Ikegami, T. Osaka J. Math. 17 (1980), 177-186

REMARKS ON THE REGULARITY OF BOUNDARY POINTS IN A RESOLUTIVE COMPACTIFICATION

Teruo IKEGAMI

(Received January 8, 1979)

Introduction. Let X be a strong harmonic space in the sense of Bauer [2] and suppose that constant functions are harmonic. In the previous paper [5], the author studied the regularity of boundary points in a resolutive compactification of X and discussed characterization of regularity, existence of regular points, strong regularity and pseudo-strong regularity, characterization of harmonic boundary and consideration in the case of open subsets. In this paper we shall use the same notations and definitions as in [5], and we shall give some supplementary remarks.

In §1, we recall the notations and terminologies used in [5]. We reform characterization of the regularity in Theorem 1 of §2. Theorem 2 in §3 is the extremal characterization of pseudo-strong regularity in the case where Xis a Brelot space. The trace filters of neighborhoods of boundary points in the Wiener compactification X^w of X is of some interest. Using this filters we can construct in §4 a family of completely regular filters in a metrizable and resolutive compactification X^* of X. A regular boundary point x is said to have a local property if x is regular for every $\overline{U(x) \cap X}$, where U(x) is a neighborhood of x. The main results of this paper are in §5. It is shown that a regular point x does not possess a local property in general and x has a local property if and only if x is pseudo-strongly regular. Further the related problems are investigated. In the final section, we consider a relatively compact open set G of a Brelot space and obtain the result, if G is minimally bounded, then the set of all regular points is dense in the boundary ∂G of G, which is a generalization of a result of Bauer [1].

1. Preliminaries

Let X be a strong harmonic space in the sense of Bauer [2] on which constant functions are harmonic, and X^* be a resolutive compactification of X. On the boundary $\Delta = X^* \setminus X$ we define the harmonic boundary $\Gamma = \{x \in \Delta; \lim_{a \to x} p(a) = 0$ for every strictly positive potential p on X}. For $f \in C(\Delta)$, i.e., a continuous real valued function on Δ , the Dirichlet solution of f is denoted by H_f . A point $x \in \Delta$ is termed to be *regular* if $\lim_{a \to x} H_f(a) = f(x)$ for every $f \in C(\Delta)$. A point $x \in \Delta$ is called *pseudo-strongly regular* if $\lim_{a \to x} p(a) = 0$ for every bounded potential p harmonic in a neighborhood of x. Every pseudo-strongly regular point is regular but the converse does not hold in general. We set

$$S^+ = \{v; \text{ superharmonic functions non-negative on } X\}$$

and

$$\mathcal{M}_{x} = \{\mu; \text{ probability measures on } \Delta \text{ satisfying} \\ \underbrace{\int \underline{v} \ d\mu \leq \overline{u_{v}}(x) + \underline{p}_{v}(x) \text{ for every } v \in \mathcal{S}^{+} \}}_{}$$

where \underline{f} (resp. \overline{f}) is the lower (resp. upper) semicontinuous extension of f on Δ and u_v is the greatest harmonic minorant of v and p_v is the potential part of v.

The main results of our previous paper [5] are the following: a point $x \in \Gamma$ is regular if and only if $\mathcal{M}_x = \{\mathcal{E}_x\}$, where \mathcal{E}_x is the Dirac measure at x. As a collorary we obtain: if

$$\lim_{\mathcal{U}(\mathbf{x})} [\overline{\lim}_{a \to \mathbf{x}} R_1^{\mathbf{X} \setminus U(\mathbf{x})}(a)] < 1,$$

then x is regular, where $\mathcal{U}(x)$ is a fundamental system of neighborhoods U(x) of x. The harmonic boundary is the \mathcal{S}^+ -Šilov boundary. For an open subset G of X, every regular point is pseudo-strongly regular, thus a regular point has a local property in this case.

2. Characterization of the regularity

We reform characterization of the regularity (Theorem 1 in [5]) in a slightly different form. Let

 $\mathcal{M}'_x = \{\mu; \text{ probability measures on } \Delta \text{ satisfying} \\ \int \underline{v} \ d\mu \leq \overline{u_v}(x) \text{ for every } v \in \mathcal{S}^+ \}.$

Clearly we have $\mathcal{M}'_x \subset \mathcal{M}_x$ and $\mathcal{M}'_x = \mathcal{M}_x$ if $x \in \Gamma$. It is noteworthy that \mathcal{M}'_x may be empty whereas $\mathcal{E}_x \in \mathcal{M}_x$.

Theorem 1. $x \in \Delta$ is regular if and only if $\mathcal{M}'_x = \{\mathcal{E}_x\}$.

Proof. If x is regular then $x \in \Gamma$, and therefore $\mathcal{M}'_x = \mathcal{M}_x = \{\mathcal{E}_x\}$ [5]. Next, suppose that \mathcal{M}'_x is not empty and consists of a single measure \mathcal{E}_x , and let $\{a_i\}$ be a net of points converging to x. Let ω_i be a harmonic measure at a_i , i.e.,

$$\int f \, d\omega_{\iota} = H_f(a_{\iota}) \quad \text{for every } f \in C(\Delta) \, .$$

 ω_{ι} is a probability measure on Δ . There exists a subnet $\{\omega_{\iota_{\kappa}}\}$ of $\{\omega_{\iota_{\kappa}}\}$ converging to a measure μ vaguely. μ is a probability measure on Δ . Further, $\mu \in \mathcal{M}'_{x}$. In fact, let $f \in C^{+}(\Delta)$ with $f \leq \underline{\lim} v$, where $v \in S^{+}$, then $H_{f} \leq v$ and $H_{f} \leq u_{v}$. Since $\int f d\mu = \underline{\lim} \int f d\omega_{\iota_{\kappa}} = \underline{\lim} H_{f}(a_{\iota_{\kappa}}) \leq \underline{\lim} u_{v}$ implies $\int (\underline{\lim} v) d\mu \leq \overline{\lim} u_{v}$, we have $\mu = \varepsilon_{x}$, i.e., ω_{ι} converges to ε_{x} and x is regular.

3. Extremal characterization of the pseudo-strong regularity in Brelot spaces

In this section, we consider a resolutive compactification of a *Brelot* space X. For $x \in \Delta$, we define

 $\mathcal{S}_{x}^{*} = \{H_{f}+p; f \in C^{+}(\Delta), p \text{ is a potential such that } \lim_{x} p = 0\}$

and

$$\mathcal{M}_x^* = \{\mu; \text{ probability measures on } \Delta \text{ such that}$$

$$\int \underline{v} \ d\mu \leq \overline{v}(x) \text{ for every } v \in \mathcal{S}_x^* \}.$$

REMARK 1. $\mu \in \mathcal{M}_x^*$ if and only if $\int \underline{v} \ d\mu \leq \overline{\lim}_x H_f$ for every $v \in \mathcal{S}_x^*$, where $v = H_f + p$.

REMARK 2. $\mathcal{M}_x^* = \{\mathcal{E}_x\}$ implies $\mathcal{M}_x = \{\mathcal{E}_x\}$; for $\mathcal{M}_x \subset \mathcal{M}_x^*$, i.e., $\mathcal{M}_x^* = \{\mathcal{E}_x\}$ means that x is regular.

Theorem 2. $x \in \Delta$ is pseudo-strongly regular if and only if $\mathcal{M}_x^* = \{\mathcal{E}_x\}$.

Proof. Suppose that x is pseudo-strongly regular and that there exists $\mu \in \mathcal{M}_x^*$ such that $\mu \neq \varepsilon_x$. Let $y \in Supp \ \mu \setminus \{x\}$ and $f \in C^+(X^*)$, f(y) > 0, f=0 on U(x), where U(x) is a neighborhood of x such that $y \notin \overline{U(x)}$. Put $u=H_f$. There exists a bounded potential p such that $u+p \ge f$ outside a compact subset of X. For, we may find a potential p' such that $u+p' \ge f$ outside a compact subset X of X since $u=h_f$ (for the definition of h_f , see [6]). On $X \setminus K, f \le \min(u+p', ||f||) \le \min(u, ||f||) + \min(p' ||f||) = u + \min(p', ||f||) = u+p$. Here $p = \min(p', ||f||)$ is a bounded potential. Set $p_1 = R_p^{X \setminus U(x)}$. By hypothesis, $\lim_x p_1 = 0$. Since $\lim_x (u+p_1) \ge f > 0$ in a neighborhood of y, we have a contradiction that $0 < \int \lim_x (u+p_1) d\mu \le \lim_x u = f(x) = 0$.

Next, we prove the converse. We show first that for every $y \in \Delta$, $y \neq x$ there exists $v_y \in S_x^*$ such that $\underline{\lim}_y v_y > \overline{\lim}_x v_y = 0$. In fact, there is a function $v \in S_x^*$ such that $\underline{\lim}_y v > \overline{\lim}_x v = g(x)$, where $v = H_g + p$ (by Remark 2); for otherwise we have $\varepsilon_y \in \mathcal{M}_x^*$. Set $f = \max(g - g(x), 0)$. Then $H_f + p \in S_x^*$ and $\underline{\lim}_y (H_f + p) \ge \underline{\lim}_y (H_g + p) - g(x) > 0 = \overline{\lim}_x H_f = \overline{\lim}_x (H_f + p)$, *i.e.*, we may take

T. IKEGAMI

 $v_y = H_f + p$. Now, let U(x) be a neighborhood of x. For every $y \in \overline{\partial U(x)} \cap \Delta$ we associate with v_y described above. Then there exists a triple $(v_y, U(y), \delta_y)$

 $v_y > \delta_y > 0$ on $U(y) \cap X$ and $\lim_x v_y = 0$

A finite number of U(y), say $\{U(y_i)\}$, covers $\overline{\partial U(x)} \cap \Delta$. Set $\delta = \min \delta_{y_i}, v = \Sigma_i v_{y_i}$ and $V = \bigcup_i U(y_i)$. Then $v > \delta$ on $V \cap X$ and $\lim_x v = 0$. Since X is a Brelot space we may also find $\alpha > 0$ such that $\alpha v > 1$ on $\overline{\partial U(x)}$. Then $\lim_x \hat{R}_1^{X \setminus U(x)} = 0$, *i.e.*, x is pseudo-strongly regular.

4. The Wiener compactification

The compactification on which every Wiener function is extended continuously and separates points is called the *Wiener compactification* and is denoted by X^{W} [6]. The harmonic boundary of X^{W} is denoted by Γ^{W} .

Theorem 3. Every point of Γ^{W} is pseudo-strongly regular.

Proof. Let U(x) be an open neighborhood of $x \in \Gamma^{W}$ in X^{W} . For a neighborhood V(x) of x such that $\overline{V(x)} \subset U(x)$, $v = \hat{R}_{R_{1}^{Y}\setminus U(x)}^{V(x)\cap X}$ is a potential. In fact, since $\overline{V(x)\cap X} \cap \overline{X \setminus U(x)} \cap \Delta^{W} = \phi$, $q = \min(\hat{R}_{1}^{X\setminus U(x)}, \hat{R}_{1}^{V(x)\cap X})$ is a potential ([6], Th. 3.2.23) and $v \leq q$. $v = \hat{R}_{1}^{X\setminus U(x)}$ on $V(x) \cap X$ and v has a limit at x ([6], Prop. 4.4). Thus $\lim_{x} v = \lim_{x} v = 0$, *i.e.*, $\lim_{x} \hat{R}_{1}^{X\setminus U(x)} = 0$.

Let X^* be a *metrizable* and resolutive compactification of X. Then there exists a family of completely regular filters $\{\mathcal{F}\}$ each of which converges to a point of $\Delta = X^* \setminus X$ and such that

- A) if a superharmonic function v on X is bounded from below and $\liminf_{\mathfrak{F}} \mathfrak{F}_{v \geq 0}$ for every \mathfrak{F} , then $v \geq 0$,
- B) for every \mathcal{F} , there exists a superharmonic function v on X such that $\lim_{\mathcal{F}} v = 0$ and $\inf \{v; X \setminus U(x)\} > 0$ for every neighborhood U(x) of x, where \mathcal{F} converges to x.

Here, a filter \mathcal{F} , converging to x, is called to be *completely regular* if $\lim_{\mathcal{F}} H_f = f(x)$ for every resolutive function f continuous at x.

In fact, consider the Wiener compactification X^{W} of X. X^{*} is a quotient space of X^{W} , *i.e.*, there exists a continuous mapping π of X^{W} onto X^{*} fixing each point of X. Let $\mathcal{F}_{\tilde{x}}$ be the trace filter of the filter of sections of neighborhoods of $\tilde{x} \in \Gamma^{W}$, *i.e.*,

 $\mathscr{F}_{\widetilde{x}} = \{U(\widetilde{x}) \cap X; U(\widetilde{x}) \text{ is a neighborhood of } \widetilde{x} \text{ in } X^{W}\}.$

 $\mathscr{F}_{\tilde{x}}$ converges to $x=\pi(\tilde{x})$. The family of filters $\{\mathscr{F}_{\tilde{x}}; \tilde{x}\in\Gamma^{W}\}$ is the desired

180

such that

one.

For, A) follows from the property of Γ^{W} ([6], Th.3.1.6). As for B) let $\tilde{x} \in \Gamma^{W}$, $\pi(\tilde{x}) = x$, $\{U_{x}(x)\}$ be a fundamental system of neighborhoods of x, and let $\mathcal{F}=\mathcal{F}_{\tilde{x}}$. Then $v=\Sigma_n(1/2^n) \hat{R}_1^{X\setminus Un(x)}$ fulfills the requirement of B). For, given $\varepsilon > 0$, there exists an integer N such that $\sum_{N+1}^{\infty} (1/2^n) < \varepsilon/2$. Since \tilde{x} is pseudo-strongly regular, $\lim_{\tilde{x}} \hat{R}_1^{X \setminus Un(x)} = 0$ in X^W . Hence $\overline{\lim_{\tilde{x}}} v \leq \varepsilon/2$. inf $\{v; X \setminus U(x)\} > 0$ is trivially seen. All that remains is to prove $\lim \mathcal{F} H_f =$ f(x) for every resolutive function f continuous at x. We may suppose that $f \ge 0$ and f(x) = 0. Let $\tilde{f} = f \circ \pi$. Since H_f is a Wiener function, H_f is extended continuously onto X^{W} . We denote this extended function by \tilde{F} . \tilde{f} is resolutive with respect to X^{W} . For, since $\underline{\lim}_{\tilde{x}} s \ge \underline{\lim}_{\pi(\tilde{x})} s$, if s is non-negative superharmonic and $\underline{\lim} s \ge f$ on Δ , then $\underline{\lim} s \ge \tilde{f}$ on Δ^{W} , which implies that $H_f \ge \bar{H}_{\tilde{f}}^{W}$ and similarly $\underline{H}_{f}^{\underline{w}} \ge H_{f}$, where $H_{f}^{\underline{w}}$ is the Dirichlet solution with respect to $X^{\underline{w}}$. Noting that $H_f = h_{H_f}$, where h is the operator of Constantinescu-Conea([6], p. 26), we have $v \ge H_{\widetilde{F}}^{W}$ for every $v \ge 0$ superharmonic and $v \ge H_{f}$ outside a compact subset of X. Hence $H_{f} \ge \overline{H}_{\widetilde{F}}^{W}$ and similarly $\underline{H}_{\widetilde{F}}^{W} \ge H_{f}$. Thus, we have $H_{\widetilde{F}}^{W} =$ $H_{f} = H_{\widetilde{f}}^{W}$. Therefore $\int (\widetilde{F} - \widetilde{f}) d\omega^{W} = 0$ and $\int |\widetilde{F} - \widetilde{f}| d\omega^{W} = 0$, *i.e.*, $\widetilde{F} = \widetilde{f} d\omega^{W} - a.e.$, where ω^{W} is the harmonic measure in Δ^{W} . We shall prove that $\widetilde{F}(x)=0$. For otherwise, since \widetilde{F} and \widetilde{f} are continuous at \overline{x} , $\widetilde{F} \neq \widetilde{f}$ in a neighborhood of \widetilde{x} , but this is impossible since this neighborhood is not of $d\omega^w$ -harmonic measure zero ([6], Th. 3.2.19).

5. The local property of regular points

Let X^* be a resolutive compactification of X. We consider $G=X \cap U(x)$, where U(x) is an open neighborhood of $x \in \Delta$. The closure \overline{G} in X^* is a compactification. The boundary of \overline{G} is denoted by $\Delta(G)$. $\Delta(G)=\partial G \cup \delta$, where $\partial G=\Delta(G) \cap X$ and $\delta=\Delta(G) \cap \Delta$. Obviously we have $x \in \delta$.

Proposition 1. \overline{G} is a resolutive compactification.

Proof. Let $f \in C^+(\Delta(G))$ and f_1 be a finite continuous extension of $f | \delta$ onto Δ , where $f | \delta$ is the restriction of f onto δ . Denoting by s_1 (resp. s_2) a hyperharmonic function on G, bounded from below, $\underline{\lim} s_1 \ge f - H_{f_1}$ on ∂G , $s_1 \ge 0$ outside a compact subset of X (resp. a hyperharmonic function on X, bounded from below, $\underline{\lim} s_2 \ge f_1$ on Δ), we have

$$\underline{\lim} (s_1 + s_2) \ge \begin{cases} f - H_{f_1} + H_{f_1} = f & \text{on } \partial G \\ f_1 = f & \text{on } \delta \end{cases}$$

Hence, $\bar{H}_{f}^{G} \leq \bar{H}_{f-H_{f_{1}}}^{G,X} + H_{f_{1}}$, and similarly $\underline{H}_{f}^{G} \geq \underline{H}_{f-H_{f_{1}}}^{G,X} + H_{f_{1}}$, where H_{f}^{G} is the Dirichlet solution with respect to \bar{G} and for the definition of $H_{f}^{G,X}$ we refer to

T. IKEGAMI

[6]. Thus we have $\overline{H}_{f}^{G} = \underline{H}_{f}^{G} = H_{f-H_{f_{1}}}^{G,X} + H_{f_{1}}$, since $\overline{H}_{f-H_{f_{1}}}^{G,X} = \underline{H}_{f-H_{f_{1}}}^{G,X}$ ([6], Th. 1.2.7).

Proposition 2. If x is irregular for X^* then x is irregular for \overline{G} .

Proof. Suppose that x is regular for \overline{G} . For a function $f \in C(\Delta)$, let

$$arphi = egin{cases} f & ext{on } \delta \ H_f & ext{on } \partial G \end{cases}$$

It is easily seen that φ is resolutive and $H_{\varphi}^{G} = H_{f}$ on G. From this we derive

$$\lim_{x} H_{f} = \lim_{x} H_{\varphi}^{G} = \varphi(x) = f(x)$$

which implies that x is regular for X^* .

The following example shows that the converse does not hold in general.

EXAMPLE. Let $X = \{|z| < 1\} \setminus \{-1/2, 1/2\}$. We identify the two points -1/2 and 1/2, and denote it by e. The Green function of $\{|z| < 1\}$ with pole at 1/2 is denoted by u_0 . We consider the compactification of X such that $\Delta = \{|z|=1\} \cup \{e\}$, and the harmonic structure given by u_0 -harmonic functions, i.e., the quotient of usual harmonic functions by u_0 . The compactification X^* is resolutive and $H_f = f(e)$ (the constant function). Let $G = X \setminus K$, where $K = \{iy; y \text{ is real and } |y| \le 1/2\}$. e is regular for X^* but it is irregular for \overline{G} .

A strictly positive superharmonic function v_0 on X satisfying $\lim_x v_0 = 0$ is called a *weak barrier* of x.

In a resolutive compactification of a Brelot space, if Γ contains at least two points every regular point has a weak barrier. In the above example *e* has no weak barrier. We know an example of an irregular point with weak barrier ([7], p. 253) If X is a Brelot space, the existence of a (strong) barrier v_0 at *x,i.e.*, v_0 is a positive superharmonic function satisfying $\lim_x v_0=0$ and inf $\{v_0; X \setminus U(x)\} > 0$ for every open neighborhood U(x) of x, is equivalent to $\lim_x R_1^{X \setminus X} = 0$ for every compact set K.

Theorem 4. Suppose that x has a weak barrier. Then x is regular for X^* if and only if x is regular for $X \setminus K$ for every compact subset K of X.

Proof. By Proposition 2, it is enough to prove the "only if" part. Suppose for a moment that x is irregular for \overline{G} , where $G=X\setminus K$. Then $x\in\Gamma$. We shall see that there exists $f_0\in\mathcal{C}=\{f\in C^+(\Delta\cup\partial K); f=0 \text{ on } \partial K\}$ such that $\underline{\lim}_x H_{f_0}^G < \overline{\lim}_x H_{f_0}^G$. In fact, if we have $\lim_x H_f^G = f(x)$ for every $f\in\mathcal{C}$, then $\lim_x H_g^G = g(x)$ for every $g\geq 0$ continuous on $\Delta\cup\partial K$. For, letting

$$g_1 = \begin{cases} g & \text{on } \Delta \\ 0 & \text{on } \partial K \end{cases}$$
$$g_2 = \begin{cases} 0 & \text{on } \Delta \\ g & \text{on } \partial K \end{cases}$$

and

we have $\lim_{x} H_{g_1}^G = g_1(x) = g(x)$ and $0 \le H_{g_2}^G \le ||g_2|| H_{\psi}^G$, where ψ is the characteristic function of ∂K . From $1 - \psi \in C$, it is derived that $\lim_{x} H_{\psi}^G = 0$ and $\lim_{x} H_{g_2}^G = 0$. Select a number γ such that

$$\underline{\lim}_{x} H_{f_0}^{G} < \gamma < \overline{\lim}_{x} H_{f_0}^{G} \text{ and } f_0(x) \neq \gamma$$

By the theorem of Hahn-Banach, there exists a probability measure on $\Delta \cup \partial K$ such that

$$\gamma = \int f_0 d\mu$$
 and $\int \underline{\lim} v d\mu \leq \overline{\lim} u_v$ for every $v \in S^+(G)$.

Obviously $\mu \neq \varepsilon_x$. Since $\int \underline{\lim} v_0 d\mu \leq \overline{\lim} v_0 = 0$, where v_0 is a weak barrier of x, we have $Supp \ \mu \subset \Delta$. Take a point $y \in Supp \ \mu \setminus \{x\}$ and $g \in C^+(\Delta)$ such that g(x)=0 and g>0 in a neighborhood of y. We have

$$H_{g_1}^{\mathsf{G}} = H_g$$
 on G ,

where

$$g_1 = \begin{cases} g & \text{on } \Delta \\ H_g & \text{on } \partial K \end{cases}$$

We may find a potential on G with $\underline{\lim} (H_{g_1}^G + p) \ge g_1$ on $\Delta \cup \partial K$. Hence

$$\int \underline{\lim} (H^G_{g_1} + p) \, d\mu \geq \int g_1 \, d\mu = \int_{\Delta} g_1 \, d\mu > 0 \, .$$

On the other hand,

$$\int \underline{\lim} (H_{g_1}^G + p) \ d\mu \leq \overline{\lim}_x H_{g_1}^G = \overline{\lim}_x H_g = g(x) = 0,$$

which is a contradiction.

Let $x \in \Delta$ be regular for X^* . If x is regular for every $X \cap U(x)$, then x is said to have the *local property*.

Theorem 5. x has the local property if and only if x is pseudo-strongly regular.

Proof. We need to prove the "only if" part. We shall prove $\lim_{x} R_{1}^{X \setminus U(x)} = 0$ for every U(x). Let $G = X \cap U(x)$ and $f \in C^{+}(\Delta(G))$ such that f(x) = 0 and f = 1 on $\overline{\partial G}$. Consider a non-negative superharmonic function s with $\underline{\lim s \geq f}$ on $\Delta(G)$. We define

T. IKEGAMI

$$s_1 = \begin{cases} 1 & \text{on } X \setminus U(x) \\ \min(1,s) & \text{on } U(x) . \end{cases}$$

 s_1 is superharmonic on X and $R_1^{X\setminus U(x)} \le s_1$. Therefore $R_1^{X\setminus U(x)} \le H_f^G$ in G, and $\lim_x H_f^G = f(x) = 0$ implies $\lim_x R_1^{X\setminus U(x)} = 0$.

Lemma. Suppose that x is regular for X^* and $\lim_x R_1^{X \setminus U(x)} = 0$ for a neighborhood U(x) of x. Let $U_1(x)$ be a neighborhood of x with $\overline{U_1(x)} \subset U(x)$, and let $\delta = U_1(x) \cap \Delta$, $G = U(x) \cap X$. If $f, g \in C(\Delta(G))$ and f = g on δ , then $\lim_x H_f^c = \lim_x H_g^c$.

Proof. Since $H_f^G - H_g^G = H_{f-g}^G$ it is sufficient to show that $f \in C(\Delta(G))$ and f=0 on δ implies $\lim_x H_f^G = 0$. Let $U_2(x)$ be a neighborhood of x such that $\overline{U_2(x)} \subset U_1(x)$, and $\delta' = U_2(x) \cap \Delta$. For a function $\varphi \in C^+(\Delta)$ with $\varphi \leq ||f||$ and $\varphi = ||f||$ on $\Delta \setminus \delta$ and $\varphi(x) = 0$, there exist a potential p and $s \in S^+(G)$ such that

$$\lim_{t \to 0} (H_{\varphi} + \mathcal{E}p) \ge \varphi \qquad \text{on } \Delta$$
$$\lim_{t \to 0} (R_{\|f\|}^{X \setminus U(x)} + \mathcal{E}s) \ge \|f\| \qquad \text{on } \partial U(x)$$

for every $\varepsilon > 0$. Setting $v = H_{\varphi} + ||f||R_1^{X \setminus U(x)} + \varepsilon(p+s)$ we can readily seen that $v \ge H_f^G$ and $H_{\varphi} + ||f||R_1^{X \setminus U(x)} \ge H_f^G$. Hence $\overline{\lim}_x H_f^G \le \lim_x H_{\varphi} + ||f|| \lim_x R_1^{X \setminus U(x)} = 0$.

Theorem 6. If x is regular for X^* and $\lim_x R_1^{X\setminus U(x)} = 0$ then x is regular for $\overline{X \cap U(x)}$.

Proof. Let $G=X \cap U(x)$. Suppose that x is irregular for \overline{G} . Then there exists $f \in C^+(\Delta(G))$ such that Supp $f \subset \delta = U_1(x) \cap \Delta$, where $\overline{U_1(x)} \subset U(x)$ and $\underline{\lim}_x H_f^c \neq \overline{\lim}_x H_f^c$. We may construct a probability measure μ on $\Delta(G)$ such that $\mu \neq \varepsilon_x$ and

 $\int \underline{\lim} v \, d\mu \leq \overline{\lim}_{x} u_{v} \quad \text{for every } v \in \mathcal{S}^{+}(G) \, .$

We assert that Supp $\mu \subset \overline{\delta}$, for if $g \in C^+(\Delta(G))$ and g=0 on δ then $0 \leq \int g \ d\mu \leq \overline{\lim}_x H_g^c = 0$ by the above Lemma. There exists $y \in Supp \ \mu \setminus \{x\}$. Since $y \in \overline{\delta}$ and $\overline{\delta} \cap (X^* \setminus U(x)) = \phi$ we have $y \notin \overline{\partial G}$. Hence we can find U(y) such that $\overline{U(y)} \subset U(x)$. Let $F \in C^+(X^*)$ with F(y) > 0 and F(x) = 0, and let

$$F_1 = egin{cases} F & ext{ on } U(y) \ h_F & ext{ on } G ackslash U(y) \end{cases}$$

There exists a potential q on X such that for every $\mathcal{E}>0$ we may find a compact subset K_{ε} of X so that

REGULARITY OF BOUNDARY POINTS

$$h_F + \varepsilon q \ge F$$
 and $h_F - \varepsilon q \le F$ on $X \setminus K_g$.

Since $h_F + \varepsilon q \ge F_1$ and $h_F - \varepsilon q \le F_1$ on $G \setminus (K_{\varepsilon} \cap U(y))$, we have $h_F \ge \overline{h}_{F_1}^c \ge \underline{h}_{F_1}^c \ge h_F$, *i.e.*, $h_F = h_{F_1}^c$. Thus we have a potential p on G such that $h_{F_1}^c + p \ge F_1$ outside a compact subset of G and, in particular, in a neighborhood of y. Hence we are led to a contradiction

$$0 < \int \underline{\lim} (h_{F_1}^G + p) d\mu \le \overline{\lim}_x h_{F_1}^G = \overline{\lim}_x h_F = 0.$$

Let G^{α} be the closure of G in $X^{\mathcal{A}}$ (the one-point compactification of X). Then G^{α} is a resolutive compactification [5]. The boundary of G^{α} is $\partial G \cup \{\mathcal{A}\}$. We denote the Dirichlet solution on G^{α} by H_{f}^{α} . If the boundary function f on $\Delta(G)$ is resolutive for \overline{G} and is constant α on $\delta = \overline{G} \cap \Delta$ then

$$f' = \begin{cases} f & \text{on } \partial G \\ \alpha & \text{at } \mathcal{A} \end{cases}$$

is resolutive for G^{α} , and conversely if f' is resolutive for G^{α} then

$$f = egin{cases} f' & ext{on } \partial G \ f'(\mathcal{A}) & ext{on } \delta \end{cases}$$

is resolutive for \overline{G} . In both cases $H_{f'}^{\Omega} = H_f^G$. $x \in \partial G$ is regular for \overline{G} if and only if it is regular for G^{Ω} . Hence regular point $x \in \partial G$ for \overline{G} is strongly regular [5].

6. Relatively compact open sets

In this section, we shall assume that X is a *Brelot* space.

Let G be a relatively compact open subset of X. The outer boundary of G is defined to be the boundary of \overline{G} and is denoted by B(G). The harmonic boundary of G and the set of regular points for \overline{G} is denoted by $\Gamma(G)$ and R(G) respectively. G termed to be minimally bounded if the interior of \overline{G} coincides with G. G is minimally bounded if and only if $\partial G = B(G)$.

Theorem 7.
$$B(G) \subset \overline{R(G)} \subset \Gamma(G)$$
 ([1], Satz 17)

Proof. It is sufficient to prove that for every $x \in B(G)$ and for every regular region D containing x there exists $y \in R(G) \cap D$. Since $x \in B(G)$ we may find $x \in D \setminus \overline{G}$. Consider a regular region V containing z and $\overline{V} \subset D \setminus \overline{G}$. The reduced function $v = (\hat{R}_1^{X \setminus D})_{X \setminus \overline{V}}$ (the reduced function considered in the harmonic space $X \setminus \overline{V}$) is continuous on G and $\alpha = \inf \{v; \partial G\} < \inf \{v; \partial G \setminus D\}$ =1. $v - \alpha$ is a weak barrier at any point of $E = \{y \in \partial G; v(y) = \alpha\} \neq \phi$ and all points of E are regular. **Corollary** ([1], Korollar to Satz 17). If G is minimally bounded, then $\partial G = \overline{R(G)} = \Gamma(G)$.

REMARK. We know that in a Bauer space $\Gamma(G)$ is the $\mathcal{S}^+(G)$ -Šilov boundary [5], while if G is weakly dermining, $\overline{R(G)}$ is the $(C(\overline{G}) \cap \mathcal{S}(G))$ -Šilov boundary [3]. It is also known that under the axiom of polarity $\partial G \setminus R(G)$ is polar [4], therefore $\overline{R(G)} = \Gamma(G)$. However it is still an open question whether it is true or not for an *arbitrary* relatively compact open subset G of a Brelot space.

References

- [1] H. Bauer: Šilovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89–136.
- [2] H. Bauer: Harmonische Räume und ihre Potentialtheorie (Lecture Notes in Math. 22) Berlin-Heidelberg-New York, Springer, 1966.
- [3] N. Boboc and A. Cornea: Convex cones of lower semi-continuous functions on compact spaces, Rev. Roumaine Math. Pures Appl. 12 (1967), 471-525.
- [4] C. Constantiescu and A. Cornea: Potential theory on harmonic spaces, (Grundlehren der math. Wissenschaften in Einzeldar. 158) 1972.
- [5] T. Ikegami: On the regularity of boundary points in a resolutive compactification of a harmonic space, Osaka J. Math. 14 (1977), 271–289.
- [6] C. Megea: Compactifications des espaces harmoniques (Lecture Notes in Math. 222) Berlin-Heidelberg-New York, Springer, 1971.
- [7] L. Naïm: Sur le rôle de la frontière de R.S. Martin dans la théories du potentiel, Ann. Inst. Fourier 7 (1957), 183-281.

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan