Miyanishi, M. and Sugie, T. Osaka J. Math. 18 (1981), 1-11

ON A PROJECTIVE PLANE CURVE WHOSE COMPLEMENT HAS LOGARITHMIC KODAIRA DIMENSION $-\infty$

MASAYOSHI MIYANISHI AND TOHRU SUGIE

(Received September 14, 1979)

Introduction. Let k be an algebraically closed field of characteristic zero and let D be a reduced curve on the projective plane P_k^2 such that its complement $X := P_k^2 - D$ has logarithmic Kodaira dimension $-\infty$ (cf. Iitaka [3, 4] for the definition and relevant results). We call such a curve D a projective plane curve with complementary logarithmic Kodaira dimension $-\infty$, a plane curve with CLKD $-\infty$, for short. The purpose of the present article is to give a characterization of plane curves with CLKD $-\infty$. Namely, we shall prove the following:

Theorem. Let D be a reduced plane curve with $CLKD - \infty$. Then the following assertions hold true:

(1) There exists an irreducible linear pencil Λ on P_k^2 such that D is a union of (irreducible components of) members of Λ , where Λ satisfies the following properties:

1° Λ has only one base point P_0 , and, for a general member C of Λ , $C - \{P_0\}$ is isomorphic to the affine line A_k^1 ; the point P_0 is, therefore, a one-place point of C.

 2° All members of Λ are irreducible, and Λ has at most two multiple members.

3° Let d be the degree of a general member C of Λ ; if d=1 then Λ is the pencil of lines through P_0 ; if d>1, let l_0 be the tangent line of a general member C, i.e., a line of maximal contact with C at P_0 ; if $dl_0 \in \Lambda$ then dl_0 is the unique multiple member of Λ ; if $dl_0 \in \Lambda$ then Λ has two multiple members aF and bG, where F and G are irreducible and a, b are integers ≥ 2 such that $a=\deg G$, $b=\deg F$, d=ab and G.C.D.(a,b)=1; D is said to be of the first kind or of the second kind according as $dl_0 \in \Lambda$ or $dl_0 \in \Lambda$, respectively.

(2) There exists a Cremona transformation $\varphi: \mathbf{P}_k^2 \to \mathbf{P}_k^2$ of degree d such that: 1° The pencil Λ corresponds (under φ) to the pencil of lines through a point Q_0 ;

2° if D is of the first kind, the line l_0 is the unique exceptional curve for φ ; if

 L_0 is the line through Q_0 corresponding to dl_0 then L_0 is the unique exceptional curve for φ^{-1} ;

3° if D is of the second kind, the curves F and G exhaust the exceptional curves for φ ; if L_1 and L_2 are lines through Q_0 corresponding to aF and bG under φ , then L_1 and L_2 exhaust the exceptional curves for φ^{-1} .

Conversely, let Λ be an irreducible linear pencil on P_k^2 satisfying the property 1° of the assertion (1), and let D be the union of (irreducible components of) members of Λ . Then D is a plane curve with CLKD $-\infty$.

If D is of the first kind, the theorem implies that the Cremona transformation φ induces a biregular automorphism of the afflne plane $P_k^2 - l_0 \rightarrow P_k^2 - L_0$ and that $X := P_k^2 - D$ contains an open set which is isomorphic (under φ) to the affine plane with finitely many parallel lines deleted off. So far, we have only one example for D of the second kind. That is, a quintic rational curve with only one cusp of multiplicity 2, which was obtained by Yoshihara [8]. In the final section, we discuss Yoshihara's example together with some detailed observations on plane curves D of the second kind with $CLKD - \infty$.

Our termiology and notation conform with those of Miyanishi [5] and Miyanishi-Sugie [7]. We only modify some of the definitions given in [5] so as to suit the present situation.

(1) Let V_0 be a nonsingular projective surface, let P_0 be a point on V_0 and let l_0 be an irreducible curve on V_0 such that P_0 is a simple point of l_0 . Let d_0 and d_1 be positive integers such that $d_1 < d_0$. Define positive integers d_2, \dots, d_{∞} and q_1, \dots, q_{∞} by the following Euclidean algorithm:

$$d_{0} = d_{1}q_{1} + d_{2} \qquad 0 < d_{2} < d_{1}$$

$$d_{1} = d_{2}q_{2} + d_{3} \qquad 0 < d_{3} < d_{2}$$

$$\dots$$

$$d_{\alpha-2} = d_{\alpha-1}q_{\alpha-1} + d_{\alpha} \qquad 0 < d_{\alpha} < d_{\alpha-1}$$

$$d_{\alpha-1} = d_{\alpha}q_{\alpha} \qquad 1 < q_{\alpha}.$$

Let $N=q_1+\cdots+q_n$. Define the infinitely near points P_i 's of P_0 (for $1 \le i < N$) and the quadratic transformation $\sigma_i: V_i \rightarrow V_{i-1}$ with center P_{i-1} (for $1 \le i \le N$) inductively in the following fashion:

(i) P_i is an infinitely near point of order one of P_{i-1} for $1 \le i < N$;

(ii) let $E_i = \sigma_i^{-1}(P_{i-1})$ for $1 \le i \le N$ and let $E(\nu, j) = E_i$ if $i = q_0 + \dots + q_{\nu-1} + j$ with $1 \le \nu \le \alpha$ and $1 \le j \le q_{\nu}$, where we set $q_0 := 0$; P_i is the intersection point of the proper transform of $E(\nu-1, q_{\nu-1})$ on V_i and the curve $E(\nu, j)$ if $i = q_0 + \dots + q_{\nu-1} + j$ with $1 \le \nu \le \alpha$ and $1 \le j \le q_{\nu}$ $(1 \le j < q_{\sigma})$ if $\nu = \alpha$, where we set $E(0, q_0) = l_0$.

The composition $\sigma = \sigma_1 \cdots \sigma_N$ is called the Euclidean transformation with re-

spect to a datum (P_0, l_0, d_0, d_1) , or the Euclidean transformation, for short, if the datum (P_0, l_0, d_0, d_1) is clear by the context. The related definitions are given in Miyanishi [5; p. 92 and p. 214]. In particular, the weighted dual graph of $\sigma^{-1}(l_0)$ is the same as given in [loc. cit.; p. 95]. If C is an irreducible curve on V_0 such that P_0 is a one-place point of C with $d_0 = i(C, l_0; P_0)$ and $d_1 = \operatorname{mult}_{P_0} C$ (=the multiplicity of C at P_0), then the proper transform $C_i := (\sigma_1 \cdots \sigma_{i-1})'(C)$ passes through P_i so that $d_v = (C_i \cdot E(v, j))$ and the intersection multiplicity of C_i with the proper transform of $E(v-1, q_{v-1})$ on V_i is $d_{v-1}-jd_v$, where $1 \le i \le N$ and $i=q_0+\cdots+q_{v-1}+j$ with $1\le v\le \alpha$ and $1\le j\le q_v$; the smaller one of d_v and $d_{v-1}-jd_v$ is the multiplicity of C_i at P_i . We note that $\sigma'(C)$ meets only the last exceptional curve $E(\alpha, q_\alpha)$ and does not meet the other exceptional curves in the process σ .

(2) Let V_0 , P_0 and l_0 be as above. Let r be a positive integer. An equimultiplicity transformation of length r with center P_0 , or an EM-transformation, for short, is the composition $\sigma = \sigma_1 \cdots \sigma_r$ of quadratic transformations defined as follows:

For $1 \leq i \leq r$, σ_i is the quadratic transformation with center P_{i-1} and P_i (for i < r) is a point on $\sigma_i^{-1}(P_{i-1})$ other than the point $\sigma'_i(\sigma_{i-1}^{-1}(P_{i-2})) \cap \sigma_i^{-1}(P_{i-1})$ $(\sigma'_1(l_0) \cap \sigma_1^{-1}(P_0) \text{ if } i=1)$. A related notion is the (e,i)-transformation defined in [loc. cit.; p. 100]. If C is an irreducible curve on V_0 such that P_0 is a one-place point with $d_0:=i(C,l_0;P_0)$ equal to $d_1:=\operatorname{mult}_{P_0}C$, $P_1:=\sigma'_1(C) \cap \sigma_1^{-1}(P_0)$ differs from $\sigma'_1(l_0) \cap \sigma_1^{-1}(P_0)$. If $d_1^{(1)}:=\operatorname{mult}_{P_1}\sigma'_1(C)$ equals $d_1=(\sigma'_1(C)\cdot\sigma_1^{-1}(P_0))$ then $P_2:=(\sigma_1\sigma_2)'(C) \cap \sigma_2^{-1}(P_1)$ differs from $\sigma'_2(\sigma_1^{-1}(P_0)) \cap \sigma_2^{-1}(P_1)$. Thus, this step can be repeated as long as the intersection multiplicity of the proper transform of C with the last exceptional curve equals the multiplicity of the proper transform of C at the intersection point, and the composition of performed quadratic transformations is an equi-multiplicity transformation with center P_0 .

1. The pencil Λ

Let D be a plane curve with $CLKD - \infty$ and let $X := P_k^2 - D$. Then X is a nonsingular rational affine surface with logarithmic Kodaira dimension $\bar{\kappa}(X) =$ $-\infty$. By virtue of the analogue of Enriques' characterization theorem of ruled surfaces (cf. Miyanishi-Sugie [7] and Fujita [1]), X contains a cylinderlike open set $U \simeq U_0 \times A^1$, where U_0 is a nonsingular rational affine curve. Then there exists an irreducible linear pencil Λ on P_k^2 such that, for a general member C of Λ , $C \cap X$ is a general fiber of the canonical projection $p_1: U \rightarrow U_0$. Hence $C \cap X$ is isomorphic to the affine line A_k^1 . Let d be the degree of C. Since d > 0, Λ has a unique base point P_0 , which is a one-place point for a general member C of Λ . Let D_1 be an irreducible component of the curve D. Then D_1 meets only at P_0 with general members of Λ . Hence D_1 is an irreducible component of a member of Λ . Therefore, we know that D is a union of irreducible components of members of Λ . If d=1 the pencil Λ consists of lines through P_0 , and we have nothing more to show in the theorem; take the identity automorphism of P_k^2 as the Cremona transformation φ . Thus, we shall assume, henceforth, that d>1.

Let C be a general member of Λ and let l_0 be the tangent line of C at P_0 , which is the line of maximal contact with C at P_0 . Then l_0 is the tangent line for almost all members of Λ . Indeed, if d=2 the pencil Λ is spanned by a nonsingular conic C through P_0 and $2l_0$, where l_0 is the tangent line of C at P_0 . Hence every irreducible member of Λ has l_0 as its tangent line at P_0 . If d>2then P_0 is a singular point for almost all members of Λ . If the assertion does not hold, after the quadratic transformation $\sigma: V' \rightarrow V_0 := P_k^2$, the exceptional curve $E':=\sigma^{-1}(P_0)$ is a quasi-section of the pencil $\sigma'\Lambda$ (=the proper transform of Λ by σ), (cf. [5; p. 190]). Since P_0 is a one-place point for almost all members C of Λ and $(E' \cdot \sigma'(C)) > 1$, this is a contradiction.

We shall prove the following:

Lemma 1. Let the notations and the assumptions be as above. Then the following assertions hold true:

(1) Every member M of Λ is irreducible and $M_{\text{red}} - \{P_0\}$ is isomorphic to the affine line A_k^1 .

- (2) Λ has at most two multiple members.
- (3) If Λ has only one multiple member then it is dl_0 .

Proof. Let C_0 be a general member of Λ . Then C_0 is a curve with $CLKD - \infty$. In order to prove the above assertions, we may replace D by C_0 and assume that D consists of only one general member of Λ . Then $\operatorname{Pic}(X)$ is a cyclic group of order d, where $X = P_k^2 - D$. Then we shall show that the projection $p_1: U \to U_0$, U being the cylinderlike open set of X which defines the pencil, extends to a surjective morphism $\pi: X \to T \cong A_k^1$, whose general fibers are isomorphic to A_k^1 . Indeed, since P_0 is the single base point of Λ , the rational map $\Phi_{\Lambda}: P_k^2 \to P_k^1$ defined by Λ is regular outside P_0 . Hence the restriction $\pi:=\Phi_{\Lambda}|_X$ is a morphism. Since D is a member of Λ , the image $T:=\pi(X)$ is isomorphic to the affine line. By construction, general fibers of π are isomorphic to A_k^1 .

By virtue of Miyanishi [6; Lemma 1.1], we have

rank Pic
$$(X) \bigotimes_{\mathbf{Z}} \mathbf{Q} = \sum_{P \in T} (\mu_P - 1)$$
,

where μ_P is the number of irreducible components of the fiber $\pi^{-1}(P)$ and where P ranges over all points of T. Since Pic(X) is a cyclic group of order d, we know that every fiber of π is irreducible; we know also by the same result (*loc*.

cit.) that every fiber of π is isomorphic to A_k^1 . This implies that every member of Λ is irreducible and nonsingular outside the point P_0 . This proves the assertion (1). We can strengthen, in effect, the cited result as follows: Let P_1, \dots, P_s exhaust the points of T such that $\pi^*(P_i) = a_i \pi^{-1}(P_i)$ with $a_i \ge 2$ for $1 \le i \le s$; then Pic(X) is a finite abelian group with generators ξ_1, \dots, ξ_s and relations $a_1\xi_1 = \dots = a_s\xi_s = 0$. Hence a_1, \dots, a_s are pairwise coptime, and d = $a_1 \dots a_s$.

If s=1, we know thence that $a_1=d$. Let F_1 be the closure in P_k^2 of the irreducible curve $\pi^{-1}(P_1)$. Then dF_1 is linearly equivalent to C. Hence F_1 is a line. Since $F_1 \cap C = \{P_0\}$, we know that $F_1 = l_0$. Hence dl_0 is a member of Λ . This proves the assertion (3).

Let $\sigma: \tilde{V} \rightarrow V_0:= P_k^2$ be the shortest succession of quadratic transformations with centers at base points (including infinitely near base points) of Λ such that the proper transform $\tilde{\Lambda}$ of Λ by σ has no base points. Let \widetilde{E} be the exceptional curve obtained by the last quadratic transformation in the process σ . Then \widetilde{E} is a cross-section of $\widetilde{\Lambda}$, i.e., a general member of $\widetilde{\Lambda}$ meets \widetilde{E} transversally in a single point. Let F_i be the closure in P_k^2 of $\pi^{-1}(P_i)$, let \widetilde{F}_i be the proper transform of F_i by σ and let Γ_i be the member of $\tilde{\Lambda}$ for which \tilde{F}_i is an irreducible component, where $1 \leq i \leq s$. Since $a_i \geq 2$, Γ_i is a reducible member. Namely, Γ_i contains other irreducible components by means of which the component \widetilde{F}_i is connected to the cross-section \widetilde{E} . Those irreducible components of Γ_i 's other than \widetilde{F}_i 's for $1 \leq i \leq s$ are exceptional curves obtained by the quadratic transformations in the process σ . The composition σ of quadratic transformations is, in effect, a composition of Euclidean transformations and *EM*-transformations, which are uniquely determined by a general member C of A as explained in the Introduction. This is due to the fact that P_0 is a one-place point for a general member C of Λ . By looking at the configurations of exceptional curves obtained by the Euclidean transformations or the EM-transformations (cf. [5; p. 95]), we know that the totality of exceptional curves (except \tilde{E}) obtained in the process σ is divided into at most two connected components, and that each of (irreducible) exceptional curves (except \widetilde{E}) is contained in a member of $\widetilde{\Lambda}$. This observation implies that $\widetilde{\Lambda}$ contains at most two reducible fibers. Therefore Λ has at most two multiple members. This proves the assertion (2). Q.E.D.

We have also the following:

Lemma 2. Let the notations and the assumptions be as above. Then the following conditions are equivalent to each other:

(1) For a general member C of Λ , we have

$$(C \cdot l_0) = i(C, l_0; P_0) = d$$
.

- (2) $dl_0 \in \Lambda$, i.e., D is of the first kind.
- (3) Λ has only one multiple member.

Proof. $(1) \Rightarrow (2)$: By assumption, $C - \{P_0\}$ is contained in the affine plane $X_0 := P_k^2 - l_0$. Since $C - \{P_0\}$ is isomorphic to the affine line, we may choose coordinates x, y on X_0 so that the curve $C - \{P_0\}$ is defined by x=0 (cf. Abhyankar-Moh's Embedding theorem [5; p. 90]). Let C' be another general member of Λ . Then $C' - \{P_0\}$ is defined by f(x, y)=0, where $f(x, y) \in k[x, y]$. Since $C \cap C' = \{P_0\}$, we have $f(0, y) \neq 0$, i.e., f(x, y)=c+xg(x, y) with $c \in k^* := k-(0)$ and $g(x, y) \in k[x, y]$. Since k[x, y]/(f(x, y)) is a polynomial ring in one variable over k, there exists an element $c' \in k^*$ such that x-c' is divisible by f(x, y). Hence we may assume that f(x, y)=x-c'. Since Λ is spanned by C and C', almost all members of Λ restricted on X are defined by equations of the form x=c with $c \in k^*$. This implies that Λ is spanned by C and dl_0 , and that every member of Λ except dl_0 is irreducible and reduced.

(2) \Rightarrow (1): Since P_0 is the unique base point of Λ , we have

$$i(C, l_0; P_0) = (C \cdot l_0) = d$$
.

(2) \Rightarrow (3): We have shown, in the course of the proof (1) \Rightarrow (2), that dl_0 is the unique multiple member of Λ . The implication (3) \Rightarrow (2) is proved in Lemma 1. Q.E.D.

Assume that Λ has two multiple members aF and bG. Assuming, as in the proof of Lemma 1, that D consists of only one general member of Λ , $\operatorname{Pic}(X)$ (with $X:=P_k^2-D$) is a cyclic group of order d generated by [F] and [G] with relations a[F]=b[G]=0, where [F] and [G] are the divisor classes represented by F and G, respectively. Then it is clear that $b=\deg F$, $a=\deg G$, d=ab and G.C.D.(a,b)=1. Therefore, we proved the assertion (1) of the theorem.

2. The Cremona transformation φ

We retain the notations in the previous section. Let $\sigma: \tilde{V} \to V_0 := P_k^2$ be the shortest succession of quadratic transformations with centers at base points (including infinitely near base points) of Λ such that the proper transform $\tilde{\Lambda}$ of Λ by σ has no base points. As already remarked, σ is the composition of Euclidean transformations and *EM*-transformations. Since the process σ is uniquely determined, the Euclidean transformations and the *EM*-transformations which constitute σ are uniquely determined. Let *C* be a general member of Λ , let $d_0 = i(C, l_0; P_0)$ and let $d_1 = \operatorname{mult}_{P_0} C$ (=the multiplicity of *C* at P_0). Then we have $d_1 < d_0 \leq d$. Hence the process σ starts with the Euclidean transformation $\sigma_1: V_1 \rightarrow V_0$ with respect to a datum (P_0, l_0, d_0, d_1) . Write

$$\tilde{\sigma} = \sigma_1 \tau_1 \sigma_2 \tau_2 \cdots \sigma_n \tau_n$$
,

6

where σ_i 's $(1 \le i \le n)$ are Euclidean transformations and τ_j 's $(1 \le j \le n)$ are the *EM*-transformations; if the *EM*-transformation, say τ_j , is not necessary in the process σ , we understand $\tau_j = id$.

Let $\rho_m = \sigma_1 \tau_1 \cdots \sigma_m$ with m < n. Then the totality of (irreducible) exceptional curves obtained in the process ρ_m is contained in one and the some member of the pencil $\rho'_m \Lambda$. Indeed, the pencil $\rho'_m \Lambda$ has the unique base point P_m on the last exceptional curve E_m which does not lie on any other exceptional curves appeared in the process ρ_m . Since each exceptional curve, which is an irreducible component of $\rho_m^{-1}(P_0)$, is contained in a member of $\rho'_m \Lambda$ and since $\sigma_m^{-1}(P_0)$, is connected, E_m and all other exceptional curves are contained in one and the same member of $\rho'_m \Lambda$. A similar assertion holds true for $\rho_m \tau_m$. Since the last exceptional curve \vec{E} obtained in the process σ is a cross-section of the pencil $\tilde{\Lambda} = \tilde{\sigma}' \Lambda$, we know easily that $\tau_n \neq id$. if D is of the first kind and $\tau_n = id$. if D is of the second kind. Moreover, if D is of the second kind, one of two multiple members aF and bG of Λ , say aF, has the corresponding irreducible member $a\psi'(F)$ in the pencil $\psi'\Lambda$, where $\psi = \rho_m$ or $\rho_m \tau_m$ with m < n; $\psi'(G)$ then belongs to the member of $\psi'\Lambda$ containing all the exceptional curves; in the final step, $\tilde{\sigma}'(F)$ becomes an irreducible component of a reducible member of $\tilde{\sigma}'\Lambda$, whose irreducible components (except $\sigma' F$) are exceptional curves arising from the Euclidean transformation σ_n (cf. the configuration in [5; p. 95]).

Since $\tilde{\Lambda} = \tilde{\sigma}' \Lambda$ has no base points, $\tilde{\Lambda}$ defines a surjective morphism $p := \Phi_{\tilde{\Lambda}} \colon \tilde{V} \to P_k^1$ such that, if $P_k^2 - \{P_0\}$ is naturally identified with an open set of \tilde{V} , p coincides with the rational map Φ_{Λ} on $P_k^2 - \{P_0\}$, and that the general fibers of p are non-singular rational curves. The curve \tilde{E} is a cross-section of p. We shall construct a P^1 -bundle from \tilde{V} by contracting, one by one, all possible exceptional curves of the first kind contained in fibers of p. This contraction process is possible by virtue of the following:

Lemma 3 [5; Lemma 2.2, p. 115]. Let $f: V \rightarrow B$ be a surjective morphism from a nonsingular projective surface V onto a nonsingular complete curve B such that almost all fibers are isomorphic to P_k^1 . Let $F=n_1C_1+\cdots+n_rC_r$ be a singular fiber of f, where C_i is an irreducible curve, $C_i \neq C_j$ if $i \neq j$, and $n_i > 0$. Then we have:

- (1) G.C.D. $(n_1, \dots, n_r) = 1$ and $\operatorname{Supp}(F) := \bigcup_{i=1}^r C_i$ is connected.
- (2) For $1 \leq i \leq r$, C_i is isomorphic to P_k^1 and $(C_i^2) < 0$.
- (3) For $i \neq j$, $(C_i \cdot C_j) = 0$ or 1.
- (4) For three distinct indices i, j and l, $C_i \cap C_j \cap C_l = \phi$.
- (5) One of C_i 's, say C_1 , is an exceptional curve of the first kind. If $\tau: V \rightarrow W$

is the contraction of C_1 , then f factors as $f: V \xrightarrow{\tau} W \xrightarrow{g} B$, where $g: W \rightarrow B$ is a fibration by P_k^1 .

(6) If one of n_i 's, say n_1 , equals 1 then there is an exceptional curve of the first

kind among C_i 's with $2 \leq i \leq r$.

Let $\theta_1: \tilde{V} \to W$ be the contraction of all possible exceptional curves of the first kind contained in the reducible fibers of p. Then p factors as $p: \tilde{V} \to \tilde{W} \to \tilde{W} \to \tilde{P}_k^{l}$ (cf. Lemma 3, (5)) and W is a P^1 -bundle over P_k^1 . If Δ is a reducible fiber of p, the irreducible component Δ_1 of Δ meeting the cross-section \tilde{E} has multiplicity 1. Hence we may assume that Δ_1 is not contracted in the process θ_1 , i.e., $\theta_1(\Delta_1)$ is the fiber of q lying over the point $p(\Delta)$, (cf. Lemma 3, (6)); we assume that this assumption is valid for all reducible fibers of p. Then $\theta_1(\tilde{E})$ is a cross-section of q with $(\theta_1(\tilde{E})^2) = -1$. This implies that W is the Hirzebruch surface of degree 1, i.e., $W = \operatorname{Proj}(O_{P^1} \oplus O_{P^1}(1))$. Then, by contracting $\theta_1(\tilde{E})$, we obtain the projective plane P_k^2 and all fibers of q become lines through the point $Q_0:=\theta_2(\theta_1(\tilde{E}))$, where $\theta_2: W \to P_k^2$ is the contraction of $\theta_1(\tilde{E})$. Let $\theta=\theta_2\cdot\theta_1$ and let $\varphi:=\theta\cdot\sigma^{-1}:P_k^2\to \tilde{V}\to P_k^2$. Then φ is the required Cremona transformation. By construction of φ , it is now straightforward to see that the assertion (2) of the theorem is verified by φ .

The converse of the theorem follows from the analogue of Enriques' characterization theorem of ruled surfaces (cf. [7] and [11]).

3. Further properties of Λ

In this section, we consider the case where D is of the second kind. We retain the notations and the assumptions in the previous section. Let C be a general member of Λ , and let d_0 and d_1 be the same as defined as before. The pencil Λ has two multiple members aF and bG; we assume that $a\psi'(F)$ is an irreducible member of $\psi'\Lambda$ for $\psi=\rho_m$ or $\rho_m\tau_m$ with m<n. Let $b_0=i(F,l_0;P_0)$ and let $b_1=\operatorname{mult}_{P_0}$, F; then $b_1< b_0 \leq b=\deg F$. Define positive integers d_2, \dots, d_m and q_1, \dots, q_m by the Euclidean algorithm with respect to d_0 and d_1 (cf. Introduction). Similarly, define positive integers b_2, \dots, b_β and p_1, \dots, p_β by the Euclidean algorithm with respect to b_0 and b_1 .

Let $\sigma_1: V_1 \rightarrow V_0:= \mathbf{P}_k^2$ be the first Euclidean transformation with respect to a datum (P_0, l_0, d_0, d_1) . Then, since

$$(\sigma_1'(C)^2) = (C^2) - \sum_{i=1}^{a} q_i d_i^2 = d^2 - d_0 d_1 > 0$$
,

the pencil $\sigma'_1\Lambda$ has still a base point P'_1 on the last exceptional curve E'_1 obtained in the process σ_1 . This implies that $\alpha = \beta$, $p_i = q_i$ for $1 \le i \le \alpha$ and $d_{\sigma} = (\sigma'_1(C) \cdot E'_1) = (a\sigma'_1(F) \cdot E'_1) = ab_{\beta}$. Therefore we have $d_i = ab_i$ for $0 \le i \le \alpha$.

For $1 \leq m < n$, let $\gamma_m = \rho_m \tau_m$, let E_m be the last exceptional curve obtained in the process γ_m , and let P_m be the base point of the pencil $\gamma'_m \Lambda$, i.e., $P_m = \gamma'_m(C)$ $\cap E_m$. Let $d_0^{(m)} = i(\gamma'_m C, E_m; P_m) = (\gamma'_m C \cdot E_m), d_1^{(m)} = \operatorname{mult}_{P_m} \gamma'_m C, b_0^{(m)} = i(\gamma'_m F, E_m; P_m)$ $= (\gamma'_m F \cdot E_m)$ and $b_1^{(m)} = \operatorname{mult}_{P_m} \gamma'_m F$. Set $d_0^{(0)} = d_0, d_1^{(0)} = d_1, b_0^{(0)} = b_0$ and $b_1^{(0)} = b_1$. Then it is easy to obtain the following relations:

(1)
$$d_0^{(m)} = G.C.D.(d_0^{(m-1)}, d_1^{(m-1)})$$
 and
 $b_0^{(m)} = G.C.D.(b_0^{(m-1)}, b_1^{(m-1)})$ for $1 \le m < n$;
(2) $G.C.D.(d_0^{(n-1)}, d_1^{(n-1)}) = G.C.D.(b_0^{(n-1)}, b_1^{(n-1)}) = 1$;
(3) $d_0^{(m)} = ab_0^{(m)}$ and $d_1^{(m)} = ab_1^{(m)}$ for $0 \le m < n - 1$.

Note that $\tilde{\Lambda} = \tilde{\sigma}' \Lambda$ has no base points and that $\tilde{\sigma}' F$ is the unique exceptional curve of the first kind in the reducible member of $\tilde{\Lambda}$ of which $\tilde{\sigma}' F$ is an irreducible component. Hence we obtain:

(4)
$$((\eta'_{n-1}C)^2) = d_0^{(n-1)}d_1^{(n-1)}$$
 and $((\eta'_{n-1}F)^2) = b_0^{(n-1)}b_1^{(n-1)}-1$.

Since $\eta'_{n-1}C$ is linearly equivalent to $a\eta'_{n-1}F$ and since $d_0^{(n-1)} = ab_0^{(n-1)}$, we obtain by a straightforward computation with the relation (4) taken into account:

$$(5)$$
 $d_0^{(n-1)} = a^2$, $d_1^{(n-1)} = ab_1^{(n-1)} - 1$ and $b_0^{(n-1)} = a$.

Let r_m be the length of the *EM*-transformation τ_m for $1 \leq m < n$. Then we have:

(6)
$$d^2 = \sum_{m=0}^{n-1} d_0^{(m)} d_1^{(m)} + \sum_{m=1}^{n-1} (d_0^{(m)})^2 r_m$$
, and $b^2 = \sum_{m=0}^{n-1} b_0^{(m)} b_1^{(m)} + \sum_{m=1}^{n-1} (b_0^{(m)})^2 r_m - 1$.

Since $p_a(\tilde{\sigma}'C) = p_a(\tilde{\sigma}'F) = 0$, we obtain:

(7)
$$3d = d_0 + \sum_{m=0}^{n-1} d_1^{(m)} + \sum_{m=1}^{n-1} d_0^{(m)} r_m + 1$$
, and $3b = b_0 + \sum_{m=0}^{n-1} b_1^{(m)} + \sum_{m=1}^{n-1} b_0^{(m)} r_m$.

Since $d_0 < d = ab$ and $a^2 | d_0$ by (5), we have:

$$(8) \ a < b$$
.

Since $b_0^{(n-1)} = a$ by (5) and $b_0^{(n-1)} | b_0^{(m)}$ for $0 \le m < n$, we obtain from (6):

$$(9) \quad a \mid (b^2 + 1).$$

On the other hand, by virtue of Noether's inequality (cf. Hudson [2; p. 9]), the sum of three highest (or three equally highest) multiplicities of the singular points (including infinitely near singular points) of C centered at P_0 is larger than d. Hence we have:

(10) If
$$\alpha \ge 2$$
 then $q_1 = 1$; if $\alpha = 1$ then $q_1 \le 2$. Hence we have $d < 3d_1$ and $b < 3b_1$.

Finally, we consider Yoshihara's quintic rational curve F which is defined by the following equation:

$$F: (YZ - X^2) (YZ^2 - X^2Z - 2XY^2) + Y^5 = 0.$$

Then F has only one singular point $P_0:=(X=0, Y=0, Z=1)$, which is a cuspidal point (i.e., a one-place point) of multiplicity 2. The tangent line of F at P_0 is given by

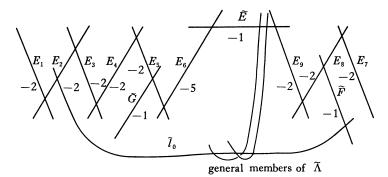
$$l_0: \mathbf{Y} = 0$$
.

New consider the conic G defined by

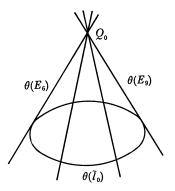
$$G: YZ - X^2 = 0.$$

Let Λ be the linear pencil on P_k^2 spanned by 2F and 5G. Then, with the foregoing notations, we have:

 $d=10, a=2, b=5, d_0=8, d_1=4, b_0=4, b_1=2$. Then $\sigma^{-1}(l_0 \cup F \cup G)$ has the following configuration on \tilde{V} :



where $\tilde{l}_0 := \tilde{\sigma}'(l_0)$, $\tilde{F} := \tilde{\sigma}'(F)$ and $\tilde{G} := \tilde{\sigma}'(G)$. Let θ be the contraction of \tilde{G} , E_5 , E_4 , E_3 , E_2 , E_1 , \tilde{F} , E_8 , E_7 and \tilde{E} in this order. Then the resulting configuration on P_k^2 is given by:



where $\theta(\tilde{l}_0)$ is a nonsingular conic. Moreover, $\varphi = \theta \cdot \tilde{\sigma}^{-1}$ is a Cremona transformation of degree 10.

References

- [1] T. Fujita: On Zariski Problem, Proc. Japan Acad. 55 (1979), 106-110.
- [2] H.P. Hudson: Cremona transformations in plane and space, Cambridge Univ. Press, 1927.
- [3] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, Complex analysis and algebraic geometry, 1977, Iwanami, Tokyo.
- [4] S. Iitaka: Geometry on complements of lines in P², Tokyo J. Math. 1 (1978), 1-19.
- [5] M. Miyanishi: Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, 1978, Springer, Berlin-Heidelberg-New York.
- [6] M. Miyanishi: Regular subrings of a polynomial ring, Osaka J. Math. 17 (1980), 329-338.
- [7] M. Miyanishi and T. Sugie: Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., 20 (1980), 11-42.
- [8] H. Yoshihara: A problem on plane rational curves, Sugaku 31 (1979), 256-261, (in Japanese).

Masayoshi Miyanishi Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan

Tohru Sugie Department of Mathematics Kyoto University Kyoto 606 Japan