}\left(P_{i-1}\right)$ for $1 \leqq i \leqq N$ and let $E(\nu, j)=E_{i}$ if $i=q_{0}+\cdots+$ $q_{\nu-1}+j$ with $1 \leqq \nu \leqq \alpha$ and $1 \leqq j \leqq q_{v}$, where we set $q_{0}:=0 ; P_{i}$ is the intersection point of the proper transform of $E\left(\nu-1, q_{\nu-1}\right)$ on V_{i} and the curve $E(\nu, j)$ if $i=q_{0}+\cdots+q_{\nu-1}+j$ with $1 \leqq \nu \leqq \alpha$ and $1 \leqq j \leqq q_{\nu}\left(1 \leqq j<q_{\infty}\right.$ if $\left.\nu=\alpha\right)$, where we set $E\left(0, q_{0}\right)=l_{0}$.

The composition $\sigma=\sigma_{1} \cdots \cdots \sigma_{N}$ is called the Euclidean transformation with re-
spect to a datum $\left(P_{0}, l_{0}, d_{0}, d_{1}\right)$, or the Euclidean transformation, for short, if the datum $\left(P_{0}, l_{0}, d_{0}, d_{1}\right)$ is clear by the context. The related definitions are given in Miyanishi [5; p. 92 and p. 214]. In particular, the weighted dual graph of $\sigma^{-1}\left(l_{0}\right)$ is the same as given in [loc. cit.; p. 95]. If C is an irreducible curve on V_{0} such that P_{0} is a one-place point of C with $d_{0}=i\left(C, l_{0} ; P_{0}\right)$ and $d_{1}=$ mult $_{P_{0}} C$ ($=$ the multiplicity of C at P_{0}), then the proper transform $C_{i}:=\left(\sigma_{1} \cdots \sigma_{i-1}\right)^{\prime}(C)$ passes through P_{i} so that $d_{\nu}=\left(C_{i} \cdot E(\nu, j)\right)$ and the intersection multiplicity of C_{i} with the proper transform of $E\left(\nu-1, q_{\nu-1}\right)$ on V_{i} is $d_{\nu-1}-j d_{\nu}$, where $1 \leqq i \leqq N$ and $i=q_{0}+\cdots+q_{\nu-1}+j$ with $1 \leqq \nu \leqq \alpha$ and $1 \leqq j \leqq q_{\nu}$; the smaller one of d_{ν} and $d_{\nu-1}-j d_{\nu}$ is the multiplicity of C_{i} at P_{i}. We note that $\sigma^{\prime}(C)$ meets only the last exceptional curve $E\left(\alpha, q_{\alpha}\right)$ and does not meet the other exceptional curves in the process σ.
(2) Let V_{0}, P_{0} and l_{0} be as above. Let r be a positive integer. An equimultiplicity transformation of length r with center P_{0}, or an EM-transformation, for short, is the composition $\sigma=\sigma_{1} \cdots \cdots \sigma_{r}$ of quadratic transformations defined as follows:

For $1 \leqq i \leqq r, \sigma_{i}$ is the quadratic transformation with center P_{i-1} and P_{i} (for $i<r$) is a point on $\sigma_{i}^{-1}\left(P_{i-1}\right)$ other than the point $\sigma_{i}^{\prime}\left(\sigma_{i-1}^{-1}\left(P_{i-2}\right)\right) \cap \sigma_{i}^{-1}\left(P_{i-1}\right)$ ($\sigma_{1}^{\prime}\left(l_{0}\right) \cap \sigma_{1}^{-1}\left(P_{0}\right)$ if $i=1$). A related notion is the ($\left.e, i\right)$-transformation defined in [loc. cit.; p. 100]. If C is an irreducible curve on V_{0} such that P_{0} is a one-place point with $d_{0}:=i\left(C, l_{0} ; P_{0}\right)$ equal to $d_{1}:=\operatorname{mult}_{P_{0}} C, P_{1}:=\sigma_{1}^{\prime}(C) \cap \sigma_{1}^{-1}\left(P_{0}\right)$ differs from $\sigma_{1}^{\prime}\left(l_{0}\right) \cap \sigma_{1}^{-1}\left(P_{0}\right)$. If $d_{1}^{(1)}:=\operatorname{mult}_{P_{1}} \sigma_{1}^{\prime}(C)$ equals $d_{1}=\left(\sigma_{1}^{\prime}(C) \cdot \sigma_{1}^{-1}\left(P_{0}\right)\right)$ then $P_{2}:=\left(\sigma_{1} \sigma_{2}\right)^{\prime}(C) \cap \sigma_{2}^{-1}\left(P_{1}\right)$ differs from $\sigma_{2}^{\prime}\left(\sigma_{1}^{-1}\left(P_{0}\right)\right) \cap \sigma_{2}^{-1}\left(P_{1}\right)$. Thus, this step can be repeated as long as the intersection multiplicity of the proper transform of C with the last exceptional curve equals the multiplicity of the proper transform of C at the intersection point, and the composition of performed quadratic transformations is an equi-multiplicity transformation with center P_{0}.

1. The pencil Λ

Let D be a plane curve with $C L K D-\infty$ and let $X:=\boldsymbol{P}_{k}^{2}-D$. Then X is a nonsingular rational affine surface with logarithmic Kodaira dimension $\bar{\kappa}(X)=$ $-\infty$. By virtue of the analogue of Enriques' characterization theorem of ruled surfaces (cf. Miyanishi-Sugie [7] and Fujita [1]), X contains a cylinderlike open set $U \cong U_{0} \times \boldsymbol{A}^{1}$, where U_{0} is a nonsingular rational affine curve. Then there exists an irreducible linear pencil Λ on \boldsymbol{P}_{k}^{2} such that, for a general member C of $\Lambda, C \cap X$ is a general fiber of the canonical projection $p_{1}: U \rightarrow U_{0}$. Hence $C \cap X$ is isomorphic to the affine line \boldsymbol{A}_{k}^{1}. Let d be the degree of C. Since $d>0$, Λ has a unique base point P_{0}, which is a one-place point for a general member C of Λ. Let D_{1} be an irreducible component of the curve D. Then D_{1} meets only at P_{0} with general members of Λ. Hence D_{1} is an irreducible component
of a member of Λ. Therefore, we know that D is a union of irreducible components of members of Λ. If $d=1$ the pencil Λ consists of lines through P_{0}, and we have nothing more to show in the theorem; take the identity automorphism of \boldsymbol{P}_{k}^{2} as the Cremona transformation φ. Thus, we shall assume, henceforth, that $d>1$.

Let C be a general member of Λ and let l_{0} be the tangent line of C at P_{0}, which is the line of maximal contact with C at P_{0}. Then l_{0} is the tangent line for almost all members of Λ. Indeed, if $d=2$ the pencil Λ is spanned by a nonsingular conic C through P_{0} and $2 l_{0}$, where l_{0} is the tangent line of C at P_{0}. Hence every irreducible member of Λ has l_{0} as its tangent line at P_{0}. If $d>2$ then P_{0} is a singular point for almost all members of Λ. If the assertion does not hold, after the quadratic transformation $\sigma: V^{\prime} \rightarrow V_{0}:=\boldsymbol{P}_{k}^{2}$, the exceptional curve $E^{\prime}:=\sigma^{-1}\left(P_{0}\right)$ is a quasi-section of the pencil $\sigma^{\prime} \Lambda$ ($=$ the proper transform of Λ by σ), (cf. [5; p. 190]). Since P_{0} is a one-place point for almost all members C of Λ and $\left(E^{\prime} \cdot \sigma^{\prime}(C)\right)>1$, this is a contradiction.

We shall prove the following:
Lemma 1. Let the notations and the assumptions be as above. Then the following assertions hold true:
(1) Every member M of Λ is irreducible and $M_{\text {red }}-\left\{P_{0}\right\}$ is isomorphic to the affine line \boldsymbol{A}_{k}^{1}.
(2) Λ has at most two multiple members.
(3) If Λ has only one multiple member then it is $d l_{0}$.

Proof. Let C_{0} be a general member of Λ. Then C_{0} is a curve with $C L K D-\infty$. In order to prove the above assertions, we may replace D by C_{0} and assume that D consists of only one general member of Λ. Then $\operatorname{Pic}(X)$ is a cyclic group of order d, where $X=\boldsymbol{P}_{k}^{2}-D$. Then we shall show that the projection $p_{1}: U \rightarrow U_{0}, U$ being the cylinderlike open set of X which defines the pencil, extends to a surjective morphism $\pi: X \rightarrow T \cong \boldsymbol{A}_{k}^{1}$, whose general fibers are isomorphic to \boldsymbol{A}_{k}^{1}. Indeed, since P_{0} is the single base point of Λ, the rational map $\Phi_{\Lambda}: \boldsymbol{P}_{k}^{2} \rightarrow \boldsymbol{P}_{k}^{1}$ defined by Λ is regular outside P_{0}. Hence the restriction $\pi:=\left.\Phi_{\Lambda}\right|_{X}$ is a morphism. Since D is a member of Λ, the image $T:=\pi(X)$ is isomorphic to the affine line. By construction, general fibers of π are isomorphic to \boldsymbol{A}_{k}^{1}.

By virtue of Miyanishi [6; Lemma 1.1], we have

$$
\operatorname{rank} \operatorname{Pic}(X) \underset{\boldsymbol{Z}}{\otimes} \boldsymbol{Q}=\sum_{P \in T}\left(\mu_{P}-1\right),
$$

where μ_{P} is the number of irreducible components of the fiber $\pi^{-1}(P)$ and where P ranges over all points of T. Since $\operatorname{Pic}(X)$ is a cyclic group of order d, we know that every fiber of π is irreducible; we know also by the same result (loc.
cit.) that every fiber of π is isomorphic to \boldsymbol{A}_{k}^{1}. This implies that every member of Λ is irreducible and nonsingular outside the point P_{0}. This proves the assertion (1). We can strengthen, in effect, the cited result as follows: Let P_{1}, \cdots, P_{s} exhaust the points of T such that $\pi^{*}\left(P_{i}\right)=a_{i} \pi^{-1}\left(P_{i}\right)$ with $a_{i} \geqq 2$ for $1 \leqq i \leqq s$; then $\operatorname{Pic}(X)$ is a finite abelian group with generators ξ_{1}, \cdots, ξ_{s} and relations $a_{1} \xi_{1}=\cdots=a_{s} \xi_{s}=0$. Hence a_{1}, \cdots, a_{s} are pairwise coprime, and $d=$ $a_{1} \cdots a_{s}$.

If $s=1$, we know thence that $a_{1}=d$. Let F_{1} be the closure in \boldsymbol{P}_{k}^{2} of the irreducible curve $\pi^{-1}\left(P_{1}\right)$. Then $d F_{1}$ is linearly equivalent to C. Hence F_{1} is a line. Since $F_{1} \cap C=\left\{P_{0}\right\}$, we know that $F_{1}=l_{0}$. Hence $d l_{0}$ is a member of Λ. This proves the assertion (3).

Let $\tilde{\sigma}: \tilde{V} \rightarrow V_{0}:=\boldsymbol{P}_{k}^{2}$ be the shortest succession of quadratic transformations with centers at base points (including infinitely near base points) of Λ such that the proper transform $\tilde{\Lambda}$ of Λ by $\tilde{\sigma}$ has no base points. Let \tilde{E} be the exceptional curve obtained by the last quadratic transformation in the process $\tilde{\sigma}$. Then \widetilde{E} is a cross-section of $\widetilde{\Lambda}$, i.e., a general member of $\widetilde{\Lambda}$ meets \widetilde{E} transversally in a single point. Let F_{i} be the closure in \boldsymbol{P}_{k}^{2} of $\pi^{-1}\left(P_{i}\right)$, let \widetilde{F}_{i} be the proper transform of F_{i} by $\tilde{\sigma}$ and let Γ_{i} be the member of $\widetilde{\Lambda}$ for which \widetilde{F}_{i} is an irreducible component, where $1 \leqq i \leqq s$. Since $a_{i} \geqq 2, \Gamma_{i}$ is a reducible member. Namely, Γ_{i} contains other irreducible components by means of which the component \widetilde{F}_{i} is connected to the cross-section \widetilde{E}. Those irreducible components of Γ_{i} 's other than \widetilde{F}_{i} 's for $1 \leqq i \leqq s$ are exceptional curves obtained by the quadratic transformations in the process $\tilde{\sigma}$. The composition $\tilde{\sigma}$ of quadratic transformations is, in effect, a composition of Euclidean transformations and $E M$-transformations, which are uniquely determined by a general member C of Λ as explained in the Introduction. This is due to the fact that P_{0} is a one-place point for a general member C of Λ. By looking at the configurations of exceptional curves obtained by the Euclidean transformations or the $E M$-transformations (cf. [5; p. 95]), we know that the totality of exceptional curves (except \widetilde{E}) obtained in the process $\tilde{\sigma}$ is divided into at most two connected components, and that each of (irreducible) exceptional curves (except \widetilde{E}) is contained in a member of $\tilde{\Lambda}$. This observation implies that $\tilde{\Lambda}$ contains at most two reducible fibers. Therefore Λ has at most two multiple members. This proves the assertion (2).
Q.E.D.

We have also the following:
Lemma 2. Let the notations and the assumptions be as above. Then the following conditions are equiralent to each other:
(1) For a general member C of Λ, we have

$$
\left(C \cdot l_{0}\right)=i\left(C, l_{0} ; P_{0}\right)=d .
$$

(2) $d l_{0} \in \Lambda$, i.e., D is of the first kind.
(3) Λ has only one multiple member.

Proof. $(1) \Rightarrow(2)$: By assumption, $C-\left\{P_{0}\right\}$ is contained in the affine plane $X_{0}:=\boldsymbol{P}_{k}^{2}-l_{0}$. Since $C-\left\{P_{0}\right\}$ is isomorphic to the affine line, we may choose coordinates x, y on X_{0} so that the curve $C-\left\{P_{0}\right\}$ is defined by $x=0$ (cf. Ab-hyankar-Moh's Embedding theorem [5; p. 90]). Let C^{\prime} be another general member of Λ. Then $C^{\prime}-\left\{P_{0}\right\}$ is defined by $f(x, y)=0$, where $f(x, y) \in k[x, y]$. Since $C \cap C^{\prime}=\left\{P_{0}\right\}$, we have $f(0, y) \neq 0$, i.e., $f(x, y)=c+x g(x, y)$ with $c \in k^{*}:=$ $k-(0)$ and $g(x, y) \in k[x, y]$. Since $k[x, y] /(f(x, y))$ is a polynomial ring in one variable over k, there exists an element $c^{\prime} \in k^{*}$ such that $x-c^{\prime}$ is divisible by $f(x, y)$. Hence we may assume that $f(x, y)=x-c^{\prime}$. Since Λ is spanned by C and C^{\prime}, almost all members of Λ restricted on X are defined by equations of the form $x=c$ with $c \in k^{*}$. This implies that Λ is spanned by C and $d l_{0}$, and that every member of Λ except $d l_{0}$ is irreducible and reduced.
$(2) \Rightarrow(1)$: Since P_{0} is the unique base point of Λ, we have

$$
i\left(C, l_{0} ; P_{0}\right)=\left(C \cdot l_{0}\right)=d
$$

$(2) \Rightarrow(3)$: We have shown, in the course of the proof $(1) \Rightarrow(2)$, that $d l_{0}$ is the unique multiple member of Λ. The implication $(3) \Rightarrow(2)$ is proved in Lemma 1.
Q.E.D.

Assume that Λ has two multiple members $a F$ and $b G$. Assuming, as in the proof of Lemma 1, that D consists of only one general member of $\Lambda, \operatorname{Pic}(X)$ (with $X:=\boldsymbol{P}_{k}^{2}-D$) is a cyclic group of order d generated by $[F]$ and $[G]$ with relations $a[F]=b[G]=0$, where $[F]$ and $[G]$ are the divisor classes represented by F and G, respectively. Then it is clear that $b=\operatorname{deg} F, a=\operatorname{deg} G, d=a b$ and G.C.D. $(a, b)=1$. Therefore, we proved the assertion (1) of the theorem.

2. The Cremona transformation φ

We retain the notations in the previous section. Let $\tilde{\sigma}: \tilde{V} \rightarrow V_{0}:=\boldsymbol{P}_{k}^{2}$ be the shortest succession of quadratic transformations with centers at base points (including infinitely near base points) of Λ such that the proper transform $\widetilde{\Lambda}$ of Λ by $\tilde{\sigma}$ has no base points. As already remarked, $\tilde{\sigma}$ is the composition of Euclidean transformations and $E M$-transformations. Since the process $\tilde{\sigma}$ is uniquely determined, the Euclidean trasnformations and the EM-transformations which constitute $\tilde{\sigma}$ are uniquely determined. Let C be a general member of Λ, let $d_{0}=i\left(C, l_{0} ; P_{0}\right)$ and let $d_{1}=$ mult $_{P_{0}} C$ (=the multiplicity of C at $\left.P_{0}\right)$. Then we have $d_{1}<d_{0} \leqq d$. Hence the process $\tilde{\sigma}$ starts with the Euclidean transformation $\sigma_{1}: V_{1} \rightarrow V_{0}$ with respect to a datum ($P_{0}, l_{0}, d_{0}, d_{1}$). Write

$$
\tilde{\sigma}=\sigma_{1} \tau_{1} \sigma_{2} \tau_{2} \cdots \sigma_{n} \tau_{n}
$$

where σ_{i} 's $(1 \leqq i \leqq n)$ are Euclidean transformations and τ_{j} 's $(1 \leqq j \leqq n)$ are the $E M$-transformations; if the $E M$-transformation, say τ_{j}, is not necessary in the process $\tilde{\sigma}$, we understand $\tau_{j}=i d$..

Let $\rho_{m}=\sigma_{1} \tau_{1} \cdots \sigma_{m}$ with $m<n$. Then the totality of (irreducible) exceptional curves obtained in the process ρ_{m} is contained in one and the some member of the pencil $\rho_{m}^{\prime} \Lambda$. Indeed, the pencil $\rho_{m}^{\prime} \Lambda$ has the unique base point P_{m} on the last exceptional curve E_{m} which does not lie on any other exceptional curves appeared in the process ρ_{m}. Since each exceptional curve, which is an irreducible component of $\rho_{m}^{-1}\left(P_{0}\right)$, is contained in a member of $\rho_{m}^{\prime} \Lambda$ and since $\sigma_{m}^{-1}\left(P_{0}\right)$, is connected, E_{m} and all other exceptional curves are contained in one and the same member of $\rho_{m}^{\prime} \Lambda$. A similar assertion holds true for $\rho_{m} \tau_{m}$. Since the last exceptional curve \widetilde{E} obtained in the process $\tilde{\sigma}$ is a cross-section of the pencil $\tilde{\Lambda}_{=}=\tilde{\sigma}^{\prime} \Lambda$, we know easily that $\tau_{n} \neq i d$. if D is of the first kind and $\tau_{n}=i d$. if D is of the second kind. Moreover, if D is of the second kind, one of two multiple members $a F$ and $b G$ of Λ, say $a F$, has the corresponding irreducible member $a \psi^{\prime}(F)$ in the pencil $\psi^{\prime} \Lambda$, where $\psi=\rho_{m}$ or $\rho_{m} \tau_{m}$ with $m<n ; \psi^{\prime}(G)$ then belongs to the member of $\psi^{\prime} \Lambda$ containing all the exceptional curves; in the final step, $\tilde{\sigma}^{\prime}(F)$ becomes an irreducible component of a reducible member of $\tilde{\sigma}^{\prime} \Lambda$, whose irreducible components (except $\tilde{\sigma}^{\prime} F$) are exceptional curves arising from the Euclidean transformation σ_{n} (cf. the configuration in [5; p. 95]).

Since $\tilde{\Lambda}=\tilde{\sigma}^{\prime} \Lambda$ has no base points, $\tilde{\Lambda}$ defines a surjective morphism $p:=\Phi_{\tilde{\Omega}}: \widetilde{V} \rightarrow \boldsymbol{P}_{k}^{1}$ such that, if $\boldsymbol{P}_{k}^{2}-\left\{P_{0}\right\}$ is naturally identified with an open set of \tilde{V}, p coincides with the rational map Φ_{Λ} on $\boldsymbol{P}_{k}^{2}-\left\{P_{0}\right\}$, and that the general fibers of p are non-singular rational curves. The curve \widetilde{E} is a cross-section of p. We shall construct a \boldsymbol{P}^{1}-bundle from \tilde{V} by contracting, one by one, all possible exceptional curves of the first kind contained in fibers of p. This contraction process is possible by virtue of the following:

Lemma 3 [5; Lemma 2.2, p. 115]. Let $f: V \rightarrow B$ be a surjective morphism from a nonsingular projective surface V onto a nonsingular complete curve B such that almost all fibers are isomorphic to \boldsymbol{P}_{k}^{1}. Let $F=n_{1} C_{1}+\cdots+n_{r} C_{r}$ be a singular fiber of f, where C_{i} is an irreducible curve, $C_{i} \neq C_{j}$ if $i \neq j$, and $n_{i}>0$. Then we have:
(1) G.C.D. $\left(n_{1}, \cdots, n_{r}\right)=1$ and $\operatorname{Supp}(F):=\bigcup_{i=1}^{r} C_{i}$ is connected.
(2) For $1 \leqq i \leqq r, C_{i}$ is isomorphic to \boldsymbol{P}_{k}^{1} and $\left(C_{i}^{2}\right)<0$.
(3) For $i \neq j,\left(C_{i} \cdot C_{j}\right)=0$ or 1.
(4) For three distinct indices i, j and $l, C_{i} \cap C_{j} \cap C_{l}=\phi$.
(5) One of C_{i} 's, say C_{1}, is an exceptional curve of the first kind. If $\tau: V \rightarrow W$ is the contraction of C_{1}, then f factors as $f: V \xrightarrow{\boldsymbol{\tau}} W \xrightarrow{g} B$, where $g: W \rightarrow B$ is a fibration by. \boldsymbol{P}_{k}^{1}.
(6) If one of n_{i} 's, say n_{1}, equals 1 then there is an exceptional curve of the first
kind among C_{i} 's with $2 \leqq i \leqq r$.
Let $\theta_{1}: \tilde{V} \rightarrow W$ be the contraction of all possible exceptional curves of the first kind contained in the reducible fibers of p. Then p factors as $p: \tilde{V} \xrightarrow{\theta_{1}} W \xrightarrow{q} \boldsymbol{P}_{k}^{1}$ (cf. Lemma 3, (5)) and W is a \boldsymbol{P}^{1}-bundle over \boldsymbol{P}_{k}^{1}. If Δ is a reducible fiber of p, the irreducible component Δ_{1} of Δ meeting the cross-section \widetilde{E} has multiplicity 1 . Hence we may assume that Δ_{1} is not contracted in the process θ_{1}, i.e., $\theta_{1}\left(\Delta_{1}\right)$ is the fiber of q lying over the point $p(\Delta)$, (cf. Lemma 3, (6)); we assume that this assumption is valid for all reducible fibers of p. Then $\theta_{1}(\widetilde{E})$ is a cross-section of q with $\left(\theta_{1}(\widetilde{E})^{2}\right)=-1$. This implies that W is the Hirzebruch surface of degree 1, i.e., $W=\operatorname{Proj}\left(\boldsymbol{O}_{P^{1}} \oplus \boldsymbol{O}_{P^{1}}(1)\right)$. Then, by contracting $\theta_{1}(\widetilde{E})$, we obtain the projective plane \boldsymbol{P}_{k}^{2} and all fibers of q become lines through the point $Q_{0}:=\theta_{2}\left(\theta_{1}(\widetilde{E})\right)$, where $\theta_{2}: W \rightarrow \boldsymbol{P}_{k}^{2}$ is the contraction of $\theta_{1}(\widetilde{E})$. Let $\theta=\theta_{2} \cdot \theta_{1}$ and let $\varphi:=\theta \cdot \tilde{\sigma}^{-1}: \boldsymbol{P}_{k}^{2} \rightarrow \widetilde{V} \rightarrow \boldsymbol{P}_{k}^{2}$. Then φ is the required Cremona transformation. By construction of φ, it is now straightforward to see that the assertion (2) of the theorem is verified by φ.

The converse of the theorem follows from the analogue of Enriques' characterization theorem of ruled surfaces (cf. [7] and [11]).

3. Further properties of $\boldsymbol{\Lambda}$

In this section, we consider the case where D is of the second kind. We retain the notations and the assumptions in the previous section. Let C be a general member of Λ, and let d_{0} and d_{1} be the same as defined as before. The pencil Λ has two multiple members $a F$ and $b G$; we assume that $a \psi^{\prime}(F)$ is an irreducible member of $\psi^{\prime} \Lambda$ for $\psi=\rho_{m}$ or $\rho_{m} \tau_{m}$ with $m<n$. Let $b_{0}=i\left(F, l_{0} ; P_{0}\right)$ and let $b_{1}=$ mult $_{P_{0}}, F$; then $b_{1}<b_{0} \leqq b=\operatorname{deg} F$. Define positive integers $d_{2}, \cdots, d_{\infty}$ and $q_{1}, \cdots, q_{\infty}$ by the Euclidean algorithm with respect to d_{0} and d_{1} (ci. Introduction). Similarly, define positive integers b_{2}, \cdots, b_{β} and p_{1}, \cdots, p_{β} by the Euclidean algorithm with respect to b_{0} and b_{1}.

Let $\sigma_{1}: V_{1} \rightarrow V_{0}:=\boldsymbol{P}_{k}^{2}$ be the first Euclidean transformation with respect to a datum $\left(P_{0}, l_{0}, d_{0}, d_{1}\right)$. Then, since

$$
\left(\sigma_{1}^{\prime}(C)^{2}\right)=\left(C^{2}\right)-\sum_{i=1}^{\alpha} q_{i} d_{i}^{2}=d^{2}-d_{0} d_{1}>0,
$$

the pencil $\sigma_{1}^{\prime} \Lambda$ has still a base point P_{1}^{\prime} on the last exceptional curve E_{1}^{\prime} obtained in the process σ_{1}. This implies that $\alpha=\beta, p_{i}=q_{i}$ for $1 \leqq i \leqq \alpha$ and $d_{\infty}=\left(\sigma_{1}^{\prime}(C) \cdot E_{1}^{\prime}\right)=\left(a \sigma_{1}^{\prime}(F) \cdot E_{1}^{\prime}\right)=a b_{\beta}$. Therefore we have $d_{i}=a b_{i}$ for $0 \leqq i \leqq \alpha$.

For $1 \leqq m<n$, let $\eta_{m}=\rho_{m} \tau_{m}$, let E_{m} be the last exceptional curve obtained in the process η_{m}, and let P_{m} be the base point of the pencil $\eta_{m}^{\prime} \Lambda$, i.e., $P_{m}=\eta_{m}^{\prime}(C)$ $\cap E_{m}$. Let $d_{0}^{(m)}=i\left(\eta_{m}^{\prime} C, E_{m} ; P_{m}\right)=\left(\eta_{m}^{\prime} C \cdot E_{m}\right), d_{1}^{(m)}=\operatorname{mult}_{P_{m}} \eta_{m}^{\prime} C, b_{0}^{(m)}=i\left(\eta_{m}^{\prime} F, E_{m} ; P_{m}\right)$ $=\left(\eta_{m}^{\prime} F \cdot E_{m}\right)$ and $b_{1}^{(m)}=\operatorname{mult}_{P_{m}} \eta_{m}^{\prime} F$. Set $d_{0}^{(0)}=d_{0}, d_{1}^{(0)}=d_{1}, b_{0}^{(0)}=b_{0}$ and $b_{1}^{(0)}=b_{1}$.

Then it is easy to obtain the following relations:

$$
\begin{align*}
& d_{0}^{(m)}=\text { G.C.D. }\left(d_{0}^{(m-1)}, d_{1}^{(m-1)}\right) \text { and } \tag{1}\\
& b_{0}^{(m)}=\text { G.C.D. }\left(b_{0}^{(m-1)}, b_{1}^{(m-1)}\right) \text { for } 1 \leqq m<n ;
\end{align*}
$$

(2) G.C.D. $\left(d_{0}^{(n-1)}, d_{1}^{(n-1)}\right)=$ G.C.D. $\left(b_{0}^{(n-1)}, b_{1}^{(n-1)}\right)=1$;
(3) $d_{0}^{(m)}=a b_{0}^{(m)}$ and $d_{1}^{(m)}=a b_{1}^{(m)}$ for $0 \leqq m<n-1$.

Note that $\widetilde{\Lambda}=\tilde{\sigma}^{\prime} \Lambda$ has no base points and that $\tilde{\sigma}^{\prime} F$ is the unique exceptional curve of the first kind in the reducible member of $\widetilde{\Lambda}$ of which $\tilde{\sigma}^{\prime} F$ is an irreducible component. Hence we obtain:

$$
\begin{equation*}
\left(\left(\eta_{n-1}^{\prime} C\right)^{2}\right)=d_{0}^{(n-1)} d_{1}^{(n-1)} \text { and }\left(\left(\eta_{n-1}^{\prime} F\right)^{2}\right)=b_{0}^{(n-1)} b_{1}^{(n-1)}-1 \tag{4}
\end{equation*}
$$

Since $\eta_{n-1}^{\prime} C$ is linearly equivalent to $a \eta_{n-1}^{\prime} F$ and since $d_{0}^{(n-1)}=a b_{0}^{(n-1)}$, we obtain by a straightforward computation with the relation (4) taken into account:
(5) $\cdot d_{0}^{(n-1)}=a^{2}, d_{1}^{(n-1)}=a b_{1}^{(n-1)}-1$ and $b_{0}^{(n-1)}=a$.

Let r_{m} be the length of the $E M$-transformation τ_{m} for $1 \leqq m<n$. Then we have:
(6) $d^{2}=\sum_{m=0}^{n-1} d_{0}^{(m)} d_{1}^{(m)}+\sum_{m=1}^{n-1}\left(d_{0}^{(m)}\right)^{2} r_{m}$, and $b^{2}=\sum_{m=0}^{n-1} b_{0}^{(m)} b_{1}^{(m)}+\sum_{m=1}^{n-1}\left(b_{0}^{(m)}\right)^{2} r_{m}-1$.

Since $p_{a}\left(\tilde{\sigma}^{\prime} C\right)=p_{a}\left(\tilde{\sigma}^{\prime} F\right)=0$, we obtain:
(7) $3 d=d_{0}+\sum_{m=0}^{n-1} d_{1}^{(m)}+\sum_{m=1}^{n-1} d_{0}^{(m)} r_{m}+1$, and $3 b=b_{0}+\sum_{m=0}^{n-1} b_{1}^{(m)}+\sum_{m=1}^{n-1} b_{0}^{(m)} r_{m}$.

Since $d_{0}<d=a b$ and $a^{2} \mid d_{0}$ by (5), we have:
(8) $a<b$.

Since $b_{0}^{(n-1)}=a$ by (5) and $b_{0}^{(n-1)} \mid b_{0}^{(m)}$ for $0 \leqq m<n$, we obtain from (6):
(9) $a \mid\left(b^{2}+1\right)$.

On the other hand, by virtue of Noether's inequality (cf. Hudson [2; p. 9]), the sum of three highest (or three equally highest) multiplicities of the singular points (including infinitely near singular points) of C centered at P_{0} is larger than d. Hence we have:
(10) If $\alpha \geqq 2$ then $q_{1}=1$; if $\alpha=1$ then $q_{1} \leqq 2$. Hence we have $d<3 d_{1}$ and $b<3 b_{1}$.

Finally, we consider Yoshihara's quintic rational curve F which is defined by the following equation:

$$
F:\left(Y Z-X^{2}\right)\left(Y Z^{2}-X^{2} Z-2 X Y^{2}\right)+Y^{5}=0 .
$$

Then F has only one singular point $P_{0}:=(X=0, Y=0, Z=1)$, which is a cuspidal point (i.e., a one-place point) of multiplicity 2 . The tangent line of F at P_{0} is given by

$$
l_{0}: Y=0
$$

New consider the conic G defined by

$$
G: Y Z-X^{2}=0
$$

Let Λ be the linear pencil on \boldsymbol{P}_{k}^{2} spanned by $2 F$ and $5 G$. Then, with the foregoing notations, we have:
$d=10, a=2, b=5, d_{0}=8, d_{1}=4, b_{0}=4, b_{1}=2$. Then $\tilde{\sigma}^{-1}\left(l_{0} \cup F \cup G\right)$ has the following configuration on \tilde{V} :

where $\tilde{l}_{0}:=\tilde{\sigma}^{\prime}\left(l_{0}\right), \widetilde{F}:=\tilde{\sigma}^{\prime}(F)$ and $G:=\tilde{\sigma}^{\prime}(G)$. Let θ be the contraction of G, $E_{5}, E_{4}, E_{3}, E_{2}, E_{1}, \widetilde{F}, E_{8}, E_{7}$ and \widetilde{E} in this order. Then the resulting configuration on \boldsymbol{P}_{k}^{2} is given by:

where $\theta\left(\tilde{l}_{0}\right)$ is a nonsingular conic. Moreover, $\varphi=\theta \cdot \tilde{\sigma}^{-1}$ is a Cremona transformation of degree 10 .

References

[1] T. Fujita: On Zariski Problem, Proc. Japan Acad. 55 (1979), 106-110.
[2] H.P. Hudson: Cremona transformations in plane and space, Cambridge Univ. Press, 1927.
[3] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, 1977, Iwanami, Tokyo.
[4] S. Iitaka: Geometry on complements of lines in \boldsymbol{P}^{2}, Tokyo J. Math. 1 (1978), 1-19.
[5] M. Miyanishi: Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, 1978, Springer, Berlin-Heidelberg-New York.
[6] M. Miyanishi: Regular subrings of a polynomial ring, Osaka J. Math. 17 (1980), 329-338.
[7] M. Miyanishi and T. Sugie: Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., 20 (1980), 11-42.
[8] H. Yoshihara: A problem on plane rational curves, Sugaku 31 (1979), 256"261, (in Japanese).

Masayoshi Miyanishi
Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan
Tohru Sugie
Department of Mathematics
Kyoto University
Kyoto 606
Japan

