TORSION IN BROWN-PETERSON HOMOLOGY AND HUREWICZ HOMOMORPHISMS

David Copeland JOHNSON* and Zen-ichi YOSIMURA

(Received April 24, 1979)
$B P$ is the Brown-Peterson spectrum (for some prime p) and $B P_{*} X=$ $\pi_{*}(B P \wedge X)$ is the Brown-Peterson homology of the CW spectrum (or complex) $X . \quad B P_{*} X$ is a lefc module over the coefficient ring $B P_{*} \cong Z_{(p)}\left[v_{1}, v_{2}, \cdots\right]$ and a left comodule over the coalgebra $B P_{*} B P$. A now classical result is that the stable Hurewicz homomorphism $\pi_{*}^{S} X \rightarrow H_{*}(X ; Z)$ is an isomorphism modulo torsion. In our context, we restate this as: the Hurewicz homomorphism $h_{0}(X): \pi_{*}(B P \wedge X) \rightarrow H_{*}(B P \wedge X ; Q)$ has as its kernel the p-torsion subgroup of $B P_{*} X$. This is a prototype of our results.

Instead of restricting our attention to $B P_{*} X$, it is convenient to study abstract $B P_{*} B P$-comodules $(M, \psi), \psi: M \rightarrow B P_{*} B P \otimes_{B P_{*}} M$. A priori, M is a left $B P_{*}$-module. As such, it has a richer potential for torsion than mere p-torsion. For any polynomial generator v_{n} of $B P_{*}$ (by convention $v_{0}=p$), we say that an element $y \in M$ is v_{n}-torsion if $v_{n}^{s} y=0$ for some exponent s. If all elements of M are v_{n}-torsion ones, we say that M is a v_{n}-torsion module. If no non-zero element of M is v_{n}-torsion, we say that M is v_{n}-torsion free. Being a $B P_{*} B P$-comodule severely constrains the $B P_{*}$-module structure of M.

Theorem 0.1. Let M be a $B P_{*} B P$-comodule. If $y \in M$ is a v_{n}-torsion element, then it is a v_{n-1}-torsion element. Consequently, if M is a v_{n}-torsion module, then it is a v_{n-1}-torsion module. Or: if M is v_{n}-torsion free, it is v_{n+1}-torsion free (Lemma 2.3 and Proposition 2.5).

The primitive elements of a $B P_{*} B P$-comodule M are those elements a for which $\psi(a)=1 \otimes a$ under M 's coproduct $\psi: M \rightarrow B P_{*} B P \otimes_{B P *} M$. We find that some qualitative properties of $B P_{*} B P$-comodules are determined by these primitives.

Theorem 0.2 Let M be an associative $B P_{*} B P$-comodule. If all the primitives of M are v_{n}-torsion, then M itself is a v_{n}-torsion module. Or: if none of the

[^0]non-zero primitives of M is v_{n}-torsion, then M is v_{n}-torsion free (Proposition 2.7).
We may localize a $B P_{*} B P$-comodule M with respect to v_{n} to form $v_{n}^{-1} M$. Generally, the resulting $B P_{*}$-module is not a $B P_{*} B P$-comodule; we characterize when it is.

Theorem 0.3. Let M be an associative $B P_{*} B P$-comodule. M is a $v_{n-1^{-}}$ torsion module if and only if $v_{n}^{-1} M$ is an associative $B P_{*} B P$-comodule. (Proposition 2.9) (The "only if" part is due to Miller and Ravenel [11].)

There is no dearth of homology theories associated to $B P$, but some of the most interesting are the periodic homology theories $E(n)_{*}()$. The coefficients of $E(n)_{*}()$ are $E(n)_{*} \cong Z_{(p)}\left[v_{1}, \cdots, v_{n-1}, v_{n}, v_{n}^{-1}\right]$; the representing spectrum is $E(n) . \quad E(0)_{*} X$ is the familiar rational homology of $X . \quad E(1)_{*} X$ is a summand of localized (at p) complex K-homology of X. There is a Boardman map $B P \rightarrow$ $E(n) \wedge B P$ which induces a Hurewicz homomorphism $h_{n}(X): \pi_{*}(B P \wedge X) \rightarrow$ $E(n)_{*}(B P \wedge X)$. When $n=1$, this is properly called the Hattori-Stong homomorphism. We prove:

Theorem 0.4. Let X be a $C W$ spectrum. The kernel of the Hurewicz homomorphism $h_{n}(X): \pi_{*}(B P \wedge X) \rightarrow E(n)_{*}(B P \wedge X)$ is the v_{n}-torsion subgroup of $B P_{*} X$. (Theorem 4.10)

We can localize $B P_{*} X$ to form $v_{n}^{-1} B P_{*} X$. We prove:
Theorem 0.5. Let X be a $C W$ spectrum. $v_{n}^{-1} B P_{*} X=0$ if and only if $E(n)_{*} X=0$. Hence $v_{n}^{-1} B P_{*}()$ and $E(n)_{*}()$ have the same acyclic spaces. (Corollary 4.11)

During a provocative talk at the Northwesiern conference of March 1977, Douglas Ravenel shared his insight that Theorem 0.5 should hold. Our attempts to substantiate his intuition led to this paper. We thank Ravenel for making the manuscript [12] of his Northwestern talk available to us, for his stimulating correspondence, and for his kind hospitality.

An obvious generalization presents itself. Let $J=\left\{q_{0}, q_{1}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of elements of $B P_{*}$. There is a left $B P$-module spectrum $B P J$ whose homotopy is $B P J_{*} \cong B P_{*} /\left(q_{0}, \cdots, q_{n-1}\right)$. When J is empty, $B P J$ is just $B P$. As we do prove our results for $B P J_{*} B P J$-comodules, we must list properties of such comodules ($\S 1$), prove some simple change-ofring $\left(B P J_{*}\right.$ to $\left.B P_{*}\right)$ lemmas in $\S 3$, and sketch some proofs of the properties of $B P J$ (§5). A reader who is interested only in $B P_{*} B P$-comodules may neglect the " J " in the BPJ notacion and read only the even-numbered sections: $\S 2$, " v_{n}-Torsion Properies," and $\S 4$, "Hurewicz Homomorphisms."

1. $\boldsymbol{B P J} * B P J$-comodules

Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of elements of $B P_{*}=\pi_{*} B P$. $J($ and $n)$ will remain fixed throughout this section. There is an associative left $B P$-module specirum $B P J$ which has homotopy $\pi_{*} B P J=$ $B P J_{*} \cong B P_{*} /\left(q_{0}, \cdots, q_{n-1}\right)$. A map oi spectra $j: B P \rightarrow B P J$ induces an epimorphism in homotopy. Let $\varphi_{0}: B P \wedge B P \rightarrow B P$ give $B P$ its ring spectrum structure and let $\varphi=\varphi_{n}: B P \wedge B P J \rightarrow B P J$ give $B P J$ its $B P$-module structure. Then $\varphi(1 \wedge j)=j \circ \varphi_{0}$ and $\varphi\left(\varphi_{0} \wedge 1\right)=\varphi(1 \wedge \varphi)$.

When J is empty, $B P J$ is jusi $B P$. For $J=\left\{p, v_{1}, \cdots, v_{n-1}\right\}, B P J$ is known as $P(n)[6 ; 16 ; 17]$. The following properties have become classical for $B P_{*} B P$ comodules $[7 ; 8 ; 9]$. Würgler has established these properties for $P(n)_{*} P(n)$ comodules (p odd) [16]. We defer some of our exposition and our proof sketches until §5.

Let $\iota: S^{0} \rightarrow B P$ be the unit map for the Brown-Peterson spectrum. There are pairings $\mu: B P J \wedge B P J \rightarrow B P J$ which make $B P J$ into a quasi-associative ring spectrum with unit $\iota_{n}=j \circ \iota: S^{0} \rightarrow B P J$. Here $\mu(j \wedge 1)=\varphi$ and $\mu(j \wedge j)=$ $j \circ \varphi_{0}$. (See Proposition 5.5.) These pairings are not generally unique; the (co) multiplicative structures which follow can depend on the particular (fixed) choice of μ.

Let $c: B P J_{*} B P J \rightarrow B P J_{*} B P J$ be the conjugation. $B P J_{*} B P J$ is a free left $B P J_{*}$-module with basis given by symbols $z^{E, A}$ of dimension $\sum_{i} e_{i}\left(2 p^{i}-2\right)+$ $\sum_{j} a_{j}\left(\operatorname{dim}\left(q_{j}\right)+1\right)$. Here $E=\left(e_{1}, e_{2}, \cdots\right)$ is a finite sequence of non-negaiive integers and $A=\left(a_{0}, \cdots, a_{n-3}\right)$ is an n-tuple of zeros and ones. $B P J_{*} B P J$ is an associative left $B P_{*} B P \cong B P_{*}\left[t_{1}, t_{2}, \cdots\right]$-module with structure given by the formula:

$$
\begin{equation*}
t^{E} z^{F, A}=z^{E+F, A} \quad \text { for } \quad t^{E}=t_{1}^{e_{1}} t_{2}^{e_{2} \cdots \in B P_{*} B P .} \tag{1.1}
\end{equation*}
$$

In particular, $(j \wedge j)_{*}\left(t^{E}\right)=z^{E, 0}$. The $c\left(z^{E, A}\right)$ give a basis for $B P J_{*} B P J$ as a free right $B P J_{*}$-module. Because of this right freeness, there is a natural isomorphism $B P J_{*}(B P J \wedge X) \cong B P J_{*} B P J \otimes_{B P J_{*}} B P J_{*} X$ for any $C W$ spectrum X. The map $1 \wedge \iota_{n} \wedge 1: B P J \wedge S^{0} \wedge X \rightarrow B P J \wedge B P J \wedge X$ induces a coproduct:

$$
\psi_{x}: B P J_{*} X \rightarrow B P J_{*}(B P J \wedge X) \cong B P J_{*} B P J \otimes_{B P J_{*}} B P J_{*} X .
$$

We define natural homomorphisms $s_{E, A}: B P J_{*} X \rightarrow B P J_{*} X$ by the following recipe

$$
\begin{equation*}
\psi_{X}(x)=\sum_{B, A} c\left(z^{E, A}\right) \otimes s_{E A}(x) \tag{1.2}
\end{equation*}
$$

We call these $s_{E, A}$ elementary $B P J$ operations. When J is empty and $B P J$ is $B P$, the $s_{E, 0}$ coincide with $B P$ operations r_{E} [2]. The elementary $B P J$ operations satisfy the following properties.
(1.3) Under the natural map $j_{*}: B P_{*} X \rightarrow B P J_{*} X, s_{E, 0} j_{*}(x)=j_{*} r_{E}(x)$.
(1.4) The elementary $B P J$ operations generate all the $B P J$ operations in that any $B P J$ operation θ can be written uniquely as a (possibly infinite) sum

$$
\theta=\sum_{B, A} q_{E, A} s_{E, A} \quad q_{E, A} \in B P J_{*}
$$

(See 5.12).
(1.5) The dimension of $s_{E, A}$ is $d=\sum_{i} e_{i}\left(2 p^{i}-2\right)+\sum_{j} a_{j}\left(\operatorname{dim}\left(q_{j}\right)+1\right)$ where $E=\left(e_{1}, e_{2}, \cdots\right)$ and $A=\left(a_{0}, \cdots, a_{n-1}\right)$. That is: if $x \in B P_{s} X$, then $s_{E, A}(x) \in B P_{s-d} X$. (This follows from (1.2).)
(1.6) For any element $x \in B P J_{*} X, s_{E, A}(x)$ is zero except for finitely many indices E and A. (The proof is trivial.)
(1.7) There is a Cartan formula. If $y \in B P_{*}$ and $x \in B P J_{*} X$, then

$$
s_{E, A}(y x)=\sum_{F+G=B} r_{F}(y) s_{G, A}(x) .
$$

(This follows from (1.1).)
(1.8) There are coefficients $q_{A} \in B P J_{*}$ such that

$$
s_{0,0}(x)=x+\sum_{A \neq 0} q_{A} s_{0, A}(x)
$$

for any $x \in B P J_{*} X$ and for any X. (See Remark 5.13.)
(1.9) For the elementary $B P J$ operations $s_{E, A}$ and $s_{F, B}$, there are coefficients $q_{G, c}=q_{G, c}(E, A ; F, B) \in B P J_{*}$ such that

$$
s_{E, A}\left(s_{F, B}(x)\right)=\sum_{G, C} q_{G, C} s_{G, C}(x)
$$

for any $x \in B P J_{*} X$ and for any X. Furthermore, the dimension of $s_{G, c}$ is not less than the sum of the dimensions of $s_{E, A}$ and $s_{F, B}$. (See Remark 5.14.)

Let M be a left $B P J_{*}$-module. M is defined to be a $B P J_{*} B P J$-comodule if the elementary $B P J$ operations act on M satisfying (1.5) through (1.8). The $B P J_{*} B P J$ coaction of M is given by $\psi_{M}: M \rightarrow B P J_{*} B P J \otimes_{B P J_{*}} M$ with

$$
\psi_{M}(x)=\sum_{B, A} c\left(z^{E, A}\right) \otimes s_{E, A}(x)
$$

If (1.9) is also satisfied, we call $\left(M, \psi_{M}\right)$ an associative $B P J_{*} B P J$-comodule. The following remark follows from (1.2).

Remark 1.10. Let M be a $B P J_{*} B P J$-comodule and let $x \in M$. The following are equivalent statements.
(i) $\psi_{M}(x)=1 \otimes x$
(ii) $s_{E, A}(x)=0$ if $(E, A) \neq(0,0)$ and $s_{0,0}(x)=x$.

If x satisfies these equivalent statements, we call x primitive. Let $P M$ be the subgroup of primitive elements of M.

Define the primitive degree $d(x)$ of an element x of a $B P J_{*} B P J$-comodule M as follows. If there is an elementary operation $s_{E, A}$ of dimension m such that $s_{E, A}(x) \neq 0$, then $d(x) \geqslant m$. Define $d(0)=0$. By (1.6), $d(x) \geqslant 0$ is always finite. We record two observations.
(1.11) If $x \in M, d(x)=0$ if and only if x is primitive. (See Remark 1.10.)
(1.12) Let M be an associative $B P J_{*} B P J$-comodule and let $s_{E, A}$ be an elementary $B P J$ operation of dimension m. For $x \in M, d\left(s_{E, A}(x)\right) \leqslant$ maximum $\{d(x)-m, 0\}$. (See (1.9).)

Lemma 1.13. Let M be an associative or a connective $B P J_{*} B P J$-comodule. Then M coincides with the union of all of its finitely-generated subcomodules.

Proof. This follows routinely using (1.6) and (1.9) or (1.5).
Lemma 1.14. Let M be an associative $B P J_{*} B P J$-comodule. There is an epimorphism of associative BPJ*BPJ-comodules $f: F \rightarrow M$ with F BPJ*-free. F may be chosen to be finitely-generated in the case that M is finitely-generated.

Proof. Follow the proof of Proposition 2.4 of [9].
Lemma 1.15. Every associative $B P J_{*} B P J$-comodule M is a direct limit of finitely-presented associative comodules.

Proof. See the proof of Lemma 2.11 of [11] or see [17].
Recall that $I_{0}=(p), I_{m}=\left(p, v_{1}, \cdots, v_{m-1}\right)$, and $I_{\infty}=\left(p, v_{1}, v_{2}, \cdots\right)$ are the nontrivial prime ideals of $B P_{*}$ invariant under the $B P_{*} B P$-coaction [7;5]. By Landweber [10], the ideal-theoretic radical of $\left(q_{0}, \cdots, q_{n-1}\right)$ is I_{n}.

Theorem 1.16 (Filtration Theorem). Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence in $B P_{*}$ of length n. Let M be a finitely-presented, associative $B P J_{*} B P J$-comodule. Then M has a finite filtration

$$
M=M_{s} \supset M_{s-1} \supset \cdots \supset M_{1} \supset M_{0}=\{0\}
$$

by finitely-presented, associative $B P J_{*} B P J$-subcomodules. As a $B P J_{*} B P J$ comodule, each quotient $M_{i} / M_{i-1}, 1 \leqslant i \leqslant s$, is isomorphic to some suspension of some $B P_{*} / I_{k}, n \leqslant k$.

Proof. Follow the patterns of the proofs of Theorem 3.3 of [8] and

Theorem 3.4 of [17].

2. $\boldsymbol{v}_{\boldsymbol{n}}$-torsion properties

Again, J will be a fixed invariant regular sequence and $B P J$ will be the resulting spectrum. $B P J_{*} B P J$-comodules are $B P_{*}$-modules through the epimorphism $B P_{*} \rightarrow B P J_{*}$. This section studies certain $B P_{*}$-module properties of $B P J_{*} B P J$-comodules which are independent of the particular sequence J. (Here, we use the letter " n " as a variable and not as the length of the fixed sequence J.)

Our study begins with a lemma which descends directly from the "Ballentine Lemma" of Smith (and Stong) [14]. For the exponent sequence $E=$ $\left(e_{1}, e_{2}, \cdots\right)$, let $|E|=\sum_{i} e_{i}\left(2 p^{i}-2\right)$. Let $\Delta_{k}=(0, \cdots, 0,1,0, \cdots)$ with the single " 1 " in the k-th position. Exponent sequences are added (or multiplied by positive integers) term-wise.

Lemma 2.1. Let E be an exponent sequence with $|E| \geqslant 2 k p^{s}\left(p^{n}-p^{m}\right)$, $n \geqslant m, s \geqslant 0$, and $k \geqslant 1$. Then

$$
r_{E}\left(v_{n}^{k p s}\right)=\left\{\begin{array}{lc}
v_{m}^{k p s} & \text { modulo } I_{m}^{s+1} \\
0 & \text { modulo } I_{m}^{s+1}
\end{array} \quad \text { if } E=k p^{s+m} \Delta_{n-m}\right. \text { otherwise. }
$$

Proof. The $s=0$ case is Corollary 1.8 of [5]. The general case follows by induction on s using the Cartan formula and the fact that $p \in I_{m}$.

Lemma 2.2. Let M be a $B P J_{*} B P J$-comodule and let $s_{E, A}$ be any elementary BPJ operation. If an element $x \in M$ is v_{m}-torsion for all m satisfying $0 \leqslant m \leqslant n$, then $s_{E, A}(x)$ is also v_{m}-torsion for such $m, 0 \leqslant m \leqslant n$.

Proof. Assume inductively that $s_{F, B}(x)$ is v_{k}-torsion for every elementary $B P J$ operation $s_{F, B}$ and for all k satisfying $0 \leqslant k<m$. (The initial $m=0$ case is the same as the inductive step.) Recalling (1.6), there is a non-negative integer $s=s(x, m)$ such that $v_{m}{ }^{s} x=0$ and $I_{m}{ }^{s+1} s_{F, B}(x)=0$ for all elementary $B P J$ operations $s_{F, B} . \quad$ By (1.7) and Lemma 2.1,

$$
0=s_{E, A}\left(v_{m}{ }^{p^{s}} x\right)=v_{m}{ }^{p^{s}} s_{E, A}(x)
$$

and so $s_{E, A}(x)$ is v_{m}-torsion.
Lemma 2.3. Let M be a $B P J_{*} B P J$-comodule. If an element $x \in M$ is v_{n}-torsion, then it is v_{m}-torsion for each m satisfying $0 \leqslant m \leqslant n$.

Proof. Our proof is by double induction. The first induction (on m) assumes that if x is v_{n}-torsion, then x is v_{k}-torsion for $k<m$. For such an x and for any elementary $B P J$ operation $s_{E, A}, s_{E, A}(x)$ is v_{k}-torsion for all $k<m$ by Lemma
2.2. We may choose an $s \geqslant 0$ such that $v_{n}{ }^{s} x=0$ and $I_{m}{ }^{s+1} s_{E, A}(x)=0$ for all $s_{E, A}$. Suppose $s_{H, A}$ is an elementary $B P J$-operation of dimension $d(x)$. (See (1.11) and (1.12).) Lei $G=p^{m+s} \Delta_{n-m} . \quad$ By (1.7) and Lemma 2.1,

$$
\begin{aligned}
& 0=s_{G+H, A}\left(v_{n}{ }^{s} x\right)=\sum_{E+F=\sigma+H} r_{F}\left(v_{n}{ }^{p^{s}}\right) s_{E, A}(x)=r_{G}\left(v_{n}{ }^{p^{s}}\right) s_{H, A}(x) \\
& =v_{m}{ }^{p^{s} s_{H, A}}(x)=s_{H, A}\left(v_{m}{ }^{p} X\right) .
\end{aligned}
$$

If $d(x)=0$, this computation shows that x is v_{m}-torsion. If $d(x)>0$, it shows that $d\left(v_{m}{ }^{s} x\right)<d(x)$. By a second induction on the primicive degree $d(), v_{m}{ }^{s} x$ is assumed to be v_{m}-torsion. Hence x is v_{m}-torsion as desired.

Corollary 2.4. Let M be a $B P J_{*} B P J$-comodule. If $x \in M$ is v_{n}-torsion, then $s_{E, A}(x)$ is v_{m}-torsion for all m satisfying $0 \leqslant m \leqslant n$ and for all elementary BPJ operations $s_{E, A}$.

Proof. Lemmas 2.2 and 2.3.
Recall that a $B P_{*}$-module M (e.g. a $B P J_{*} B P J$-comodule) is v_{n}-torsion if every element $x \in M$ is v_{n}-torsion. $\quad M$ is v_{n}-torsion free if no non-zero element is v_{n}-torsion. The following proposition follows immediately from Lemma 2.3.

Proposition 2.5. Let M be a $B P J_{*} B P J$-comodule. If M is v_{n}-torsion, then it is v_{n-1}-torsion. At the other extreme: if M is v_{n}-torsion free, then it is v_{n+1}-torsion free.

Let Y be an associative $B P$-module spectrum. We can form a new spectrum $v_{n}^{-1} Y$ which is defined to be the mapping telescope $\lim S^{-2 t\left(p^{n}-1\right)} Y$ of the map

$$
S^{2 p^{n}-2} Y \xrightarrow{v_{n} \wedge 1} B P \wedge Y \rightarrow Y
$$

Note that $v_{n}^{-1} Y$ is a $B P$-module spectrum which is possibly non-associative. We have a canonical isomorphism $v_{n}^{-1}\left(Y_{*}(X)\right) \rightarrow\left(v_{n}^{-1} Y\right)_{*} X$.

Corollary 2.6. Let X be a $C W$ spectrum. If $\left(v_{n}^{-1} B P J\right)_{*} X=0$, then $\left(v_{n-1}^{-1} B P J\right)_{*} X=0$.

Proposition 2.7. Let M be a $B P J_{*} B P J$-comodule which is either associative or connective.
(i) If all the primitive elements of M are v_{n}-torsion, then M is a v_{n}-torsion module.
(ii) If none of the non-zero primitive elements of M is v_{n}-torsion, then M is a v_{n}-torsion free module.

Proof. To prove (i), assume M is an associative comodule with v_{n}-torsion primitives. Assume inductively that M is a v_{k}-torsion module for $k<m \leqslant n$. If $y \in M$ with $d(y)=0$ (see (1.11)), y is v_{k}-torsion for all $k \leqslant n$ by our hyfoihesis and by Lemma 2.3. Ler $x \in M$ with $d(x)>0$. Let $s_{E, A}$ be any positive dimen-
sional elementary $B P J$ operation. Since M is associative, $d\left(s_{E, A}(x)\right)<d(x)$ by (1.12). By a subsidiary induction on $d(y)$, we may assume that such $s_{E, A}(x)$ are v_{m}-torsion. Hence there is an $s \geqslant 0$ such that $I_{m}{ }^{s+1} x=0$ and $I_{m+1}{ }^{s+1} s_{E, A}(x)=0$. Note that (1.8) implies that $s_{0,0}(x)=x+z$ with $I_{m+1}^{s+1} z=0$. For any positive dimensional $s_{E, A}$,

$$
s_{E, A}\left(v_{m}{ }^{s} x\right)=\sum_{F+G=E} r_{F}\left(v_{m}{ }^{p^{s}}\right) s_{G, A}(x)=0 .
$$

So $v_{m}{ }^{p^{s} x}$ is primitive and hence v_{m}-torsion. Thus x itself is v_{m}-torsion. This completes both the auxiliary and the original inductions.

We turn to (ii). Let M be an associative comodule with no non-zero $v_{n}{ }^{-}$ torsion primitives. We assume inductively that all non-zero elements $y \in M$ with $d(y)<l$ are not v_{n}-torsion. If non-primitive $x \in M$ has $d(x)=l$, there is an elementary $B P J$ operation $s_{E, A}$ with $s_{E, A}(x) \neq 0$ and $d\left(s_{E, A}(x)\right)<d(x)$ (1.12). So $s_{E, A}(x)$ is not v_{n}-torsion. By Corollary 2.4, x fails to be v_{n}-torsion also. Thus M is v_{n}-torsion free.

Finally, assume M is connective. With a few minor modifications, the above proofs of (i) and (ii) work if we replace the primitive degree $d(x)$ of the element x by x 's dimension $|x|$.

A $B P_{*}$-module (e.g. a $B P J_{*} B P J$-comodule) M is said to be v_{n}-divisible if multiplication by v_{n} on M is epic.

Proposition 2.8. If an associative $B P J_{*} B P J$-comodule M is v_{n}-divisible, then it is $v_{n-1}-$ torsion. (Cf. [11, Proposition 3.5].)

Proof. Assume inductively that M is v_{k}-torsion for $k<m<n$. Let $0 \neq$ $x \in M$ be a primitive element. By Proposition 2.7, it will suffice to show that x is v_{m}-torsion. There is an integer $t \geqslant 0$ such that $I_{m}{ }^{t+1} x=0$. Note that this implies that $I_{m}{ }^{t+1} s_{0, A}(x)=0(1.7)$. By the divisibility of M, there is an element $y \in M$ with $v_{n}{ }^{p^{t}} y=x$. In preparation for a second induction, we do a curious computation. For any integer $u \geqslant 0$, our (primary) inductive hypothesis gives us an integer $s \geqslant t$ such $I_{m}{ }^{s+1} s_{E, A}\left(v_{m}{ }^{u p^{t}} y\right)=0$ for all elementary BPJ operations $s_{E, A}$. Suppose $d\left(v_{m}{ }^{u p^{t}} y\right)=l$ and let $s_{H, A}$ be any elementary $B P J$ operation of that maximal dimension l. Let $G=p^{m+s} \Delta_{n-m}$. Using (1.7) and Lemma 2.1 repeatedly, we compute:

$$
\begin{aligned}
& 0=r_{G+H}\left(v_{n}{ }^{s}-p^{t}\right) v_{m}{ }^{u p^{t}} s_{0, A}(x)=r_{G+H}\left(v_{n}{ }^{p^{s}-p^{t}}\right) s_{0, A}\left(v_{m}{ }^{u p^{t}} x\right)=s_{G+H, A}\left(v_{n}{ }^{p^{s}-p^{t}} v_{m}{ }^{u p^{t}} x\right) \\
& =s_{G+H, A}\left(v_{n}{ }^{\left.p^{s}-p^{t} v_{m}{ }^{\mu p^{t}} v_{n}{ }^{p} y\right)=s_{G+H, A}\left(v_{n}{ }^{p^{s}} v_{m}{ }^{\mu p^{t}} y\right)=r_{G}\left(v_{n}{ }^{s}\right) s_{H, A}\left(v_{m}{ }^{\mu} p^{t} y\right)}\right. \\
& =v_{m}{ }^{p^{s}} s_{H, A}\left(v_{m}^{u p^{t}} y\right)=s_{H, A}\left(v_{m}{ }^{p^{t}\left(p^{s-t}+u\right)} y\right) .
\end{aligned}
$$

If $d\left(v_{m}{ }^{\mu p^{t}} y\right)=0$, this shows that $v_{m}{ }^{\mu p^{t}} y$-and hence y and x - are v_{m}-torsion. If $d\left(v_{m}{ }^{\mu p^{t}} y\right)>0$, the computation shows that $d\left(v_{m}{ }^{p^{t}\left(p^{s-t}+u\right)} y\right)<d\left(v_{m}{ }^{\mu p^{t}} y\right)$. This indicates a proof that x is v_{m}-torsion by induction on the \mathfrak{F} rimitive degrees of
the $v_{m}{ }^{\mu p^{t}} y$.
The "only if" part of the following proposition is due to Miller and Ravenel [11, Lemma 3.2].

Proposition 2.9. Let M be an asscciative BPJ ${ }_{*} B P J$-comodule. Then M is v_{n-1}-torsion if and only if the localization $v_{n}^{-1} M$ is an associative $B P J * B P J-$ comodule.

Proof. By Lemma 1.13, we may assume M is finitely-generated. Assuming M is v_{n-1}-torsion, there is an $s \geqslant 0$ such that $I_{n}^{s+1} M=0$ (Proposition 2.5). By Lemma 2.1, multiplication by ${v_{n}}^{p^{s}}$ on M is a comodule map. Hence the localization $v_{n}^{-1} M$, considered as the direct limit of the system

$$
M \xrightarrow{v_{n} p^{s}} M \xrightarrow{v_{n}^{p^{s}}} M \cdots,
$$

is an associative $B P J_{*} B P J$-comodule. Furthermore, $M \rightarrow v_{n}^{-1} M$ is a comodule map.

Now assume that $\tau_{n}{ }^{-1} M$ is an associative comodule. As a v_{n}-divisible associative comodule, $v_{n}{ }^{-1} M$ is v_{n-1}-torsion by Proposition 2.8. Thus $v_{k}{ }^{-1} v_{n}{ }^{-1} M$ $=0$ for each k satisfying $0 \leqslant k<n$ by Proposition 2.5. Assume induccively that M is v_{k-1}-torsion. By the "only if" part of this proposition, $v_{k}{ }^{-1} M$ is an associative comodule. Since $v_{n}{ }^{-1} v_{k}^{-1} M=v_{k}{ }^{-1} v_{n}{ }^{-1} M=0$, the associative comodule $v_{k}^{-1} M$ is v_{n}-torsion, By Proposition 2.5, $v_{k}^{-1} M$ is v_{k}-torsion and thus is zero. So M is v_{k}-torsion.

3. More $\boldsymbol{B P}_{*}$-module properties of $\boldsymbol{B P J} \boldsymbol{H}_{*} \boldsymbol{B P J}$-comodules

This section develops some algebraic preliminaries to Section 4. All of the results here are well-known or trivial when $B P J=B P$. Our point of departure is the $B P J_{*} B P J$ version of Landweber's Filtration Theorem (1.16). A unifying technique is the following.

Lemma 3.1. Let $j: \Lambda \rightarrow \Gamma$ be a homomorphism of commutative rings with unit. Let A be a right Λ-module and let B and C be two-sided Γ-modules such that there is an isomorphism $B \otimes_{\Gamma} C \cong C \otimes_{\Gamma} B$ of left Γ-modules. Further assume that B is Γ-flat. If $\operatorname{Tor}_{1}{ }^{\wedge}(A, C)=0$, then $\operatorname{Tor}_{1}{ }^{\Gamma}\left(A \otimes_{\Lambda} B, C\right)=0$.

Proof. If either B or C is Γ-flat, we have a Kunneth exact sequence
$\operatorname{Tor}_{2}^{\Gamma}\left(A \otimes_{\Lambda} B, C\right) \rightarrow \operatorname{Tor}_{1}^{\Lambda}(A, B) \otimes_{\Gamma} C \rightarrow \operatorname{Tor}_{1}^{\Lambda}\left(A, B \otimes_{\Gamma} C\right) \rightarrow \operatorname{Tor}_{1}^{\Gamma}\left(A \otimes_{\Lambda} B, C\right) \rightarrow 0$. When B is Γ-flat (and the roles of B and C are interchanged), this gives an isomorphism. $\operatorname{Tor}_{1}{ }^{\Lambda}(A, C) \otimes_{\mathrm{r}} B \xrightarrow{\cong} \operatorname{Tor}_{1}{ }^{\Lambda}\left(A, C \otimes_{\Gamma} B\right)$. The lemma now follows immediately from the isomorphism $B \otimes_{\Gamma} C \cong C \otimes_{\Gamma} B$.

Throughout this section, let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of length n. Let $\Lambda=B P_{*}$ and $\Gamma=B P J_{*}$.

For any commutative ring R and any R-module M, we have two dimensions of concern. The projective dimension, h. $\operatorname{dim}_{R} M$, is the greatest integer k such that $\operatorname{Ext}_{R}{ }^{k}(M, N) \neq 0$ for some R module N. The weak dimension, w. $\operatorname{dim}_{R} M$, is the greatest integer k such that $\operatorname{Tor}_{R}{ }^{k}(M, N) \neq 0$ for some R module N. Of course, w. $\operatorname{dim}_{R} M \leqslant \mathrm{~h} . \operatorname{dim}_{R} M$.

Lemma 3.2. The projective dimension of Γ as a Λ-module is n.
Proof. Let $J_{m}=\left\{q_{0}, \cdots, q_{m-1}\right\} \subseteq J, m \leqslant n$. For $m<n$, there are short exact sequences of Λ-modules

$$
0 \rightarrow B P J_{m^{*}} \xrightarrow{q_{m}} B P J_{m^{*}} \rightarrow B P J_{m+1 *} \rightarrow 0
$$

showing inductively that $\mathrm{h} . \operatorname{dim}_{\Lambda} B P J_{m^{*}} \leqslant m$. The ideal $\left(q_{0}, \cdots, q_{n-1}\right)$ has radical $\left(v_{0}, \cdots, v_{n-1}\right)$ [10, Proposition 2.5]; so $\Gamma=B P J_{*}$ is a v_{n-1}-torsion module. By the "ideal annihilator estimate" [6, Proposition 4.6], h. $\operatorname{dim}_{\Delta} \Gamma \geqslant n$.

Corollary 3.3. $\operatorname{Tor}_{1}{ }^{\Lambda}\left(Z_{(p)}\left[v_{1}, \cdots, v_{m}\right], \Gamma\right)=0$ for all $m>n$.
Proof. Apply Landweber's Theorem 4.2 of [9] to the connective, associative $B P_{*} B P$-comodule $B P J_{*}=\Gamma$.

Lemma 3.4. For any m satisfying $n \leqslant m \leqslant n+k+1$,

$$
\operatorname{Tor}_{1}^{\Gamma}\left(Z_{(p)}\left[v_{1}, \cdots, v_{n+k}\right] \otimes_{\Lambda} B P J_{*} B P J, B P_{*} / I_{m}\right)=0
$$

Proof. Recall that $B P J_{*} B P J$ is Γ-free. $\operatorname{Tor}_{1}{ }^{\wedge}\left(Z_{(p)}\left[v_{1}, \cdots, v_{n+k}\right], B P_{*} / I_{m}\right)=0$ for $m \leqslant n+k+1$. For $n \leqslant m, B P_{*} / I_{m}$ is a Γ-module. Apply Lemma 3.1.

Recall that $E(m)_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{m-1}, v_{m}, v_{m}^{-1}\right]$.
Lemma 3.5. Let M be an associative $B P J_{*} B P J$-comodule. Let B be (i) Γ, (ii) $B P J_{*} B P J$, or (iii) $B P J_{*}\left(v_{m}{ }^{-1} B P J\right)$. Then $\operatorname{Tor}_{1}{ }^{\Gamma}\left(E(m)_{*} \otimes_{\Lambda} B, M\right)=0$.

Proof. Both Γ and $B P J_{*} B P J$ are Γ-free. As a direct limit of copies of $B P J_{*} B P J, B P J_{*}\left(v_{m}{ }^{-1} B P J\right)$ is Γ-flat. By Landweber's Exact Functor Theorem [9], $\operatorname{Tor}_{1}{ }^{\wedge}\left(E(m)_{*}, B P_{*} / I_{k}\right)=0, k \geqslant-1$. If $k \geqslant n, B P_{*} / I_{k}$ is a Γ-module and so Lemma 3.1 implies that $\operatorname{Tor}_{1}{ }^{\Gamma}\left(E(m)_{*} \otimes_{\Lambda} B, B P_{*} \mid I_{k}\right)=0, k \geqslant n$. If M is finitely presented, M has a finite filtration whose subquotients are isomorphic to suspended copies of $B P_{*} / I_{k}, k \geqslant n$ (1.14). By an induction over M 's filtration, $\operatorname{Tor}_{1}{ }^{\Gamma}\left(E(m)_{*} \otimes_{\Lambda} B, M\right)=0$ when M is finitely presented. By (1.13), this suffices to prove the lemma.

Lemma 3.6. Let M be an associative $B P J_{*} B P J$-comodule. If w. $\operatorname{dim}_{\Gamma}$
$M \leqslant m-n+1$, then:
(i) $\operatorname{Tor}_{1}{ }^{\Gamma}\left(Z_{(p)}\left[v_{1}, \cdots, v_{m}\right] \otimes_{\Lambda} \Gamma, M\right)=0$;
(ii) the sequence

$$
\begin{aligned}
0 \rightarrow Z_{(p)}\left[v_{1}, \cdots, v_{m+1}\right] \otimes_{\Lambda} M \xrightarrow{v_{m+1} \otimes} \otimes_{l} & Z_{(p)}\left[v_{1}, \cdots, v_{m+1}\right] \otimes_{\Lambda} M \\
& Z_{(p)}\left[v_{1}, \cdots, v_{m}\right] \otimes_{\Lambda} M \rightarrow 0
\end{aligned}
$$

is exact.
Proof. By Corollary 3.3, the endomorphism $v_{m+1} \otimes \Gamma$ of $Z_{(p)}\left[v_{1}, \cdots, v_{m+1}\right] \otimes_{\Lambda} \Gamma$ is injecive; part (ii) follows from the resulting short exact sequence and from (i). Let $A=Z_{(p)}\left[v_{1}, \cdots, v_{m}\right]$ and note that $v_{m}{ }^{-1} A=E(m)_{*}$. So $v_{m}{ }^{-1} \operatorname{Tor}_{1}{ }^{\Gamma}\left(A \otimes_{\Lambda}\right.$ $\Gamma, M) \cong \operatorname{Tor}_{1}{ }^{\Gamma}\left(E(m)_{*} \otimes_{\Lambda} \Gamma, M\right)=0$ by Lemma 3.5 (i). So $\operatorname{Tor}_{1}{ }^{\Gamma}\left(A \otimes_{\Lambda} \Gamma, M\right)$ is a v_{m}-torsion module. Part (i) is obvious when w. $\operatorname{dim}_{\Gamma} M=0$; we may assume w. $\operatorname{dim}_{\Gamma}=k>0$. Using (1.13) we construct an exact sequence of $B P J_{*} B P J$ comodules

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

where F is Γ-free. Consequently, w. $\operatorname{dim}_{\Gamma} K \leqslant k-1$ and we assume inductively (ii) that $A \otimes_{\Lambda} K$ is v_{m}-torsion free. (N.B. $k-1 \leqslant m-1-n+1$.) So the v_{m}-torsion module $\operatorname{Tor}_{1}{ }^{\Gamma}\left(A \otimes_{\Lambda} \Gamma, M\right)$ injects into the v_{m}-torsion free module $A \otimes_{\Lambda} \Gamma \otimes_{\Gamma} K \cong$ $A \otimes_{\Lambda} K$ thus establishing (i).

Proposition 3.7. Let J be a finite invariant regular sequence of length n. Let M be a connective associative $B P J_{*} B P J$-comodule. If w. $\operatorname{dim}_{B P J *} M \leqslant k-n$, then M is v_{k}-torsion free.

Proof. It suffices to frove by an induction on $l \geqslant k$ that v_{k} acts injectively on $Z_{(p)}\left[v_{1}, \cdots, v_{l}\right] \otimes_{\Lambda} M$. When $l=k$, this follows from the $m+1=k$ case of Lemma 3.6 (ii). The general proof follows from a five lemma argument involving a diagram whose horizontal rows are two copies of the short exact sequences of 3.6 (ii) $(l=m)$ and whose vertical arrows represent multiplication by v_{k}. The left vertical arrow would be injective by a subsidiary induction on dimension; the right one by the original induction on l.

4. Hurewicz homomorphisms

Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ continue to be an invariant regular sequence of length n. Let $\Gamma=B P J_{*} \cong B P_{*} /\left(q_{0}, \cdots, q_{n-1}\right)$ and let $\Lambda=B P_{*}$. The ring epimorphism $\Lambda \rightarrow \Gamma$ results in the identification $A \otimes_{\Lambda} B \cong A \otimes_{\Gamma} B$ for arbitrary Γ-modules A_{Γ} and ${ }_{\mathrm{r}} B$. Hence, throughout this section, we can adopt the convention that $A \otimes B$ means $A \otimes_{\Lambda} B$.

By Lemma 3.5(i), $X \mapsto E(m)_{*} \otimes B P J_{*} X$ defines a homology theory; let $E(m, J)$ be its representing $C W$ spectrum. $E(m, J)_{*} X \cong E(m)_{*} \otimes B P J_{*} X$ for any $C W$ spectrum X. Recall from $\S 2$ that we can form the spectrum $v_{m}{ }^{-1} B P J$
with $\pi_{*}\left(v_{m}{ }^{-1} B P J\right) \cong v_{m}{ }^{-1} B P J_{*}$. For a spectrum Y, we have the Boardman map $Y \rightarrow E(m, J) \wedge Y$ which induces a Hurewicz homomorphism $\pi_{*}(Y \wedge X) \rightarrow$ $E(m, J)_{*}(Y \wedge X)$. The key topological results of this section compute the kernels of these homomorphisms when $Y=B P J$ or $v_{m}{ }^{-1} B P J$. These computations depend on a theorem of Ravenel concerning the right unit of the $B P$ spectrum.

Theorem 4.1 (Ravenel [13]). Let η_{m} be the composition

$$
\eta_{m}: B P_{*} \xrightarrow{\eta_{R}} B P_{*} B P \rightarrow Z / p\left[v_{m}\right] \otimes B P_{*} B P
$$

Then $\eta_{m}\left(v_{m}\right)=v_{m}$ and for $k \geqslant 1$,

$$
\eta_{m}\left(v_{m+k}\right) \equiv v_{m} t_{k}{ }^{p^{m}}-v_{m}{ }^{p^{k}} t_{k} \quad \text { modulo } \quad\left(\eta_{m}\left(v_{m+1}\right), \cdots, \eta_{m}\left(v_{m+k-1}\right)\right)
$$

Let $G(m, J)_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{m}\right] \otimes B P J_{*} B P J$ and let $\lambda: G(m, J)_{*} \rightarrow v_{m}{ }^{-1} G(m, J)_{*}$ $\cong E(m, J)_{*} B P J$ be the localization homomorphism. We have two Hurewicz homomorphisms induced by BPJ's right unit:

$$
\begin{aligned}
& h_{m}{ }^{\prime}(\Gamma): \Gamma=B P J_{*} \xrightarrow{\eta_{R}} B P J_{*} B P J \rightarrow G(m, J)_{*} \\
& h_{m}(\Gamma)=\lambda_{0} h_{m}{ }^{\prime}(\Gamma): \Gamma \xrightarrow{\eta_{R}} B P J_{*} B P J \rightarrow E(m, J)_{*} B P J
\end{aligned}
$$

For a left Γ module M, we define:

$$
\begin{aligned}
& h_{m}^{\prime}(M)=h_{m}{ }^{\prime}(\Gamma) \otimes 1: M \cong \Gamma \otimes M \rightarrow G(m, J)_{*} \otimes M \\
& h_{m}(M)=h_{m}(\Gamma) \otimes 1: M \cong \Gamma \otimes M \rightarrow E(m, J)_{*} B P J \otimes M
\end{aligned}
$$

Lemma 4.2. Let $m \geqslant n \quad$ Let $h^{\prime}=h_{m}{ }^{\prime}\left(B P_{*} / I_{m}\right)$. For any non-zero element y in $B P_{*} / I_{m}$, left multiplication by $h^{\prime}(y)$ in $G(m, J)_{*} \otimes B P_{*} \mid I_{m}$ is injective.

Proof. The $m=n=0$ case is well-known; so we assume that $m>0$. Since $\eta_{R}\left(v_{s}\right) \equiv v_{s}$ modulo $I_{s} \cdot B P_{*} B P$ [2,11.16.1], we have the isomorphisms ζ and ρ in commutative diagram 4.3.

$$
\begin{gather*}
B P_{*} \xrightarrow{\eta_{m}} Z\left|p\left[v_{m}\right] \otimes B P_{*} B P \xrightarrow{1 \otimes(j \wedge j)_{*}} Z\right| p\left[v_{m}\right] \otimes B P J_{*} B P J \\
\zeta \downarrow \cong \tag{4.3}\\
\downarrow \begin{array}{c}
\cong \mid p\left[v_{m}\right] \otimes B P J_{*} B P J \otimes B P_{*} / I_{m} \\
\rho \mid \xlongequal{\uparrow} \\
\downarrow \\
B P_{*}\left|I_{m} \xrightarrow{h^{\prime}} G(m, J)_{*} \otimes B P_{*}\right| I_{m}=Z_{(p)}\left[v_{1}, \cdots, v_{m}\right] \otimes B P J_{*} B P J \otimes B P_{*} \mid I_{m}
\end{array}
\end{gather*}
$$

A Z / p-basis element of $B P_{*} / I_{m}$ is (represented by) a monomial of form $v_{m}{ }^{i_{0}} v_{m+1} i^{i_{1}} v_{m+2}{ }^{i_{2}} \cdots=v^{I}$. Let $i=i_{0}+i_{1}+i_{2} \cdots$ and let

If $E=\left(e_{1}, e_{2}, \cdots\right)$ and $t^{E}=t_{1}{ }^{e_{1} t_{2}}{ }^{e_{2}} \cdots$, observe that $(j \wedge j)_{*} t^{E}=z^{E, 0}$ which is a left $B P J_{*}$-basis element of $B P J_{*} B P J$ (Lemma 5.10). Filter each gradation of the image of $1 \otimes(j \wedge j)_{*}$ by defining $v_{m}{ }^{a} \otimes z^{E, 0}$ to be of lower filtration than $v_{m}{ }^{b} \otimes z^{F, 0}$ provided that $\cdots, e_{s+2}=f_{s+2}, e_{s+1}=f_{s+1}$, but $e_{s}<f_{s}$. We now interpret Theorem 4.1 as saying that $\zeta^{-1} \rho h^{\prime}\left(v^{I}\right)=\left(1 \otimes(j \wedge j)_{*}\right) \eta_{m}\left(v^{I}\right) \equiv v_{m}{ }^{i} \otimes z^{p^{m} I, 0}$ modulo terms of lower filtration. The result is now evident.

Corollary 4.4. Let $m \geqslant n$. Then $h_{m}\left(B P_{*} \mid I_{m}\right): B P_{*} \mid I_{m} \rightarrow E(m, J)_{*} B P J \otimes$ $B P_{*} / I_{m}$ is a monomorphism.

Proof. By Lemma 4.2, lefi multiplication by $v_{m} \otimes 1=h^{\prime}\left(v_{m}\right)$ on $G(m, J)_{*} \otimes$ $B P_{*} / I_{m}$ is monic; thus the localization map $\lambda \otimes 1: G(m, J)_{*} \otimes B P_{*} / I_{m} \rightarrow$ $E(m, J)_{*} B P J \otimes B P_{*} / I_{m}$ is monic. A second application of Lemma 4.2 shows that $h_{m}{ }^{\prime}\left(B P_{*} \mid I_{m}\right)$ is injective. But $h_{m}\left(B P_{*} \mid I_{m}\right)=(\lambda \otimes 1) h_{m}{ }^{\prime}\left(B P_{*} / I_{m}\right)$.

Let us adopt the notation

$$
\widetilde{h}_{m}(\Gamma): v_{m}^{-1} \Gamma=v_{m}^{-1} B P J_{*}=\pi_{*}\left(v_{m}^{-1} B P J\right) \rightarrow E(m, J)_{*}\left(v_{m}^{-1} B P J\right)
$$

for the Hurewicz homomorphism induced by the Boardman map $v_{m}{ }^{-1} B P J \rightarrow$ $E(m, J) \wedge v_{m}{ }^{-1} B P J$. For any Γ-module M, we define $\widetilde{h}_{m}(M)$ by

$$
\widetilde{h}_{m}(M)=\widehat{h}_{m}(\Gamma) \otimes 1: v_{m}^{-1} M=v_{m}^{-1} \Gamma \otimes M \rightarrow E(m, J)_{*}\left(v_{m}^{-1} B P J\right) \otimes M
$$

Using the notation $\lambda(M): M \rightarrow v_{m}^{-1} M$ for the algebraic localization of M and $\lambda: B P J \rightarrow v_{m}{ }^{-1} B P J$ for the topological localization of the spectrum $B P J$, we have the commutative diagram 4.5.

Lemma 4.6. Let $m \geqslant n$. For any associative $B P J_{*} B P J$-comodule $M, \widehat{h}_{m}(M)$ is monic.

Proof. For a future analogy and some present simplicity, let $A=B P J_{*}=$ $\Gamma, B=E(m, J)_{*} B P J$, and $f=h_{m}(\Gamma): A \rightarrow B$. We record four essential facts.
(i) By Corollary 4.4, $f \otimes B P_{*} / I_{m}: A \otimes B P_{*} / I_{m} \rightarrow B \otimes B P_{*} / I_{m}$ is monic.
(ii) By Lemmi 3.5(ii), $\operatorname{Tor}_{1}{ }^{\Gamma}\left(B, B P_{*} / I_{j+1}\right)=0, n \leqslant j+1(\leqslant m+1)$.
(iii) By Lemma 3.5(iii), $\operatorname{Tor}_{1}{ }^{\Gamma}\left(B \otimes v_{m}{ }^{-1} \Gamma, B P_{*} \mid I_{j}\right)=0, n \leqslant j$.
(iv) A is connective.

The lemma is well known when $m=n=0$; so we assume $m>0$. Multiplication by v_{j} on $B P_{*} / I_{j}$ induces commutative diagram 4.7 which has exact rows. We assume $n \leqslant j \leqslant m$ so that the bottom torsion term is zero as indicated.

The vertical f_{i} 's are $f \otimes B P_{*} / I_{k}$'s as appropriate. By a downward induction beginning with $j=m$ (i), we assume f_{3} is monic. By an upward induction on the dimension of elements in connective $A \otimes B P_{*} / I_{j}$ (iv), we assume f_{1} is monic in the dimension of interest. Note that $1 \otimes v_{j}$ raises dimensions. Thus f_{2} is monic by the five lemma. By this double induction $f \otimes B P_{*} / I_{j}$ is monic for j satisfying $n \leqslant j \leqslant m$. Upon v_{m}-localization f induces $\tilde{f}: v_{m}{ }^{-1} A \rightarrow E(m, J)_{*}$ $\left(v_{m}{ }^{-1} B P J\right)$. Since $\left(v_{m}{ }^{-1} A\right) \otimes B P_{*} \mid I_{j}=0$ for $j>m$, we have that $\tilde{f} \otimes B P_{*} / I_{j}$: $v_{m}{ }^{-1} B P_{*} / I_{j} \rightarrow E(m, J)_{*}\left(v_{m}{ }^{-1} B P J\right) \otimes B P_{*} / I_{j}$ is monic for all j satisfying $n \leqslant j$. To prove $\tilde{f} \otimes M$ is monic for all associative $B P J_{*} B P J$-comodules, it suffices to prove $\tilde{f} \otimes M$ is monic where M is finitely presented (Lemma 1.13). Such a finitely presented comodule M has a finite filtration by sub-comodules whose subquotienss are suspended copies of $B P_{*} / I_{j}, j \geqslant n$. The remainder of the proof is a five-lemma-aided induction over the filtration of M using fact (iii) to have the "bottom-left torsion term" zero.

Lemma 4.8. Let $m \geqslant n$ and let M be an associative $B P J_{*} B P J$-comodule. Left multiplication by $h_{m}(M)\left(v_{m}\right)$ acts injectively on $E(m, J)_{*} B P J \otimes M$.

Proof. Let $A=B=G(m, J)_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{m}\right] \otimes B P J_{*} B P J$. Let $f: A \rightarrow B$ be left multiplication by $h_{m}{ }^{\prime}(\Gamma)\left(v_{m}\right)$. We record four essential facts.
(i) By Lemma 4.2, $f \otimes B P_{*} / I_{m}$ is monic.
(ii) By Lemma 3.4, $\operatorname{Tor}_{1}{ }^{\Gamma}\left(B, B P_{*} / I_{j+1}\right)=0, n \leqslant j+1 \leqslant m+1$.
(iii) By Lemma 3.5 (ii), $\operatorname{Tor}_{1}{ }^{\Gamma}\left(v_{m}{ }^{-1} B, B P_{*} / I_{j}\right)=0, n \leqslant j$.
(iv) A is connective.

Follow the pattern of the proof of Lemma 4.6.
Theorem 4.9. Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of length n and let $m \geqslant n$. Let M be an associative BPJ ${ }_{*} B P J$-comodule. The kernel of

$$
h_{m}(M): M \rightarrow E(m, J)_{*} B P J \otimes_{B P J *} M
$$

is the v_{m}-torsion subgroup of M.
Proof. In diagram 4.5, $\widetilde{h}_{m}(M)$ is monic by Lemma 4.6. By Lemma 4.8, left multiplication by $h_{m}(M)\left(v_{m}\right)$-i.e. right multiplication by $v_{m} \otimes 1$-is monic on $E(m, J)_{*} B P J \otimes M$. Thus the localization map $E(m, J)_{*}(\lambda) \otimes 1$ is monic in 4.5. Thus the kernel of $h_{m}(M)$ coincides with that of $\lambda(M)$ which is the $v_{m}{ }^{-}$ torsion subgroup of M.

Theorem 4.10. Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of length n and let $m \geqslant n$. Let X be any $C W$ spectrum.
(i) The Boardman map $v_{m}{ }^{-1} B P J \rightarrow E(m, J) \wedge v_{m}{ }^{-1} B P J$ induces a Hurewicz monomorphism

$$
\widetilde{h}_{m}(X): \pi_{*}\left(v_{m}^{-1} B P J \wedge X\right) \rightarrow E(m, J)_{*}\left(v_{m}^{-1} B P J \wedge X\right)
$$

(ii) The Boardman map $B P J \rightarrow E(m, J) \wedge B P J$ induces a Hurewicz homomorphism

$$
h_{m}(X): \pi_{*}(B P J \wedge X) \rightarrow E(m, J)_{*}(B P J \wedge X)
$$

whose kernel is precisely the v_{m}-torsion subgroup of $B P J_{*} X=\pi_{*}(B P J \wedge X)$.
Proof. The latter part follows immediately from Theorem 4.9 and the isomorphism $E(m, J)_{*}(B P J \wedge X) \cong E(m, J)_{*} B P J \otimes B P J_{*} X$ (Lemma 3.5(ii)). Similarly, the first part follows from Lemma 4.6.

Corollary 4.11. Let J continue to be an invariant regular sequence of length n and let $m \geqslant n$. For any $C W$ spectrum $X,\left(v_{m}{ }^{-1} B P J\right)_{*} X=0$ if and only if $E(m, J)_{*} X=0$.

Proof. The "only if" statement follows from a Conner-Floyd type isomorphism:

$$
E(m, J)_{*} X \cong E(m)_{*} \otimes_{B P *} B P J_{*} X \cong E(m)_{*} \otimes_{v_{m}-1}{ }^{-1} B *=B P J_{*} X
$$

Its converse follows from Theorem 4.10(i) and the isomorphisms

$$
\begin{aligned}
E(m, J)_{*} X \otimes_{B P J_{*}} B P J_{*}\left(v_{m}^{-1} B P J\right) & \cong E(m, J)_{*}\left(X \wedge v_{m}{ }^{-1} B P J\right) \\
& \cong E(m, J)_{*}\left(v_{m}{ }^{-1} B P J \wedge X\right) .
\end{aligned}
$$

Corollary 4.12. Let J be a finite invariant regular sequence of length n. Let $m \geqslant n$. Let X be a connective $C W$ spectrum. If w. $\operatorname{dim}_{B P J *} B P J_{*} X \leqslant m-n$, then the Hurewicz homomorphism

$$
h_{m}(X): \pi_{*}(B P J \wedge X) \rightarrow E(m, J)_{*}(B P J \wedge X)
$$

is injective. (Cf. [6, Theorem 6.1].)
Proof. Proposition 3.7 and Theorem 4.10 (ii).

5. $B P J_{*} B P J$ and $B P J^{*} B P J$

Let A be an algebra over the ground ring R, N be an R-module, and M be an associative A-module. Then there is an isomorphism

$$
\theta: \operatorname{Hom}_{A}\left(A \otimes_{R} N, M\right) \rightarrow \operatorname{Hom}_{R}(N, M)
$$

defined by $\theta(f)=f(\eta \otimes 1)$ where $\eta: R \rightarrow A$ is the unit map. $\theta^{-1}(g)=\varphi(1 \otimes g)$
where $\varphi: A \otimes_{R} M \rightarrow M$ gives M 's A-module structure. (Adams [1, p. 320].)
Lemma 5.1. Let $h: M \rightarrow A \otimes_{R} N$ be an A-module homomorphism. If h is split epic as an R-module homomorphism, then it is also split epic as an A-module map.

Proof. Let the R-module map $f: A \otimes_{R} N \rightarrow M$ be a right inverse for h. Then $\theta^{-1}(f(\eta \otimes 1))$ is the desired A-module splitcing of h.

Lemma 5.2. Let C be a coalgebra over R, N be an R-module, and M be an associative C-comodule. Let $h: C \otimes_{R} N \rightarrow M$ be a C-comodule map. If h is split monic as an R-module homomorphism, then it is also split monic as a C-comodule map.

Proof. This is the formal dual of Lemma 5.1.
Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be a finite invariant regular sequence in $B P_{*}$. By Baas [4], there exists an associative left $B P$-module spectrum $B P J$ with pairing $\varphi: B P \wedge B P J \rightarrow B P J$ such that $\pi_{*} B P J=B P J_{*} \cong B P_{*} /\left(q_{0}, \cdots, q_{n-1}\right)$. Let $J_{m+1}=$ $\left\{q_{0}, \cdots, q_{m}\right\}, m<n . B P J_{m}$ and $B P J_{m+1}$ are related by a cofibration of $B P$-module spectra

$$
S^{d} B P J_{m} \xrightarrow{\varphi_{m}\left(q_{m} \wedge 1\right)} B P J_{m} \xrightarrow{j_{m}} B P J_{m+1} \xrightarrow{k_{m}} S^{d+1} B P J_{m} .
$$

Here d is the dimension of q_{m} in $B P_{*} . \quad \varphi_{m}: B P \wedge B P J_{m} \rightarrow B P J_{m}$ defines $B P J_{m}$'s $B P$-module structure; $\varphi_{m}\left(1 \wedge j_{m-1}\right)=j_{m-1} \circ \varphi_{m-1}$ and $\varphi_{n}=\varphi . \quad B P J_{0}=B P$ and $\varphi_{0}=m: B P \wedge B P \rightarrow B P$. Let

$$
j_{m+s, m}=j_{m+s-1} \circ \cdots \circ j_{m}: B P J_{m} \rightarrow B P J_{m+s}
$$

Let $\iota_{m}=j_{m, 0} \circ \iota: S^{0} \rightarrow B P J_{m}$ where $\iota: S^{0} \rightarrow B P$ is the unit for the Brown-Peterson spectrum.

The homomorphism

$$
\begin{aligned}
& \psi: B P J^{*}\left(B P J_{l} \wedge B P J_{m}\right) \xrightarrow{\left(\varphi_{l} \wedge \varphi_{m}\right)^{*}(1 \wedge T \wedge 1)^{*}} B P J^{*}\left(B P \wedge B P \wedge B P J_{l} \wedge B P J_{m}\right) \\
& \cong \cong B P J^{*}(B P \wedge B P) \hat{\otimes}_{B P J^{*}} B P J^{*}\left(B P J_{l} \wedge B P J_{m}\right)
\end{aligned}
$$

m kes $B P J^{*}\left(B P J_{l} \wedge B P J_{m}\right)$ into an associative $B P J^{*}(B P \wedge B P)$-comodule. (See Würgler [16].) $\varphi\left(1 \wedge j_{n, 0}\right)=j_{n, 0} \circ \varphi_{0}$ gives a distinguished element of $B P J^{*}(B P \wedge B P)$. A map $f: B P J_{l} \wedge B P J_{m} \rightarrow B P J$ is said to be primitive if $\psi[f]=\left[j_{n, 0} \circ \varphi_{0}\right] \otimes[f]$. In other words, $f\left(\varphi_{l} \wedge \varphi_{m}\right)(1 \wedge T \wedge 1)=\varphi\left(\varphi_{0} \wedge 1\right)(1 \wedge 1 \wedge f)$. We follow Wurgler in denoting the set of primitives of $B P J^{*}\left(B P J_{l} \wedge B P J_{m}\right)$ by $\operatorname{Pr} B P J^{*}\left(B P J_{l} \wedge B P J_{m}\right)$.

Remark 5.3. When $B P J_{l}=B P J_{m}=B P J$, a multiplication $\mu: B P J \wedge B P J \rightarrow$
$B P J$ in $B P J^{*}(B P J \wedge B P J)$ is primitive if and only if the following three conditions hold.
(i) $\mu(\varphi \wedge 1)=\varphi(1 \wedge \mu): B P \wedge B P J \wedge B P J \rightarrow B P J$
(ii) $\mu(\varphi \wedge 1)(T \wedge 1)=\mu(1 \wedge \varphi): B P J \wedge B P \wedge B P J \rightarrow B P J$
(iii) $\mu(1 \wedge \varphi)(1 \wedge T)=\varphi \circ T(\mu \wedge 1): B P J \wedge B P J \wedge B P \rightarrow B P J$
(The first two conditions imply the third.) Conditions (i), (ii), and (iii) give Araki-Toda's characterization of a quasi-associative multiplication [3].

Lemma 5.4. Let a multiplication $\mu: B P J \wedge B P J \rightarrow B P J$ be quasi-associative and let $\iota_{n}: S^{0} \rightarrow B P J_{n}=B P J$ be a unit for μ. Then the following diagram commutes.

Proof. Routine.
Proposition 5.5 (Würgler [16, Theorem 5.1]). Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of $B P_{*}$. For $0 \leqslant m \leqslant n$, there is a quasi-associative multiplication $\mu_{m}: B P J_{m} \wedge B P J_{m} \rightarrow B P J_{m}$ with unit $\iota_{m}: S^{0} \rightarrow B P J_{m}$ such that $j_{m-1} \circ \mu_{m-1}=\mu_{m}\left(j_{m-1} \wedge i_{m-1}\right)$ as maps $B P J_{m-1} \wedge B P J_{m-1} \rightarrow B P J_{m}$.

Proof. For $0 \leqslant m \leqslant n$, we construct primitive maps $\mu_{m}{ }^{\prime}: B P J_{m-1} \wedge B P J_{m} \rightarrow$ $B P J_{m}$ and $\mu_{m}: B P J_{m} \wedge B P J_{m} \rightarrow B P J_{m}$ such that all of the obvious compositions commute:
(i) $\mu_{m}{ }^{\prime}\left(1 \wedge j_{m-1}\right)=j_{m-1} \circ \mu_{m-1}$;
(ii) $\mu_{m}{ }^{\prime}\left(j_{m-1,0} \wedge 1\right)=\phi_{m}$;
(iii) $\mu_{m}\left(j_{m-1} \wedge 1\right)=\mu_{m}{ }^{\prime}$;
(iv) $\mu_{m}\left(1 \wedge j_{m, 0}\right)=\phi_{m} \circ T$
where $T: B P J_{m} \wedge B P \rightarrow B P \wedge B P J_{m}$ is the switching map. (Compare Lemma 5.4.) The proof is by induction on m. We sketch the inductive step.

Since $\eta_{R}\left(q_{l}\right) \in\left(q_{0}, \cdots, q_{l}\right) \cdot B P_{*} B P$, the cofibration

$$
\begin{equation*}
B P J_{l} \xrightarrow{j_{l}} B P J_{l+1} \xrightarrow{k_{l}} S^{d+1} B P J_{l+1} \tag{5.6}
\end{equation*}
$$

induces a split short exact sequence of $B P J_{m}^{*}$-modules, $0 \leqslant k, l+1 \leqslant m \leqslant n$.

$$
\begin{align*}
0 \rightarrow B P J_{m}^{*}\left(B P J_{k} \wedge B P J_{l}\right) & \rightarrow B P J_{m}^{*}\left(B P J_{k} \wedge B P J_{l+1}\right) \tag{5.7}\\
& \xrightarrow{\left(1 \wedge j_{l}\right)^{*}} B P J_{m}^{*}\left(B P J_{k} \wedge B P J_{l}\right) \rightarrow 0 .
\end{align*}
$$

We assume inductively that $B P J_{m}^{*}\left(B P J_{k} \wedge B P J_{l}\right) \cong B P J_{m}^{*}(B P \wedge B P) \otimes_{B P J_{m^{*}}} N$
for some $B P J_{m *}-$ module N. By Lemma 5.1, (5.7) splits as $B P J_{m}^{*}(B P \wedge B P)$ modules and the middle term of (5.7) has the desired inductive structure. By Lemma 5.2, (5.7) splits as $B P J_{m}^{*}(B P \wedge B P)$-comodules. Hence the functor $\operatorname{Pr}(-)$ preserves the exactness of (5.7). We first pick $\mu_{m}{ }^{\prime} \in \operatorname{Pr} B P J_{m}{ }^{*}\left(B P J_{m-1} \wedge\right.$ $\left.B P J_{m}\right)$ satisfying (i) and (ii), and next $\mu_{m} \in P r B P J_{m}{ }^{*}\left(B P J_{m} \wedge B P J_{m}\right)$ satisfying (iii) and (iv).

Quasi-associative multiplications $\mu: B P J \wedge B P J \rightarrow B P J$ with unit $\iota_{n}: S^{0} \rightarrow$ $B P J$ exist by Proposition 5.5. We assume that a choice of such a μ is fixed throughout this paper.

The cofibration (5.6) induces two split short exact sequences of $B P J_{*} \cong$ $B P J^{*}$-modules.

$$
\begin{align*}
& 0 \rightarrow B P J_{*} B P J_{l} \xrightarrow{j_{l}^{*}} B P J_{*} B P J_{l+1} \xrightarrow{k_{l}^{*}} B P J_{*} B P J_{l} \rightarrow 0 \tag{5.8}\\
& 0 \rightarrow B P J^{*} B P J_{l} \xrightarrow{k_{l}^{*}} B P J^{*} B P J_{l+1} \xrightarrow{j_{l}^{*}} B P J^{*} B P J_{l} \rightarrow 0 \tag{5.9}
\end{align*}
$$

Recall that $B P_{*} B P \cong B P_{*}\left[t_{1}, t_{2}, \cdots\right]$ where the indeterminate t_{i} is of dimension $2 p^{i}-2$. (Let $t_{0}=1$.) Thus $B P J_{*} B P \cong B P J_{*}\left[t_{1}, t_{2}, \cdots\right]$. An argument using Lemma 5.1, similar to that of the proof of Proposition 5.5, shows that $B P J_{*} B P J_{l}$ is a free left $B P J_{*} B P$-module. Let $A=\left(a_{0}, \cdots, a_{l-1}\right)$ be an l-tuple of 0 's and 1's. A free left $B P J_{*} B P$-basis of $B P J_{*} B P J_{l}$ is given by the symbols

$$
\partial^{A}=\partial_{0}^{a_{0} \cdots \partial_{l-1}{ }^{a_{l-1}}}
$$

of dimension $\sum_{j} a_{j}$ (dimension $\left(q_{j}\right)+1$). In (5.8), $j_{l^{*}}$ sends ∂^{A} to a symbol of the same name. We choose elements $\partial^{A} \partial_{l} \in B P J_{*} B P J_{l+1}$ so that $k_{l^{*}}\left(\partial^{A} \partial_{l}\right)=\partial^{A}$. Let $z^{E, A} \in B P J_{*} B P J$ be the element corresponding to $t_{1}{ }^{{ }_{1} \cdots t_{m}{ }^{e}{ }^{e} \partial^{A}}$ where $E=$ $\left(e_{1}, \cdots, e_{m}, 0, \cdots\right)$. Let $c: B P J_{*} B P J \rightarrow B P J_{*} B P J$ be the conjugation induced by interchange of the $B P J$ factors of $B P J \wedge B P J$.

Lemma 5.10. Let $J=\left\{q_{0}, \cdots, q_{n-1}\right\}$ be an invariant regular sequence of $B P_{*}$. A free $B P J_{*}$ basis for $B P J_{*} B P J$ is given by the elements $z^{E, A}$ where $A=$ $\left(a_{0}, \cdots, a_{n-1}\right)$ is a sequence of 0 's and 1 's. The left action of $B P_{*} B P$ on $B P J_{*} B P J$ is given by

$$
\begin{equation*}
t^{F} z^{E, A}=z^{E+F, A} \tag{5.11}
\end{equation*}
$$

$B P J_{*} B P J$ is free as a right $B P J_{*}$-module on the basis $c\left(z^{E, A}\right)$.
As explained in $\S 1,1 \wedge \iota_{n}: B P J \wedge S^{0} \rightarrow B P J \wedge B P J$ induces a coaction

$$
\psi_{x}: B P J_{*} X \rightarrow B P J_{*}(B P J \wedge X) \cong B P J_{*} B P J \otimes_{B P J_{*}} B P J_{*} X
$$

and we define elementary $B P J$ operations $s_{E, A}$ by the formula

$$
\begin{equation*}
\psi_{X}(x)=\sum_{B, A} c\left(z^{E, A}\right) \otimes s_{E, A}(x) . \tag{5.12}
\end{equation*}
$$

Since $B P J^{*} B P J$ is Hausdorff, each elementary $B P J$ operation

$$
s_{E, A}: B P J^{*}() \rightarrow B P J^{*+d}(),
$$

$d=\sum e_{i}\left(2 p^{i}-2\right)+\sum a_{j}\left(\operatorname{dim}\left(q_{j}\right)+1\right)$, is induced by a unique map of spectra $S_{E, A}$: $B P J \rightarrow S^{d} B P J$. By an induction (over $l \leqslant n$) using (5.9), one can prove:

Lemma 5.12. $B P J^{*} B P J$ is a direct product of copies of BPJ* indexed by the maps $S_{E, A}$. Each element $\theta \in B P J^{t} B P J$ has a unique representation as a convergent infinite sum

$$
\theta=\sum_{B, A} q_{E, A} S_{E, A}, \quad q_{E, A} \in B P J^{t-d}
$$

where d is the dimension of $S_{E, A}$.
Remark 5.13. Another induction using the exactness of (5.9) shows that

$$
S_{0,0} \circ j_{n, l}-j_{n, l}=\sum_{A \neq 0} q_{A} S_{0, A^{\circ}} j_{n, l}
$$

for $0 \leqslant l \leqslant n$ and $q_{A} \in B P J^{*}$. This establishes (1.8).
Remark 5.14. The composition $S_{E, A^{\circ}} S_{F, B}$ has a representation $\sum q_{G, C} S_{G, C}$ by Lemma 5.12. Here the dimension of $S_{G, C}$ must be greater than or equal to the sum of the dimensions of $S_{E, A}$ and $S_{F, B}$. Since $s_{E, A^{\circ} S_{F, B}=S_{E, A^{*}}{ }^{\circ} S_{E, B *}=}=$ $\left(S_{E, A^{\circ}} S_{F, B}\right)_{*},(1.9)$ is es ablished. In general, the relations given by $S_{E, A^{\circ}} S_{F, B}$ will be even more frightful than the ones given by $r_{E} \circ r_{F}$ in $B P$ theory. In particular: $S_{0,0} \circ S_{0,0}$ will not be $S_{0,0}$ unless the q_{A} 's in Remark 5.13 happen to be all zero.

References

[1] J.F. Adams: Lectures on generalized cohomology, Category Theory, Homology Theory and their Applications-III. Lecture Notes in Mathematics No. 99, 1-138. Springer-Verlag, Berlin (1969).
[2] J.F. Adams: Stable homotopy and generalized homology, University of Chicago Press, Chicago (1974).
[3] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories, I. Osaka J. Math. 2 (1965), 71-115.
[4] N.A. Baas: On bordism theory of manifolds zuith singularities. Math. Scand. 33 (1973), 279-302.
[5] D.C. Johnson and W.S. Wilson: BP operations and Morava's extraordinary K-theories. Math. Z. 144 (1975), 55-75.
[6] D.C. Johnson and W.S. Wilson: Projective dimension and Brown-Peterson homology. Topology 12 (1973), 327-353.
[7] P.S. Landweber: Annihilator ideals and primitive elements in complex bordism, Illinois J. Math. 17 (1973), 273-284.
[8] P.S. Landweber: Associated prime ideals and Hopf algebras. J. Pure and Applied Algebra 3 (1973), 43-58.
[9] P.S. Landweber: Homological properties of comodules over $\mathrm{MU}_{*}(\mathrm{MU})$ and BP_{*} (BP). Amer. J. Math. 98 (1976), 591-610.
[10] P.S. Landweber: Invariant ideals in Brown-Peterson homology. Duke Math. J. 42 (1975), 499-505.
[11] H.R. Miller and D.C. Ravenel: Morava stabilizer algebras and the localization of Novikov's E_{2}-term. Duke Math. J. 44 (1977), 433-447.
[12] D.C. Ravenel: Localization with respect to certain periodic homology theories. Lecture given at Northwestern University, March 1977.
[13] D.C. Ravenel: The structure of $\mathrm{BP}_{*} \mathrm{BP}$ modulo an invariant prime ideal. Topology 15 (1976), 149-154.
[14] L. Smith: On realizing complex bordism modules II. Amer. J. Math. 93 (1971) 226-263.
[15] U. Würgler: Cobordism theories of unitary manifolds with singularities and formal group laws. Math. Z. 150 (1976), 239-260.
[16] U. Würgler: On products in a family of cohomology theories associated to the invariant prime ideals of $\pi *$ (BP). Comment. Math. Helv. 52 (1977), 457-481.
[17] Z. Yosimura: Prosective dimension of Brown-Peterson homology woth modulo ($p, v_{1}, \cdots, v_{n-1}$) coefficients. Osaka J. Math. 13 (1976), 289-309.

David Copeland Johnson
Department of Mathematics University of Kentucky Lexington, Kentucky 40506 U.S.A.

Zen-ichi Yosimura
Department of Mathematics
Osaka City University
Sugimoto-cho, Sumiyoshi-ku
Osaka 558, Japan

[^0]: * Research supported in part by NSF Grant MCS76-06526.

