A REMARK ON ASYMPTOTIC SUFFICIENCY UP TO HIGHER ORDERS IN MULTI-DIMENSIONAL PARAMETER CASE

Takeru SUZUKI

(Received March 5, 1979)

1. Introduction. Suppose that n-dimensional random vector $z_{n}=\left(x_{1}\right.$, x_{2}, \cdots, x_{n}) is distributed according to a probability measure $P_{\theta, n}$ parameterized by $\theta \in \Theta \subset \boldsymbol{R}^{p}$, and each component x_{i} is independently and identically distributed. In Suzuki [3] it was shown that when $p=1$ a statistic $t_{n}^{*}=$ $\left(\hat{\theta}_{n}, \Phi_{n}^{(1)}\left(z_{n}, \hat{\theta}_{n}\right), \cdots, \Phi_{n}^{(k)}\left(z_{n}, \hat{\theta}_{n}\right)\right)$ is asymptotically sufficient up to order $o\left(n^{-(k-1) / 2}\right)$ in the following sense: For each $n t_{n}^{*}$ is sufficient for a family $\left\{Q_{\theta, n}\right.$; $\theta \in \Theta\}$ of probability measures and that

$$
\lim _{n \rightarrow \infty} n^{(k-1) / 2}\left\|P_{\theta, n}-Q_{\theta, n}\right\|=0
$$

uniformly on any compact subset of Θ (where $\|\cdot\|$ means the total variation norm of a signed measure). Here $\hat{\theta}_{n}$ is some reasonable estimator of θ and $\Phi_{n}^{(i)}\left(z_{n}, \theta\right)$ means the i-th logarithmic derivative relative to θ of the density of $P_{\theta, n}$. In this paper we show that the result can be extended to the case where underlying distribution $P_{\theta, n}$ has multi-dimensional parameter θ. Exact form of t_{n}^{*} would be found in the statement of the theorem in Section 3. In Michel [2] a similar result was obtained with order of sufficiency $o\left(n^{\left.-(k-2 /)^{2}\right)}\right.$, and hence ours is more accurate one.
2. Notations and assumptions. Let $\Theta(\neq \phi)$ be an open subset of p dimensional Euclidean space \boldsymbol{R}^{p}. Suppose that for each $\theta \in \Theta$ there corresponds a probability measure $P_{\boldsymbol{\theta}}$ defined on a measurable space $(\boldsymbol{X}, \boldsymbol{A})$. For each $n \in N=\{1,2, \cdots\}$ let $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right)$ be the cartesian product of n copies of $(\boldsymbol{X}, \boldsymbol{A})$, and $P_{\theta, n}$ the product measure of n copies of P_{θ}. For a signed measure $\tilde{\lambda}$ on $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right),\|\tilde{\lambda}\|$ means the total variation norm of $\tilde{\lambda}$ over $\boldsymbol{A}^{(n)}$. For a function h and a probability $P, E[h ; P]$ stands for the expectation of h under P. In the following it will be assumed that the map: $\theta \rightarrow P_{\theta}$ is one to one, and that for each $\theta \in \Theta P_{\theta}$ has a densiy $f(x, \theta)$ relative to a sigma-finite measure μ on $(\boldsymbol{X}, \boldsymbol{A})$. We assume that $f(x, \theta)>0$ for every $x \in \boldsymbol{X}$ and every $\theta \in \Theta$. We denote by μ_{n} the product measure of n copies of the same com-
ponent μ. We define $\Phi(x, \theta)=\log f(x, \theta)$ for each $x \in \boldsymbol{X}$ and $\theta \in \Theta$, and $\Phi_{n}\left(z_{n}, \theta\right)=\sum_{\nu=1}^{n} \Phi\left(x_{\nu}, \theta\right)$ for eadch $n \in N$, each $z_{n}=\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{X}^{(n)}$ and $\theta \in \Theta$. For a vector $u \in \boldsymbol{R}^{p},\|u\|$ denotes the usual Eculidean norm of u. For $\varepsilon>0$ and $a \in \boldsymbol{R}^{p}$ we define $U(a: \varepsilon)=\left\{u \in \boldsymbol{R}^{p} ;\|u-a\|<\varepsilon\right\}$ and $V(a: \varepsilon)=\left\{u \in \boldsymbol{R}^{p} ;\|u-a\| \leqq\right.$ $\varepsilon\}$. Let k be a fixed positive integer.

Condition R. (1) For every $x \in \boldsymbol{X} \Phi(x, \theta)$ is ($k+2$)-times continuously differentiable with respect to θ in Θ. For $m \in N$ define $J_{m}=\left\{\left(i_{1}, \cdots, i_{m}\right)\right.$; $\left.i_{j}=1, \cdots, p(j=1, \cdots, m)\right\}$. For each $m(1 \leqq m \leqq k+2)$ and each $\left(i_{1}, i_{2}, \cdots, i_{m}\right) \in J_{m}$ define

$$
\Phi^{i_{1} \cdots i_{m}}(x, \theta)=\partial^{m} \Phi(x, \theta) / \partial \theta_{i_{1}} \cdots \partial \theta_{i_{m}}
$$

and

$$
\Phi_{n}^{i_{n} \cdots i_{m}}\left(z_{n}, \theta\right)=\sum_{\nu=1}^{n} \Phi^{i_{1} \cdots i_{m}}\left(x_{\nu}, \theta\right) .
$$

(2) For every $a=\left(a_{1}, \cdots, a_{p}\right) \in \boldsymbol{R}^{p}(a \neq 0)$ and every $\theta \in \Theta$ we have

$$
P_{\theta}\left(\sum_{i=1}^{p} a_{i} \Phi^{i}(x, \theta) \neq 0\right)>0 .
$$

(3) For every $\theta \in \Theta$, there exists a positive number ε such that
a. $\sup _{\tau \in V(\theta: 8)} E\left[\sup _{\sigma \in V(\theta: \varepsilon)}\left\{\Phi^{i_{1} \cdots i_{k+2}}(x, \sigma)\right\}^{2} ; P_{\tau}\right]<\infty$ for every $\left(i_{1}, \cdots, i_{k+2}\right) \in J_{k+2}$
b. $\sup _{\tau \in V(\theta: 8)} E\left[\left|\Phi^{i_{1} \cdots i_{k+1}}(x, \tau)\right| \cdot u_{\mathrm{e}}^{i}(x, \tau) ; P_{\tau}\right]<\infty$ and $E\left[u_{\mathrm{e}}^{i}(x, \theta)\right]<\infty$ for every $\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}$ and every $i(1 \leqq i \leqq p)$, where $u_{\mathrm{e}}^{i}(x, \tau)=\sup _{\sigma \in V(\tau: \varepsilon)}\left[\left|\left(\partial f(x, \theta) / \partial \theta_{i}\right)_{\theta=\sigma}\right| /\right.$ $f(x, \tau)]$.

$$
\text { c. } \quad 0<\inf _{\tau \in V(\theta: z)} \operatorname{Var}\left(\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right) \leqq \sup _{\tau \in V(\theta: \varepsilon)} \operatorname{Var}\left(\Phi^{i_{1} \cdots i_{k+1}}\left(x, \tau ; P_{\tau}\right)<\infty\right.
$$

for every $\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}$.
We define for each $\varepsilon^{\prime}>0, \sigma \in \Theta$ and $\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}$

$$
\bar{Z}_{1}^{i_{1} \cdots i_{k+1}}\left(x ; \varepsilon^{\prime}, \sigma\right)=\sup \left\{\Phi^{i_{1} \cdots i_{k+1}}(x, \tau)-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right] ; \tau \in V\left(\sigma: \varepsilon^{\prime}\right) \cap \Theta\right\}
$$

and

$$
\begin{aligned}
\underline{Z}^{i_{\mathrm{i}} \cdots i_{k+1}}\left(x ; \varepsilon^{\prime}, \sigma\right)= & -\inf \left\{\Phi^{i_{1}, \cdots i_{k+1}}(x, \tau)\right. \\
& -E\left[\left(\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right] ; \tau \in V\left(\sigma: \varepsilon^{\prime}\right) \cap \Theta\right\}
\end{aligned}
$$

(4) For each $\theta \in \Theta$ there exist positive numbers η and ρ such that for every $\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}$ and every $\left(t, \varepsilon^{\prime}\right) \in(-\rho, \rho) \times(0, \eta]$ the moment generating functions (m.g.f's) of $\bar{Z}^{i_{1} \cdots i_{k+1}}\left(x ; \varepsilon^{\prime}, \sigma\right)$ and $\underline{Z}^{i_{1} \cdots i_{k+1}}\left(x ; \varepsilon^{\prime}, \sigma\right)$ converge uniformly in $\sigma \in U(\theta: \eta)$.
3. Asymptotic sufflcient statistics up to higher orders. An esti-
mator of θ depending on $z_{n}=\left(z_{1}, \cdots, x_{n}\right) \in \boldsymbol{X}^{(n)}$ is an $\boldsymbol{A}^{(n)}$-measurable function from $\boldsymbol{X}^{(n)}$ to \boldsymbol{R}^{p}. Such estimator will be called strict if its range is a subset of Θ. For each $\delta(0<\delta<1 / 2)$ we denote by $\boldsymbol{C}_{k}(\delta)$ the class of all sequences of strict estimators $\hat{\theta}_{n}$ of θ such that for every compact subset K of Θ

$$
\sup _{\theta \in K} P_{\theta, n}\left(n^{1 / 2}\left\|\hat{\theta}_{n}\left(z_{n}\right)-\theta\right\|>n^{\delta}\right)=o\left(n^{-(k-1) / 2}\right)
$$

Here the notation $o\left(a_{n}\right)$ means that $\lim _{n \rightarrow \infty} o\left(a_{n}\right) / a_{n}=0$. In Pfanzagl [1] it was shown that under Condition R for any δ satisfying $0<\delta<1 / 2 \boldsymbol{C}_{k}(\delta)$ does not empty. Let $\delta_{0}=1 /[2(k+2)]$ and $\boldsymbol{C}_{k}=\bigcup_{0<\delta<\delta_{0}} \boldsymbol{C}_{k}(\delta)$. We have the following result which is an extension of Tehorem 2 in Suzuki [3] to a multi-dimensional parameter case. Since the proof is much analogous to the one in [3] we shall only sketch the outlines and details will be omitted (see [3] for precise arguments).

Theorem. Suppose that Condition R is satisfied, and that $\left\{\hat{\theta}_{n}\right\} \in \boldsymbol{C}_{k}$ then there exists a sequence $\left\{Q_{\theta, n} ; \theta \in \Theta\right\}, n \in N$, of families of probability measures on $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right)$ with the following properties: (1) For each $n \in N$, the statistic $t_{n}^{*}=\left(\hat{\theta}_{n}, \Phi_{n}^{i}\left(z_{n}, \hat{\theta}_{n}\right)(i=1, \cdots, p), \Phi_{n}^{i j}\left(z_{n}, \hat{\theta}_{n}\right)\left((i, j) \in J_{2}\right), \cdots, \Phi_{n}^{I_{1} \cdots i_{k}}\left(z_{n}, \hat{\theta}_{n}\right)\left(\left(i_{1}, \cdots, i_{k}\right)\right.\right.$ $\left.\in J_{k}\right)$) is sufficient for $\left\{Q_{\theta, n} ; \theta \in \Theta\right\}$. (2) For every compact subset K of Θ

$$
\sup _{\theta \in \mathbb{K}}\left\|P_{\theta, n}-Q_{\theta, n}\right\|=o\left(n^{-(k-1) / 2}\right)
$$

Proof. Suppose that Condition R is satisfied, and that $\left\{\hat{\theta}_{n}\right\} \in \boldsymbol{C}_{k}\left(\delta_{1}\right)$ where δ_{1} satisfies $0<\delta_{1}<\delta_{0}$. Let δ and γ be two numbers satisfying $\delta_{1}<\delta<\delta_{0}$ and $\delta<\gamma<(1 / 2)-(k+1) \delta$, and let $\varepsilon_{n}=n^{\delta-(1 / 2)} \quad \varepsilon_{n}^{\prime}=n^{\gamma-(1 / 2)}$. Define

$$
\begin{aligned}
& W_{n}^{1}=\left\{z_{n} \in \boldsymbol{X}^{(n)} ;\left\|\theta-\hat{\theta}_{n}\left(z_{n}\right)\right\| \leqq \varepsilon_{n} \quad \text { and } \quad\left[\theta: \hat{\theta}_{n}\right] \subset \Theta\right\} \\
& W_{n}^{2}=\left\{z_{n} \in \boldsymbol{X}^{(n)} ; \gamma_{n}\left(z_{n}\right) \leqq \varepsilon_{n}^{\prime}\right\}
\end{aligned}
$$

where

$$
\left[\theta: \hat{\theta}_{n}\right]=\left\{t \theta+(1-t) \hat{\theta}_{n} ; 0 \leqq t \leqq 1\right\}
$$

and

$$
\begin{aligned}
& \gamma_{n}\left(z_{n}\right)=\max _{\left(i_{1} \cdots, \cdots, i_{k+1}\right) \in J_{k+1}} \sup \left\{\left|\Phi_{n}^{i_{1} \cdots i_{k+1}}\left(z_{n}, \tau\right)\right| n-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right] \mid ;\right. \\
& \left.\tau \in V\left(\hat{\theta}_{n}: 2 \varepsilon_{n}\right) \cap \Theta\right\} .
\end{aligned}
$$

By a Taylor expansion of $\Phi_{n}\left(z_{n}, \theta\right)$ around $\theta=\hat{\theta}_{n}$ we have

$$
\begin{equation*}
\Phi_{n}\left(z_{n}, \theta\right)=\Phi_{n}\left(z_{n}, \hat{\theta}_{n}\right)+\Psi_{n}\left(t_{n}^{*}, \theta\right)+R_{n}\left(z_{n}, \theta\right) \tag{3.1}
\end{equation*}
$$

where denoting by $\hat{\theta}_{n, i}$ the i-th comonents of $\hat{\theta}_{n}$

$$
\Psi_{n}\left(t_{n}^{*}, \theta\right)=\sum_{m=1}^{k} \sum_{i_{1}=1}^{p} \cdots \sum_{i_{m}=1}^{p} \prod_{j=1}^{m}\left(\theta_{i_{j}}-, \hat{\theta}_{n, i_{j}}\right) \cdot \Phi_{n}^{i_{n} \cdots i_{m}}\left(z_{n}, \hat{\theta}_{n}\right) / m!+s_{n}^{\prime}\left(\theta_{n}, \theta\right),
$$

$$
\begin{aligned}
& s_{n}^{\prime}\left(\hat{\theta}_{n}, \theta\right)=n \sum_{i_{1}=1}^{p} \cdots \sum_{i_{k+1}=1}^{p} \prod_{j=1}^{k+1}\left(\theta_{i_{j}}-\hat{\theta}_{n, i_{j}}\right) E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \theta) ; P_{\theta}\right] /(k+1)! \\
& R_{n}\left(Z_{n}, \theta\right)=\left\{\begin{array}{c}
\left.\Phi_{n}\left(z_{n}, \theta\right)-\Phi_{n}\left(z_{n}, \hat{\theta}_{n}\right)-\Psi_{n}\left(t_{n}^{*}, \theta\right) \quad \text { (if }\left[\theta: \hat{\theta}_{n}\right] \nsubseteq \Theta\right), \\
n \sum_{i_{1}=1}^{p} \cdots \sum_{i_{k+1}=1}^{p} \prod_{j=1}^{k+1}\left(\theta_{i_{j}}-\hat{\theta}_{n, i_{j}}\right)\left[\int _ { 0 } ^ { 1 } (1 - \lambda) ^ { k } \left\{\Phi_{n}^{i_{1} \cdots i_{k+1}}\left(z_{n}, \hat{\theta}_{n}+\lambda\left(\theta-\hat{\theta}_{n}\right)\right) / n\right.\right. \\
\left.\left.\left.-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \theta) ; P_{\theta}\right]\right\} d \lambda\right] / k!\quad \text { (if }\left[\theta: \hat{\theta}_{n}\right] \subset \Theta\right) .
\end{array}\right.
\end{aligned}
$$

Define

$$
\begin{align*}
q_{n}^{*}\left(z_{n}, \theta\right) & =I_{W_{n}^{1}}\left(z_{n}\right) \cdot I_{W_{n}^{2}}\left(z_{n}\right) \cdot \exp \left\{\Phi_{n}\left(z_{n}, \hat{\theta}_{n}\right)+\Psi_{n}\left(t_{n}^{*}, \theta\right)\right\} \tag{3.2}\\
& =r_{n}^{*}\left(t_{n}^{*}, \theta\right) \cdot s_{n}^{*}\left(z_{n}\right) \geqq 0
\end{align*}
$$

where

$$
\begin{aligned}
& r_{n}^{*}\left(t_{n}^{*}, \theta\right)=I_{W_{n}^{1}}\left(z_{n}\right) \exp \left\{\Psi_{n}\left(t_{n}^{*}, \theta\right)\right\}, \\
& s_{n}^{*}\left(z_{n}\right)=I_{W_{n}^{2}}\left(z_{n}\right) \cdot \exp \left\{\Phi_{n}\left(z_{n}, \hat{\theta}_{n}\right)\right\}
\end{aligned}
$$

and $I_{W_{i}^{i}}\left(z_{n}\right)$ mean the indicator functions of W_{n}^{i}. The integrability of $q_{n}^{*}(\cdot, \theta)$ follows from (3.4). Let $Q_{\theta, n}^{*}$ be a measure on ($\left.\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right)$ defined by

$$
Q_{\theta, n}^{*}(A)=\int_{A} q_{n}^{*}\left(z_{n}, \theta\right) d \mu_{n}\left(A \in \boldsymbol{A}^{(n)}\right) .
$$

By (3.1) and (3.2) we have

$$
\begin{equation*}
\int_{X^{(n)}}\left|p_{n}\left(z_{n}, \theta\right)-q_{n}^{*}\left(z_{n}, \theta\right)\right| d \mu_{n}=T_{n}^{1}(\theta)+T_{n}^{2}(\theta)+T_{n}^{3}(\theta) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{n}\left(z_{n}, \theta\right)=\prod_{\nu=1}^{u} f\left(x_{\nu}, \theta\right), \\
& T_{n}^{1}(\theta)=\int_{W_{n}^{1} \cap W_{n}^{2}}\left|1-\exp \left\{-R_{n}\left(z_{n}, \theta\right)\right\}\right| p_{n}\left(z_{n}, \theta\right) d \mu_{n}, \\
& T_{n}^{2}(\theta)=P_{\theta, n}\left(\left(W_{n}^{1}\right)^{c}\right) \text { and } \\
& T_{n}^{3}(\theta)=P_{\theta, n}\left(W_{n}^{1} \cap\left(W_{n}^{2}\right)^{c}\right) .
\end{aligned}
$$

Let θ_{0} be an arbitrarily fixed point of Θ, and let K be a compact subset of Θ. We assume without loss of generality that K contains θ_{0}. From Condition R it follows that there exist positive numbers $\varepsilon^{*}, \rho^{*}$ and η^{*} depending only on K but not depending on θ in K such that

$$
\begin{aligned}
& M_{1}=\sum_{\left(i_{1}, \cdots, i_{k+2}\right) \in J_{k+2}} \sup _{\theta \in K} \sup _{\tau \in V(\theta: s *)} E\left[\sup _{\sigma \in V(\theta: z *)}\left\{\Phi^{i_{1} \cdots i_{k+2}}(x, \sigma)\right\}^{2} ; P_{\tau}\right]<\infty \\
& M_{2}=\max _{\left(i_{1}, \cdots, i_{k+1} \in J_{k+1}\right.} \sum_{j=1}^{p} \sup _{\theta \in K} E\left[\left|\Phi^{i_{1} \cdots i_{k+1}}(x, \theta)\right| \cdot u_{3^{*}}^{j}(x, \theta) ; P_{\theta}\right]<\infty \\
& 0<\inf _{\tau \in K} \operatorname{Var}\left(\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right) \\
& \left.\leqq \sup _{\tau \in K} \operatorname{Var}\left(\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right)<\infty \quad \text { (for every }\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}\right)
\end{aligned}
$$

and that for every $\theta \in K$ and every $\left(t, \varepsilon^{\prime}, \sigma\right) \in\left(-\rho^{*}, \rho^{*}\right) \times\left(0, \eta^{*}\right] \times U\left(\theta: \eta^{*}\right)$ the m.g.f.'s of $\bar{Z}^{i_{1} \cdots i_{k+1}}\left(x ; \varepsilon^{\prime}, \sigma\right)$ and $\underline{Z}^{i_{1} \cdots i_{k+1}}\left(z ; \varepsilon^{\prime}, \sigma\right)$ exist and converge uniformly in $\sigma \in U\left(\theta: \eta^{*}\right)$. Hence there exists a number n_{1} such that for every $n \geqq n_{1}, \theta \in K$, $\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}$ and every $z_{n} \in W_{n}^{1} \cap W_{n}^{2}$ we have

$$
\begin{aligned}
& \sup _{\tau \in V\left(\theta: \varepsilon_{n}\right)}\left|\Phi_{n}^{i_{1} \cdots i_{k+1}}\left(z_{n}, \tau\right) / n-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \theta) ; P_{\theta}\right]\right| \\
& \leqq \sup _{\tau \in V\left(\theta: \varepsilon_{n}\right.}\left|\Phi_{n}^{i_{1} \cdots i_{k+1}}\left(z_{n}, \tau\right) / n-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right| \\
&+\sup _{\tau \in V\left(\theta: \varepsilon_{n}\right)}\left|E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \theta) ; P_{\theta}\right]\right| \\
& \leqq \sup _{\tau \in V\left(\theta_{n}: 2 z_{n}\right)}\left|\Phi_{n}^{i_{1} \cdots i_{k+1}}\left(z_{n}, \tau\right) / n-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right|+\left[M_{1}^{1 / 2}+M_{2}\right] \cdot \varepsilon_{n} \\
& \leqq \gamma_{n}\left(z_{n}\right)+\varepsilon_{n}^{\prime} \\
& \leqq 2 \varepsilon_{n}^{\prime} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\sup _{\theta \in K} T_{n}^{1}(\theta) & \leqq \sup _{\theta \in K} \int_{X^{(n)}}\left|R_{n}\left(z_{n}, \theta\right)\right| \cdot \exp \left(\left|R_{n}\right|\right) d \dot{P}_{\theta, n} \\
& \leqq 4 \cdot n^{-(k-1) / 2} n^{(k+1) \delta+\gamma-(1 / 2)} /(k+1)!
\end{aligned}
$$

for sufficiently large n. Therefore

$$
\begin{equation*}
\sup _{\theta \in \mathbb{K}} T_{n}^{1}(\theta)=o\left(n^{-(k-1) / 2}\right) \tag{3.4}
\end{equation*}
$$

By the definition of $\boldsymbol{C}_{k}\left(\delta_{1}\right)$ we have easily

$$
\begin{equation*}
\sup _{\theta \in K} T_{n}^{2}(\theta)=o\left(n^{-(k-1) / 2}\right) \tag{3.5}
\end{equation*}
$$

Next we evaluate the third term $T_{n}^{3}(\theta)$ as follows.

$$
\begin{align*}
& \sup _{\theta \in K} T_{n}^{3}(\theta)=\sup _{\theta \in K} P_{\theta, n}\left(\left\|\theta-\hat{\theta}_{n}\left(z_{n}\right)\right\| \leqq \varepsilon_{n}, \quad\left[\theta: \hat{\theta}_{n}\right] \subset \Theta, \gamma_{n}\left(z_{n}\right)>\varepsilon_{n}^{\prime}\right) \tag{3.6}\\
& \leqq \sup _{\theta \in K} P_{\theta, n}\left(\max _{\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}} \sup _{\tau \in V\left(\theta: 3 s_{n}\right)} \mid \Phi_{n}^{i_{1} 1 \cdots i_{k+1}}\left(z_{n}, \tau\right) / n\right. \\
& \left.\left.-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right) \mid>\varepsilon_{n}^{\prime}\right) \\
& \leqq \sum_{\left(i_{1} \cdots i_{k+1}\right) \in J_{k+1}} \sup _{\theta \in K} P_{\theta, n}\left(\sum _ { \nu = 1 } ^ { n } \operatorname { s u p } _ { \tau \in V (\theta : 3 _ { n }) } \left\{\Phi^{i_{1} \cdots i_{k+1}}\left(x_{\nu}, \tau\right)\right.\right. \\
& \left.\left.-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right\}>n \varepsilon_{n}^{\prime}\right) \\
& +\sum_{\left(i_{1}, \cdots, i_{k+1}\right) \in J_{k+1}} \sup _{\theta \in K} P_{\theta, n}\left(\sum _ { \nu = 1 } ^ { n } \operatorname { i n f } _ { \tau \in V (\theta : 3 e _ { n }) } \left\{\Phi^{i_{1} \cdots i_{k+1}}\left(x_{\nu}, \tau\right)\right.\right. \\
& \left.\left.-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right\}<-n \varepsilon_{n}^{\prime}\right) .
\end{align*}
$$

Let $a(\varepsilon)=\varepsilon /\left[4 \cdot M_{1}^{1 / 2}+2 M_{2}\right]$ and let $Z_{v}(\varepsilon, \theta)=\bar{Z}^{i_{1} \cdots i_{k+1}}\left(x_{v} ; a(\varepsilon), \theta\right)(\nu=1, \cdots, n)$. According to the lemma in Suzuki [3] there exist constants $\beta>0$ and $\varepsilon^{* *}>0$ such that

$$
\sup _{\theta \in \mathbb{K}} P_{\theta, n}\left(\sum_{\nu=1}^{n} Z_{\nu}(\varepsilon, \theta) \geqq n \varepsilon\right) \geqq\left(1-\beta \varepsilon^{2}\right)^{n}
$$

for every $n \in N$ and every ε satisfying $0<\varepsilon \leqq \varepsilon^{* *}$. Hence we have

$$
\begin{align*}
& \sup _{\theta \in K} P_{\theta, n}\left(\sum_{v=1}^{n} \sup _{\tau \in V\left(\theta: 3 s_{n}\right)}\left\{\Phi^{i_{1} \cdots i_{k+1}}\left(x_{v}, \tau\right)-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right\}>n \varepsilon_{n}^{\prime}\right) \tag{3.7}\\
& \quad \leqq \sup _{\theta \in K} P_{\theta, n}\left(\sum_{\nu=1}^{n} Z_{v}\left(\varepsilon_{n}^{\prime}, \theta\right) \geqq n \varepsilon_{n}^{\prime}\right) \\
& \quad=o\left(n^{-(k-1) / 2}\right) .
\end{align*}
$$

Considering the random variable $\underline{Z}^{i_{1} \cdots i_{k+1}}(x ; a(\varepsilon), \theta)$ instead of $\bar{Z}^{i_{1} \cdots i_{k+1}}$ $(x ; a(\varepsilon), \theta)$ we obtain by a similar method to (3.7) that

$$
\begin{align*}
\sup _{\theta \in \mathbb{K}} P_{\theta, n} & \left(\sum_{\nu=1}^{n} \inf _{\tau \in \bar{V}\left(: 3 s_{n}\right)}\left\{\Phi^{i_{1} \cdots i_{k+1}}\left(x_{\nu}, \tau\right)-E\left[\Phi^{i_{1} \cdots i_{k+1}}(x, \tau) ; P_{\tau}\right]\right\}<-n \varepsilon_{n}^{\prime}\right) \tag{3.8}\\
& =o\left(n^{-(k-1) / 2}\right) .
\end{align*}
$$

From (3.6), (3.7) and (3.8) we have

$$
\begin{equation*}
\sup _{\theta \in K} T_{n}^{3}(\theta)=o\left(n^{-(k-1) / 2}\right) . \tag{3.9}
\end{equation*}
$$

From (3.3), (3.4), (3.5) and (3.9) we have

$$
\begin{equation*}
\sup _{\theta \in K}\left\|P_{\theta, n}-Q_{\theta, n}^{*}\right\|=o\left(n^{-(k-1) / 2}\right) . \tag{3.10}
\end{equation*}
$$

Since θ_{0} is contained in K it follows from (3.10) that there exists a number n_{0}^{*} such that for every n satisfying $n \geqq n_{0}^{*}$

$$
\left\|P_{\theta_{0}, n}-Q_{\theta_{0}, n}^{*}\right\|<1 / 2 .
$$

Hence particularly for every $n \geqq n_{0}^{*}$ we have

$$
\begin{equation*}
\int_{X^{(n)}} q_{n}^{*}\left(z_{n}, \theta_{0}\right) d \mu_{n}>0 . \tag{3.11}
\end{equation*}
$$

Define $\Theta_{n}=\left\{\theta \in \Theta ; \int_{X^{(n)}} q_{n}^{*}\left(z_{n}, \theta\right) d \mu_{n}>.0\right\}, c_{n}(\theta)=\left[\int_{X^{(n)}} q_{n}^{*}\left(z_{n}, \theta\right) d \mu_{n}\right]^{-1}$ for $\theta \in \Theta_{n}$ and $c_{n}(\theta)=0$ for $\theta \notin \Theta_{n}$. From (3.11) $n \geqq n_{0}^{*}$ implies $\theta_{0} \in \Theta_{n}$. Let $d_{n}(\theta)$ be the indicator function of Θ_{n} i.e., $d_{n}(\theta)=1$ if $\theta \in \Theta_{n}$ and $d_{n}(\theta)=0$ if $\theta \notin \Theta_{n}$. We define a 'sufficient density' $q_{n}\left(z_{n}, \theta\right)$ as follows: $q_{n}\left(z_{n}, \theta\right)=\left[c_{n}(\theta) r_{n}^{*}\left(t_{n}^{*}, \theta\right)+\right.$ $\left.c_{n}\left(\theta_{0}\right)\left(1-d_{n}(\theta)\right) r_{n}^{*}\left(t_{n}^{*}, \theta_{0}\right)\right] s_{n}^{*}\left(z_{n}\right)$ for each $n \geqq n_{0}^{*},=p_{n}\left(z_{n}, \theta_{0}\right)$ for each n satisfying $1 \leqq n \leqq n_{0}^{*}-1$ where $z_{n} \in X^{(n)}$ and $\theta \in \Theta$. It can be easily seen that for every $n \in N$ and every $\theta \in \Theta$

$$
\int_{X^{(n)}} q_{n}\left(z_{n}, \theta\right) d \mu_{n}=1
$$

Let $Q_{\theta, n}$ be a probability measure on $\left(\boldsymbol{X}^{(n)}, \boldsymbol{A}^{(n)}\right)$ defined by

$$
Q_{\theta, n}(A)=\int_{A} q_{n}\left(z_{n}, \theta\right) d \mu_{n} \quad\left(A \in A^{(n)}\right)
$$

We note that the density $q_{n}\left(z_{n}, \theta\right)$ has the following form:

$$
q_{n}\left(z_{n}, \theta\right)=r_{n}\left(t_{n}^{*}, \theta\right) \cdot s_{n}\left(z_{n}\right)
$$

where

$$
\begin{array}{rlrl}
r_{n}\left(t_{n}^{*}, \theta\right) & =c_{n}(\theta) r_{n}^{*}\left(t_{n}^{*}, \theta\right)+c_{n}\left(\theta_{0}\right)\left(1-d_{n}(\theta)\right) r_{n}^{*}\left(t_{n}^{*}, \theta_{0}\right) & & \text { for } \\
& n \geqq n_{0}^{*} \\
& & \text { for } n \leqq n_{0}^{*}-1
\end{array}
$$

and

$$
\begin{aligned}
s_{n}\left(z_{n}\right) & =s_{n}^{*}\left(z_{n}\right) & & \text { for }
\end{aligned} \quad n \geqq n_{0}^{*} .
$$

Hence according to the factorization theorem t_{n}^{*} is sufficient for the family $\left\{Q_{\theta, n} ; \theta \in \Theta\right\}$ for each $n \in N$.

By (3.10) there exists a number n_{1}^{*} such that for every $n \geqq n_{1}^{*}$ we have

$$
\sup _{\theta \in K}\left\|P_{\theta, n}-Q_{\theta, n}^{*}\right\|<1 / 2
$$

Hence $n \geqq n_{1}^{*}$ implies $K \subset \Theta_{n}$. Thus if $n \geqq n_{2}^{*}=\max \left(n_{0}^{*}, n_{1}^{*}\right)$ then for every $\theta \in K$

$$
q_{n}\left(z_{n}, \theta\right)=c_{n}(\theta) \cdot q_{n}^{*}\left(z_{n}, \theta\right)
$$

From this we have for every $n \geqq n_{2}^{*}$

$$
\begin{aligned}
2 \cdot\left\|, Q_{\theta \cdot n}^{*}-Q_{\theta, n}\right\| & =\left|1-c_{n}^{-1}(\theta)\right|=\left|P_{\theta, n}\left(X^{(n)}\right)-Q_{\theta \cdot n}^{*}\left(X^{(n)}\right)\right| \\
& \leqq\left\|P_{\theta, n}-Q_{\theta \cdot n}^{*}\right\|
\end{aligned}
$$

and hence

$$
\sup \left\|P_{\theta, n}-Q_{\theta, n}\right\| \leqq \sup _{\theta \in K}\left\|P_{\theta, n}-Q_{\theta \cdot n}^{*}\right\|+\sup _{\theta \in K}\left\|Q_{\theta, n}^{*}-Q_{\theta, n}\right\| \leqq 2 \cdot \sup _{\theta \in K}\left\|P_{\theta, n}-Q_{\theta, n}^{*}\right\|
$$

Thus by (3.10) we obtain

$$
\sup _{\theta \in K}\left\|P_{\theta, n}-Q_{\theta, n}\right\|=o\left(n^{-(k-1) / 2}\right)
$$

This completes the proof of the theorem.
Acknowledgment. The author wishes to express his thanks to Professor T. Kusama for informing him of the literature [2], and also to the referee for many helpful comments.

References

[1] J. Pfanzagl: Further results on asymptotic normality I, Mimeographed note, 1971.
[2] R. Michel: Higher order asymptotic sufficiency, Mimeographed note, 1977.
[3] .T. Suzuki: Asymptotic sufficiency up to higher orders and its applications to statistical tests and estimates, Osaka J. Math. 15 (1978), 575-588.

Department of Mathematics
School of Science and Engineering
Waseda University
Shinjuku, Tokyo 160, Japan

