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Introduction. Let X be a strong harmonic space in the sense of Bauer [2]
and suppose that constant functions are harmonic. In the previous paper
[5], the author studied the regularity of boundary points in a resolutive com-
pactification of X and discussed characterization of regularity, existence of
regular points, strong regularity and pseudo-sΐrong regularity, characterization
of harmonic boundary and consideration in the case of open subsets. In this
paper we shall use the same notations and definitions as in [5], and we shall
give some supplementary remarks.

In §1, we recall the notations and terminologies used in [5]. We reform
characterization of the regularity in Theorem 1 of §2. Theorem 2 in §3 is
the extremal characterization of pseudo-strong regularity in the case where X
is a Brelot space. The trace filters of neighborhoods of boundary points in
the Wiener compactification Xw of X is of some interes:. Using this filters we
can construct in §4 a family of completely regular filters in a metrizable and
resolutive compactification X* of X. A regular boundary point x is said to
have a local property if x is regular for every U(x) Π X, where U(x) is a neigh-
borhood of x. The main results of this paper are in §5. It is shown that a
regular point x does not possess a local property in general and x has a local
property if and only if x is pseudo-strongly regular. Further the related pro-
blems are investigated. In the final section, we consider a relatively compact
open set G of a Brelot space and obtain the result, if G is minimally bounded,
then the set of all regular points is dense in the boundary dG of G, which is a
generalization of a result of Bauer [1].

1. Preliminaries

Let X be a strong harmonic space in the sense of Bauer [2] on which constant

functions are harmonic, and X* be a resolutive compactification of X. On the

boundary A=X*\X we define the harmonic boundary T={x^A; limp(a)=0

for every strictly positive potential p on X). For / E C ( Δ ) , i.e., a continuous
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real valued function on Δ, the Dirichlet solution of / is denoted by Hf. A
point Λ G Δ is termed to be regular if lim Hf(a)=f{x) for every / e C ( Δ ) . A

point Λ G Δ is called pseudo-strongly regular if rim^>(#)=0 for every bounded
a+x

potential p harmonic in a neighborhood of x. Every pseudo-strongly regular
point is regular but the converse does not hold in general. We set

S+ — {̂  superharmonic functions non-negative on X)

and

JMX= {μ'y probability measures on Δ satisfying

\v dμ<^x)-\-pv{x) for every v^S+} ,

where/(resp./) is the lower (resp. upper) semicontinuous extension of/on Δ
and uv is the greatest harmonic minorant of v and pΌ is the potential part of v.

The main results of our previous paper [5] are the following: a point Λ:GΓ
is regular if and only if JMX= {Sx}, where Sx is the Dirac measure at x. As a
collorary we obtain: if

lim \lim
<U(x) a-+x

then x is regular, where H](x) is a fundamental system of neighborhoods U(x)

of x. The harmonic boundary is the <5+-Silov boundary. For an open subset

G of Xy every regular point is pseudo-strongly regular, thus a regular point

has a local property in this case.

2. Characterization of the regularity

We reform characterization of the regularity (Theorem 1 in [5]) in a slightly
different form. Let

JMx= {μ; probability measures on Δ satisfying

\v dμ<u~v(x) for every v

Clearly we have JM'xdJMx and 3ίx=3ίx if X E Γ . It is noteworthy that 3ίx

may be empty whereas SX

Theorem 1. X G A W regular if and only if <3Άr

x= {Sx}.

Proof. If x is regular then # e Γ , and therefore JMX=*SHX={£X} [5].
Next, suppose that JM'X is not empty and consists of a single measure Sχy and
let {at} be a net of points converging to x. Let ωt be a harmonic measure at
aiy i.e.,

[fdωt = Hf(a,) for every / <Ξ C(Δ).
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ωt is a probability measure on Δ. There exists a subnet {ωtκ} of {ωj converg-
ing to a measure μ vaguely, μ is a probability measure on Δ. Further, μ^<3ί'x.
In fact, let / G C + ( Δ ) with /<Hm υ, where v^S+, then Hf<v and Hf<uΰ.

Since I/rfμ=lim\/</ω t κ=iim Hf(aLκ)<limxu0 implies i(Hm v) dμ<\imxuv, we

have μ=Sxi i.e., ωt converges to Sx and x is regular.

3. Extremal characterization of the pseudo-strong regularity in
Brelot spaces

In this section, we consider a resolutive compactification of a Brelot space X.
For ΛiGΔ,we define

S* = {Hf+p;f<=C+(A), p is a potential such that limx/> = 0}

and

= {μ\ probability measures on Δ such that

\v dμ<v{x) for every\

REMARK 1. μ^JMf if and only if \v dμ<limx Hf for every v^Sf> where

v=Hf+p.

REMARK 2. 3Uit={ex) implies ^ , = {6,} for 3ίxc JH*y i.e.,
means that x is regular.

Theorem 2 xGΔ ώ pseudo-strongly regular if and only if <M*~{£X}-

Proof. Suppose that x is pseudo-strongly regular and that there exists
such that μΦ6x. Let y^Supp μ\{x} and / e C + ( X * ) , /(y)>0,

/ = 0 on ?7(Λ;), where U(x) is a neighborhood of x such that j φ Ϊ7(Λ:). Put u=Hf.
There exists a bounded potential p such that u-\-p>f outside a compact subset
of X. For, we may find a potential jp' such that u-]-pf>f outside a compact
subset K of X since u=hf (for the definition of hfy see [6]). On

( + p , | | / | | ) ( , l l / I O f y | | / | | ) ( j | / | ) ί £
min(p\ 11/11) is a bounded potential. Set p1=ήpψ(x\ By hypothesis, l i m ^ ^ O .
Since lim(w-|-/)1)>/>0 in a neighborhood of j>, we have a contradiction that

0 < llim {u+pi) dμ<Kmx u=f(x)=0.

Next, we prove the converse. We show first that for every j>^Δ, j>Φx

there exists vy^Sf such that l i m ^ M i m ^ ^ O . In fact, there is a function

v^Sf such that hmy v>\imx v=g(x)> where v=Hg+p (by Remark 2); for

otherwise we have Sy^JMf. Set /=max(g—g(x)9 0). Then Hf+ρ^S1t and

), ^ . , we may take
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vy=Hf-\-p. Now, let U(x) be a neighborhood of x. For every

we associate with vy described above. Then there exists a triple (vyy U(y)y 8y)
such that

Vy>Sy>0on U(y) Π Z and lim, vy = 0

A finite number of U(y), say {[/(j,-)}, covers dU(x) Π Δ. Set δ=min δΛ.,ϋ=Σ f t>Λ.
and F = U £/()>,•)• Then *;>δ on V f]X and lim, ?;=0. Since X is a Brelot

i

space we may also find a>0 such that <OT> 1 on dU(x). Then limΛ

i.e., Λ is pseudo-strongly regular.

4. The Wiener compactification

The compactification on which every Wiener function is extended con-
tinuously and separates points is called the Wiener compactification and is denoted
by Xw [6]. The harmonic boundary of Xw is denoted by Yw.

Theorem 3. Every point of Tw is pseudo-strongly regular.

Proof. Let U(x) be an open neighborhood of x^Tw in Xw. For a neigh-

borhood V(x) of x such that V(x)d U(x), v=R^(x\ufχ) is a potential. In fact,

since V(x)Γ\XΠ X\U(x) ΠΛw=φf q=min (J&fW*>, J?Γ(Λ)nz) is a potential ([6],
Th. 3.2.23) and v<q. v=ήfψ(x) on V(x)f)X and υ has a limit at x ([6], Prop.
4.4). Thus lims ϊ - l im, ©=0, i.β., lim, ^ ^ = 0 .

Let X* be a metrizable and resolutive compactification of X. Then there
exists a family of completely regular fikers {£?} each of which converges to a
point of A=X-*\X and such that

A) if a superharmonic function v on X is bounded from below and lim infsp
v>0 for every £F, then v > 0,

B) for every £F, there exists a superharmonic function v on X such that
lim£F^=0 and inf {v; X\U(x))>0 for every neighborhood U(x) of x,
where ΞF converges to x.

Here, a filter £F, converging to x> is called to be completely regular if lim^
Hf=f(x) for every resolutive function / continuous at x.

In fact, consider the Wiener compactification Xw of X. X* is a quotient
space of Xw, i.e., there exists a continuous mapping π of Xw onto X* fixing
each point of X. Let 3V be the trace filter of the filter of sections of neigh-
borhoods of x^Γw, i.e.,

£F~ = {U(x)ΠX] U(X) is a neighborhood of X in Xw} .

F? converges to x=π(X). The family of filters {ff?; X^TW} is the desired
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one.

For, A) follows from the property of Γ* ([6], Th.3.1.6). As for B) let
^ E F , π(%)=x, {Un(x)} be a fundamental system of neighborhoods of xy

and let S r = 2 r

? . Then υ = τn(l/2n) &f\u»ω fulfills the requirement of B).
For, given £>0, there exists an integer N such that Σ#+ 1 (l/2Λ)<£/2. Since
x is pseudo-sΐrongly regular, lim? jRf\UnW = 0 in jϊ"^. Hence lim? υ < £/2.
inf {v; X\U(x)}>0 is trivially seen. All that remains is to prove lim&Hf=
f(x) for every resolutive function / continuous at x. We may suppose that
/ > 0 and/(#)=0. L,etf=foπ. Since Hf is a Wiener function, Hf is extended
continuously onto Xw. We denote this extended function by F. f is resolutive
with respect to Xw. For, since lim? ^>lim^^ s, if s is non-negative super-
harmonic and lim s>f on Δ, then lim s>f on Δ^, which implies that Hf>Hj
and similarly Hf>Hf, where HJ is the Dirichlet solution with respect to Xw.
Noting that Hf—hHf, where h is the operator of Constantinescu-Conea([6],p.26),
we have v>Hp for every v>0 superharmonic and v>Hf outside a compact
subset of X. Hence Hf>fff and similarly Hj>Hf. Thus, we have Hj=

Hf=Hj. Therefore \(F-f)dωw=0 and\\F-f\dωw=0, i.e., F=f dωw-a.e.y

where ωw is the harmonic measure in Δ^. We shall prove that F(x)=0. For
otherwise, since F and/are continuous at %9 F Φ / in a neighborhood of X, but
this is impossible since this neighborhood is not of Jω^-harmonic measure zero
([6], Th. 3.2.19).

5. The local property of regular points

Let X* be a resolutive compaerification of X. We consider G=X Π U(x),
where U(x) is an open neighborhood of xGΔ. The closure G in X* is a com-
paerification. The boundary of G is denoted by Δ(G). Δ(G)—9GU δ, where
dG=A{G) ΠX and δ=Δ(G) ΠΔ. Obviously we have x e δ .

Proposition 1. G is a resolutive compactίficatίon.

Proof. Let /eC + (Δ(G)) and fx be a finite continuous extension of / | δ
onto Δ, where /1 δ is the restriction of / onto δ. Denoting by s1 (resp. s2) a
hyperharmonic function on G, bounded from below, lim s1>f--Hfi on ΘG,
sλ>0 outside a compact subset of X (resp. a hyperharmonic function on X,
bounded from below, lirns2Ξ>/i on Δ), we have

-Hf+Hf =f ondG

Hence, EG

f<EfJHf{\-Rfί, and similarly HG

f>HG

fL
x

Hfi+Hfi, where Hf is the
Dirichlet solution with respect to G and for the definition of Hfx we refer to
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[6]. Thus we have Hf=Hf=HGLx

Hfi+Hfi, since HG

fL
x

Hf=HG

fL
x

Hfχ ([6], Th.
1.2.7).

Proposition 2. If x is irregular for X* then x is irregular for G.

Proof. Suppose that x is regular for G. For a function / e C ( Δ ) , let

on δ

Hf on dG

It is easily seen that φ is resolutive and HG=Hf on G. From this we derive

lim, Hf = lim, HG = φ(x) = /(*)

which implies that x is regular for X*.

The following example shows that the converse does not hold in general.

EXAMPLE. Let -XΓ^{|#|<1}\{—1/2, 1/2}. We identify the two points

— 1/2 and 1/2, and denote it by e. The Green function of {\z\ <1} with pole

at 1/2 is denoted by u0. We consider the compactiίication of X such that Δ =

{I z I = 1} U {e}, and the harmonic structure given by z/0-harmonic functions, i.e.,

the quotient of usual harmonic functions by u0. The compactification X* is

resolutive and Hf=f{e) (the constant function). Let G=X\K, where K—

\iy\ y is real and \y\ 5Ξ1/2}. e is regular for X* but it is irregular for G.

A strictly positive superharmonic function v0 on X satisfying lim, ̂ 0 = 0 is

called a weak barrier of x.

In a resolutive compactification of a Brelot space, if Γ contains at least

two points every regular point has a weak barrier. In the above example e

has no weak barrier. We know an example of an irregular point with weak

barrier ([7], p. 253) If X is a Brelot space, the existence of a (strong) barrier

v0 at xyLe.y v0 is a positive superharmonic function satisfying limΛ^ 0=0 and

inf {vo; X\U(x)}>0 for every open neighborhood U(x) of x9 is equivalent to

\imxR
χ\κ=0 for every compact set K.

Theorem 4. Suppose that x has a weak barrier. Then x is regular for X*

if and only if x is regular for X\K for every compact subset K of X.

Proof. By Proposition 2, it is enough to prove the "only if" part. Sup-

pose for a moment that x is irregular for G, where G=X\K. Then ^GΓ.

We shall see that there exists fo<=C={f<ΞC+(A[JdK); f=0 on dK} such

that hmxH$o<hmxH
G

Q. In fact, if we have limx Hf=f(x) for every

then ιimx HG=g(x) for every £ > 0 continuous on A\JdK. For, letting
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g

0

0

g

on

on

on

on

Δ

ΘK

Δ

dK

and

we have lim, Hgi=g1(x)=g(x) and 0 < i / f 2 < | | ^ 2 | | ^ , where ψ is the characteri-
stic function of dK. From 1—ψ^C, it is derived that limx H$=0 and lim, 2/£
= 0 . Select a number 7 such that

lim, H%<7<^ H

By the theorem of Hahn-Banach, there exists a probability measure on Δ U 9K
such that

7 = \fodμ and llim v dμ< lim^ w, for every v^S+(G).

Obviously μφ£x. Since llim υ0 dμ< limx υo=0, where Ϊ;0 is a weak barrier of

#, we have Supp μdA. Take a point y^Supp μ\{x} and g ^ C ^ Δ ) such that
^(Λ;)=0 and£>0 in a neighborhood of y. We have

# £ = Hg on G ,
where

_ Γ^ on Δ
g l ~ [Hg on 9iC

We may find a potential on G with lim (Hgi-{-p)>g1 on Δ U 9^. Hence

llim (//£ +p) dμ>\gx dμ=\ gi dμ>0 .
J 1 J JΔ

On the other hand,

jlim (H^+p) dμ<UτKx H
G

gi = UmxHg = g(x) = 0 ,

which is a contradiction.

Let Λ G Δ be regular for X*. If x is regular for every X Π U(x), then x is
said to have the local property.

Theorem 5. x has the local property if and only ifx is pseudo-strongly regular.

Proof. We need to prove the "only if" part. We shall prove limx Rfw*>

= 0 for every U(x). Let G=XΠU(x) and /<ΞC+(Δ(G)) such that /(*)=0

a n d / = l on 9G. Consider a non-negative superharmonic function s with

lim 5 > / o n Δ(G). We define
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onX\U(x)
( i ( l ) on U(x).

Si is superharmonic on X and R^u^<sv Therefore Rf\u^<Hf in G, and

lim, Hf=f(x)=0 implies limx ΛfW*>=0.

Lemma. Suppose that x is regular for X* and lim, Rf^U( x)=0 for a

neighborhood U(x) of x. Let ϋΊ(x) be a neighborhood of x with U1(x)dU(x)y

and let δ=U1(x)ΠA, G=U(x)f)X. If / , ;6C(Δ(G)) and f=g on δ, then

Proof. Since Hf—HG=Hf_g it is sufficient to show that / G C ( Δ ( G ) ) and

/—0 on δ implies limx HG=0. Let U2(x) be a neighborhood of x such that

U2(x)c:U1(x)y and 8'=U2(x) ΠΔ. For a function ^ G C + ( Δ ) with
and 9>=| |/ | | on Δ\δ and φ(x)=0, there exist a potential /) and s^S+(G) such
that

o n Δ

ondU(χ)

for every £>0. Setting « ; = ^ + | | / | | / 2 f ^ ( * ) + θ ( p + ί ) we can readily seen that
*;>#£ and Hφ+\\f\\R^u^>HG

f. Hence Πϊn̂  H ^ l i m , Hφ+\\f\\ lίm,
=0.

Theorem 6. 7/x ώ regular for X* and limΛ i?f\c/(Λ)=0 ίÂ n Λ is regular for

x n t/(Λ).

Proof. Let G=XΓϊU(x). Suppose that x is irregular for G. Then

there exists /eC + (Δ(G)) such that Supp fd8=U1(x)ΠAy where UJx)d

U(x) and ]imxHfΦhmx Hf. We may construct a probability measure μ on

Δ(G) such that μφ£x and

llim » ^ ^ l i m ^ uv for every z;GcS+(G).

We assert that Supp μ c δ , for if g^C+(A(G)) and^=0 on δ then 0< \g dμ<

^ HG=0 by the above Lemma. There exists y^Supp μ\{x}- Since

and δ Π (X*\ U(x))=φ we havejyφ9S Hence we can find U(y) such that U(y)
C i/(«). Let F<=C+(X*) with F ( j ) > 0 and F(x)=0, and let

= JF on U(y)
1 (AF on G\U(y)

There exists a potential q on X such that for every £>0 we may find a com-
pact subset Ke of X so that
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hF+Sq>F and hF-Sq<F on X\K,.

Since hp+Sq^F, and hF-6q<.Fι on G\(Kζ Π U(y)), we have hF>h%χ>lfF>_hFy

i.e., hF=hFi. Thus we have a potential^) on G such that hfi+p>F1 outside a
compact subset of G and, in particular, in a neighborhood of y. Hence we are
led to a contradiction

<ϊmix hG

Fχ = hmx hF = 0 .

Let GΩ be the closure of G in X^& (the one-point compaerification of X).
Then GΩ is a resolutive compactification [5]. The boundary of GΩ is 3G
U "M?}. We denote the Dirichlet solution on GΩ by Hf. If the boundary
function / on Δ(G) is resolutive for G and is constant α on δ—GίΊΔ then

(/ on3G

[a at cJ

is resolutive for GΩ, and conversely if/' is resolutive for GΩ then

Γ/' on 9G

M) onδ

is resolutive for G. In both cases Hf,=Hf. x^dG is regular for G if and
only if it is regular for GΩ. Hence regular point x^dG for G is strongly re-
gular [5].

6. Relatively compact open sets

In this section, we shall assume that X is a Brelot space.
Let G be a relatively compact open subset of X. The outer boundary of

G is defined to be the boundary of G and is denoted by B(G). The harmonic
boundary of G and the set of regular points for G is denoted by Γ(G) and
R(G) respectively. G termed to be minimally bounded if the interior of G coin-
cides with G. G is minimaJy bounded if and only if dG=B(G).

Theorem 7. jB(G)ci?(G)cΓ(G) ([lj, Satz 17)

Proof. It is sufficient to prove that for every x^B(G) and for every re-
gular region D containing x there exists y^R(G) f]D. Since x^B(G) we may
find z^D\G. Consider a regular region V containing z and VdD\G.
The reduced function v=(nf\D)x\v (the reduced function considered in the
harmonic space X\V) is continuous on G and α—inf {v; 9G}<inf {v; dG\D}
= 1. v—a is a weak barrier at any point of E={y^dG; v(y)=ά\4:φ and all
points of E are regular.
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Corollary ([1], Korollar to Satz 17). If G is minimally bounded, then dG=

REMARK. We know that in a Bauer space T(G) is the cS+(G)-Silov boun-

dary [5], while if G is weakly dermining, R{G) is the (C(G) Π <5(G))-Silov boun-

dary [3]. It is also known that under the axiom of polarity dG\R(G) is polar

[4j, therefore R(G)=T(G). However it is still an open question whether it is

true or not for an arbitrary relatively compact open subset G of a Brelot space.
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