Mabuchi, T. Osaka J. Math. 17 (1980), 35-40

WEAKLY REGULAR MODULES

Tsuguo MABUCHI

(Received December 21, 1978) (Revised February 8, 1979)

Let R be a ring with an identity. Following Ramamurthi [2], we call R a left weakly regular ring if R satisfies one of the following equivalent conditions: 1) $a \in RaRa$ for every $a \in R$; 2) R/a is right R-flat for any two-sided ideal a of R; 3) $a^2 = a$ for any left ideal a of R. In this paper, we shall introduce the notion of a weakly regular (right) module: A right R-module M is called a weakly regular module if $m \in Hom_R(M, M)(m) Hom_R(M, R)(m) = \{\sum_i s_i(m)f_i(m) |$ $s_i \in Hom_R(M, M), f_i \in Hom_R(M, R)\}$ for every $m \in M$. Needless to say, R is a left weakly regular ring if and only if R_R is weakly regular. We shall give a list of equivalent conditions for M_R to be weakly regular including the condition that M_R is locally projective and $Ta = Ta^2$ for any left ideal a of R, where T is the trace ideal of M_R (Theorem 7). We shall show also that if M_R is a finitely generated (abbr. f.g.) weakly regular module, then $Hom_R(M, M)$ is a left weakly regular ring (Theorem 8). The author would like to express his thanks to Prof. H. Tominaga for his helpful suggestion.

1. Preliminaries

Throughout this paper, R will represent an associative ring with 1, and M a unitary right R-module. Every (right or left) module is unitary and unadorned \otimes means \otimes_R , unless otherwise stated. We set $M^* = \operatorname{Hom}_R(M, R)$ and $S = \operatorname{Hom}_R(M, M)$. For any S-R-submodule N of M, we set $T_N = \sum_{f \in M^*} f(N)$ $= \operatorname{Hom}_R(M, R)(N)$. $T = T_M$ is the trace ideal of M_R . Given $_RA$, $U_S(_SN \otimes A)$ will denote the set of all S-submodules of $N \otimes A$. Further, $U_{T_N}(_RA)$ will denote the set of all R-submodules A' of A with $T_NA' = A'$. Especially, $U_T(_RR)$ is the set of all left ideals a of R such that Ta = a. Finally, let $\Gamma_R(M, A): M \otimes A \to \operatorname{Hom}_R(_RM^*, _RA)$ be the unique map such that $\Gamma_R(M, A) \cdot (m \otimes a)(U) = U(m)a$ for $m \in M$, $a \in A$ and $U \in M^*$ (see [1]).

A right R-module M is called a weakly regular module (abbr. w. regular module) if $m \in S(m)M^*(m)$ for every $m \in M$. A submodule N_R of M_R is said to be *ideal pure* if $N \cap M\mathfrak{a} = N\mathfrak{a}$ for every left ideal \mathfrak{a} of R, or equivalently, $i \otimes 1: N \otimes R/\mathfrak{a} \to M \otimes R/\mathfrak{a}$ is monic for every left ideal \mathfrak{a} of R, where $i: N \to M$ is the inclusion (see [1]).

Proposition 1. The following conditions are equivalent:

1) $\Gamma_R(M, A)$ is monic for every RA.

2) $m \in MM^{*}(m)$ for every $m \in M$.

3) If $\beta: G_R \to M_R$ is a map such that $\beta(G)$ is ideal pure in M, then for each x_1, x_2, \dots, x_n in G there exists some $\phi: M_R \to G_R$ such that $\beta \phi \beta(x_i) = \beta(x_i)$ for $i=1, 2, \dots, n$.

4) For each $m_1, m_2, \dots, m_k \in M$ there exist some $x_1, x_2, \dots, x_n \in M$ and $f_1, f_2, \dots, f_n \in M^*$ such that $m_i = \sum_i x_i f_i(m_i)$ for $i = 1, 2, \dots, k$.

5) The lattice homomorphism $U_T(R) \rightarrow U_s(M)$; $a \rightarrow Ma$, is bijective.

Proof. See [1, Theorem 3.2] and [4, Theorems 2.1 and 3.1].

A right *R*-module M is said to be *locally projective* (abbr. 1. *projective*) if M satisfies any of the equivalent conditions in Proposition 1.

One may remember that every projective module is 1. projective and every 1. projective module is flat [1].

2. Weakly regular modules

We shall begin this section with the following.

Proposition 2. If M_R is w. regular, then there hold the following:

- (1) M_R is 1. projective.
- (2) If N is an S-R-submodule of M, then N_R is w.regular.
- (3) If R is a regular ring, then M_R is regular in the sense of Zelmanowitz [3].

(4) If $S=S_1\oplus S_2\oplus \cdots \oplus S_n$ with simple rings S_i , then $M=S_1(M)\oplus S_2(M)\oplus \cdots \oplus S_n(M)$ and $S_i(M)$ is S-R-simple.

Proof. (1), (2) and (3) are immediate from Proposition 1 and [4].

(4) Obviously, M is the direct sum of S-R-submodules $S_i(M)$. Let m be an arbitrary non-zero element of $S_i(M)$. By the usual way, mM^* may be regarded as a subset of S. Since $S_jS(mM^*)=S_j(mM^*)=0$ if $i \neq j$, $S(mM^*)$ is an ideal of S included in S_i . By hypothesis, $SmM^*(m)$ contains non-zero m. Hence the non-zero ideal $S(mM^*)$ coincides with S_i , and $SmR \supseteq SmM^*(m)$ $=S_i(M)$, proving that $S_i(M)$ is S-R-simple.

EXAMPLE 1. Let R be a left w. regular ring. Then, by Proposition 2(2), every two-sided ideal of R is w. regular as a right R-module.

Proposition 3. (1) M_R is w. regular if and only if for any S-submodule $_sN$ of M there holds $N=NM^*(N)$.

(2) Let $M_i(i \in I)$ be right R-modules. Then $\sum_{i \in I} \oplus M_i$ is w. regular if and only if each M_i is w. regular.

Proof. (1) is evident from the definition.

(2) We assume $M = \Sigma_i \oplus M_i$ is w. regular. Let $p_i: M \to M_i$ be the projection, and take an arbitrary element $m_i \in M_i$. As is easily seen, $p_i Sp_i = \operatorname{Hom}_R(M_i, M_i)$ and $\operatorname{Hom}_R(M, R)(m_i) = \operatorname{Hom}_R(M_i, R)(m_i)$. Now, recalling that M is w.regular, we obtain $m_i = p_i m_i \in p_i S(m_i) \operatorname{Hom}_R(M, R)(m_i) = p_i S(p_i m_i) \operatorname{Hom}_R(M_i, R)(m_i) = \operatorname{Hom}_R(M_i, M_i)(m_i) \operatorname{Hom}_R(M_i, R)(m_i)$. The converse is almost evident.

Lemma 4. Let α be in the center of S. Then there exists an element β in the center of S with $\alpha\beta\alpha=\alpha$ if and only if $M=\alpha M \oplus \ker \alpha$.

Proof. See [3, Lemma 3.3].

Proposition 5. If M_R is w.regular, then there hold the following:

- (1) S is a semiprime ring.
- (2) The center of S is a regular ring.

Proof. The proofs of (1) and (2) are similar to those of [3, (3.2)] and [3, Theorem 3.4], respectively. Here, we shall prove (2) only. Let α be in the center of S. According to Lemma 4, it suffices to show that $M = \alpha M \oplus \ker \alpha$. For each $m \in M$, we have $\alpha m = \sum_i s_i(\alpha m) f_i(\alpha m)$ with some $s_i \in S$ and $f_i \in M^*$. Setting $t = \sum_i s_i(mf_i) \in S$, we obtain $\alpha m = \alpha^2 tm$, so that $m - \alpha tm \in \ker \alpha$. Since $m = \alpha tm + (m - \alpha tm)$, it follows $M = \alpha M + \ker \alpha$. If $\alpha m' (m' \in M)$ is in ker α then, as we have seen above, there exists some $t' \in S$ such that $\alpha m' = \alpha^2 t'm' =$ $t'\alpha^2 m' = 0$. Hence, $M = \alpha M \oplus \ker \alpha$.

Lemma 6. If M_R is 1.projective and N_R is an ideal pure submodule of M, then for each $n_1, \dots, n_k \in N$ there exist $x_1, \dots, x_n \in N$ and $f_1, \dots, f_n \in M^*$ such that $n_i = \sum_j x_j f_j(n_i)$ $(i=1, \dots, k)$.

Proof. As is well known, there exists an *R*-homomorphism of a free *R*-module G_R onto N_R . By Proposition 1 (3), there exists $\phi \in \operatorname{Hom}_R(M, G)$ such that $\beta \phi(n_i) = n_i$ $(i=1, \dots, k)$. Choose a finitely generated free direct summand *F* of G_R including $\phi(n_i)$ $(i=1, \dots, k)$. Let y_1, \dots, y_n be a free *R*-basis of *F*, and $y = \sum_j y_j v_j(y)$ with coordinate functions v_j . Let $\pi: G_R \to F_R$ be the projection, $\theta = \pi \phi$ and $\alpha: F_R \to N_R$ the restriction of β . If we set $x_j = \alpha(y_j)$ and $f_j = v_j \theta$, then $\sum_j x_j f_j(n_i) = \alpha \sum_j y_j v_j \theta(n_i) = \alpha \theta(n_i) = \alpha \pi \phi(n_i) = \beta \phi(n_i) = n_i$.

Now, we are at a position to state our first principal theorem.

Theorem 7. The following conditions are equivalent:

- 1) M_R is a w.regular module.
- 2) M_R is 1.projective and every S-R-submodule of M is ideal pure.
- 3) M_R is 1.projective and SmR_R is ideal pure for each $m \in M$.
- 4) For any S-R-submodule N of M, N_R is flat and each left R-module A

the lattices $U_{T_N}(_RA)$ and $U_s(_sN\otimes A)$ are isomorphic via the inverse assignments $\psi: U_{T_N}(_RA) \rightarrow U_s(_sN\otimes A); A' \mapsto N\otimes A'$ and $\Phi: U_s(_sN\otimes A) \rightarrow U_{T_N}(A); _sB \mapsto \{\sum_i f_i(n_i)a_i | f_i \in M^*, n_i \otimes a_i \in B\}.$

5) For any S-R-submodule N of M, the lattice isomorphism $U_{T_N}(R) \rightarrow U_s(N_s)$; $a \mapsto Na$, is surjective.

6) M_R is 1. projective and b=ab for each pair $a, b \in U_T(R)$ such that $a \supseteq b$ and a is a two sided ideal of R.

7) M_R is 1. projective and $Ta = Ta^2$ for each left ideal a of R.

Proof. 1) \Rightarrow 2). M_R is 1.projective by Proposition 2(1). Take an arbitrary S-R-submodule N of M. Let b be an arbitrary left ideal, and consider the diagram

(7.1)
$$N \otimes R/\mathfrak{b} \xrightarrow{i \otimes 1} M \otimes R/\mathfrak{b} \xrightarrow{\Gamma_R(M, R/\mathfrak{b})} \operatorname{Hom}_R(_R M^*, _R(R/\mathfrak{b}))$$

where $i: N \to M$ is the inclusion. If $(i \otimes 1)(n \otimes \overline{1}) = 0$ for some $n \otimes \overline{1} \in N \otimes R/b$, then $\Gamma_R(M, R/b) (i \otimes 1)(n \otimes \overline{1})(M^*) = \overline{0}$, and hence $M^*(n) \subseteq b$. We note that $N \otimes R/b \cong N/Nb$ and $n \otimes \overline{1}$ corresponds to n + Nb under this isomorphism. Since M_R is w. regular, there holds $n \in SnM^*(n) = SnRM^*(n) \subseteq Nb$, which means that $n \otimes \overline{1} = 0$. Hence, $i \otimes 1$ is monic, and N is ideal pure.

2) \Rightarrow 3). Trivial.

3) \Rightarrow 1). Let *n* be an arbitrary element of *M*, and consider the following diagram

(7.2)
$$SnR \otimes R/M^{*}(n) \xrightarrow{i \otimes 1} M \otimes R/M^{*}(n) \xrightarrow{\Gamma_{R}(M, R/M^{*}(n))} Hom_{R}(RM^{*}, R(M^{*}(n))).$$

Then $\Gamma_R(M, R/M^*(n))(i\otimes 1)(n\otimes \overline{1})(M^*) = M^*(n)\overline{1} = \overline{0}$. Since SnR_R is ideal pure and M_R is 1. projective, $\Gamma_R(M, R/M^*(n))(i\otimes 1)$ is monic by Proposition 1 (1). Hence $n\otimes \overline{1}=0$. Now, recalling that $n\otimes \overline{1}$ corresponds to $n+SnM^*(n)$ under the isomorphism $SnR\otimes R/M^*(n) \simeq SnR/SnM^*(n)$, we see that $n \in SnM^*(n)$.

1) \Rightarrow 4) (cf. [4]). Let N be an arbitrary S-R-submodule of M. Then N_R is flat by Proposition 2(1), (2) and the remark at the end of §1. Hence, for each $A' \in U_{T_N}(A)$, $N \otimes A'$ is included naturally in $N \otimes A$ as an S-module, and so ψ is well-defined. Next, we shall show that Φ is well-defined. Since M^* is a left R-module, $L = \{\sum_i f_i(n_i)a_i | f_i \in M^*, n_i \otimes a_i \in B\}$ is a left R-module. By 1), 2) and Lemma 6, for each $\sum_i f_i(n_i)a_i \in L$, we have $n_i = \sum_{p=1}^i x_p g_p(n_i)$ with some $x_p \in N$ and $g_p \in M^*$. Then $\sum_i f_i(n_i)a_i = \sum_i f_i(\sum_p x_p g_p(n_i))a_i = \sum_{i,p} f_i(x_p)g_p(n_i)a_i \in T_N L$. Hence, $L = T_N L$ and L is in $U_{T_N}(A)$. We have therefore seen that Φ is well-defined. Now, we shall show that $\Phi \psi(A') = A'$ for each $A' \in U_{T_N}(A)$. Obviously, $\Phi \psi(A')$ is included in A'. On the other hand, $A' = T_N A' \subseteq \Phi \psi(A')$, and hence $\Phi \psi(A') = A'$. Finally, we shall show that $\psi \Phi(B) = B$ for each S- submodule B of $N \otimes A$. Since $\psi \Phi(B) = N \otimes L$ with $L = \{\sum_i f(n_i)a_i | f_i \in M^*, n_i \otimes a_i \in B\}$, it suffices to prove that $N \otimes L = B$. Every element of $N \otimes L$ is a finite sum of $x \otimes (\sum_i f_i(n_i)a_i)$ with $x \in N$, $f_i \in M^*$ and $n_i \otimes a_i \in B$. Since $x \otimes (\sum_i f_i(n_i)a) = \sum_i xf_i(n_i) \otimes a_i = \sum_i (xf_i)(n_i \otimes a_i) \in B$ by $xf_i \in S$, we see that $N \otimes L \subset B$. Conversely, let $b = \sum_i n_i \otimes a_i$ be an arbitrary element of B. Then again by 1), 2) and Lemma 6, there exist $x_p \in N$ and $g_p \in M^*$ such that $n_i = \sum_p x_p g_p(n_i)$ for all *i*. It is immediate that $b = \sum_i \sum_p x_p g_p(n_i) \otimes a_i = \sum_p x_p \otimes (\sum_i g_p(n_i)a_i)$ and $x_p \otimes \sum_i g_p(n_i)a_i = (x_p g_p)b \in B$ by $x_p g_p \in S$. This means that we may assume from the beginning that every $n_i \otimes a_i$ is in B. Hence, $b = \sum_p x_p \otimes (\sum_i g_p(n_i)a_i) \in N \otimes L$, whence it follows $B \subseteq N \otimes L$.

4) \Rightarrow 5). Trivial.

5) \Rightarrow 1). Given $m \in M$, the map $U_{T_{SmR}}(_{R}R) \rightarrow U_{S}(SmR)$; $a \mapsto Sma$, is surjective by assumption. There exists therefore some $a \in U_{T_{SmR}}(_{R}R)$ such that $Sm = Sma = Sm(T_{SmR}a) = SmM^{*}(SmR)a = SmM^{*}(Sma) = SmM^{*}(m)$, which shows that M_{R} is w.regular.

1) \Rightarrow 6). By Proposition 2(1), M_R is 1.projective. Let $a, b \in U_T(_R R)$ be such that $a \supseteq b$ and a is a two-sided ideal of R, and let N be the S-R-submodule Ma of M. Since N is ideal pure by 2), there holds $Mb \cap N = Nb = Mab$. Combining this with $a \supseteq b$, we obtain $Mb = Mb \cap N = Mab$. Now, by Proposition 1 (5) we readily obtain b = ab.

6) \Rightarrow 5). If N is an S-R-submodule of M, then $N=M\mathfrak{a}$ with some $\mathfrak{a} \in U_T(R)$ by Proposition 1 (5). Since $\mathfrak{a}=T\mathfrak{a}=M^*(M)\mathfrak{a}=M^*(N)$ and N is a right R-module, \mathfrak{a} is a two-sided ideal. It suffices therefore to show that each $L \in U_S(SN)$ there exists some $\mathfrak{b} \in U_{T_N}(R)$ such that $L=N\mathfrak{b}$. Again by Proposition 1 (5), $L=M\mathfrak{b}$ with some $\mathfrak{b} \in U_T(R)$. Then, $\mathfrak{a}=T\mathfrak{a}=M^*(N)\supseteq M^*(L)$ $=M^*(M)\mathfrak{b}=T\mathfrak{b}=\mathfrak{b}$. Hence, $\mathfrak{b}=\mathfrak{a}\mathfrak{b}=T_N\mathfrak{b}$ by hypothesis, and so $L=M\mathfrak{b}=M\mathfrak{a}\mathfrak{b}=N\mathfrak{b}$ with $\mathfrak{b} \in U_T(R)$.

6) \Rightarrow 7). If a is a left ideal of R, then the two-sided ideal TaR includes Ta. As is easily seen, Ta and TaR are in $U_T(_RR)$. Hence, $Ta=(TaR)Ta \subseteq Ta^2$ by assumption, proving $Ta=Ta^2$.

7) \Rightarrow 6). Let $a, b \in U_R(_TR)$ be such that $a \supseteq b$ and a is a two-sided ideal of R. Then, $b=Tb=Tb^2 \subseteq Tab=ab$, that is, b=ab.

EXAMPLE 2. If R is not left w.regular, then R_R is not w.regular but (locally) projective. Next, let R be the ring Z of rational integers, and M=Z/(p), p a prime. Then $M^*=0$. Hence, M_R is not w.regular but every S-R-submodule of M is trivially ideal pure. According to Theorem 7, above examples enable us to see that the local projectivity of M_R and the property that each S-R-submodule of M is ideal pure are independent.

The next corresponds to a theorem of Ware concerning regular modules (see [3, Corollary 4.2]).

T. MABUCHI

Theorem 8. If M_R is f.g. w.regular, then S is a left w.regular ring.

Proof. Let $M=m_1R+\dots+m_pR$, and $a=a_1$ an arbitrary element of S. By hypothesis, $a_1m_1=\sum_{i=1}^l g_i(a_1m_1)f_i(a_1m_1)$ with some $g_i\in S$ and $f_i\in M^*$. Setting $b_1=\sum_i g_ia_1(m_1f_i)a_1\in Sa_1Sa_1$, we obtain $a_1(m_1)=b_1(m_1)$, and so ker (a_1-b_1) $\supseteq m_1R$. Repeating the above argument for $a_2=a_1-b_1$ instead of a_1 , we find $b_2\in Sa_2Sa_2$ ($\subseteq Sa_1Sa_1$) such that ker $(a_2-b_2)\supseteq m_2R$. Since $a_3=a_2-b_2\in Sa_2$, there holds further ker $a_3\supseteq m_1R+m_2R$. Continuing the above procedure, we obtain eventually $a_1=a, \dots, a_p, a_{p+1}\in Sa_1$ and $b_1, \dots, b_p\in Sa_1Sa_1$ such that $a_{k+1}=a_k-b_k$ and ker $a_{k+1}\supseteq m_1R+\dots+m_kR$ ($k=1, 2, \dots, p$). Since $a_{p+1}=0$ by ker $a_{p+1}\supseteq$ $m_1R+\dots+m_pR=M$, it follows $a=b_1+\dots+b_p\in SaSa$, completing the proof.

Corollary 9. Let N be an S-R-submodule of M. If M_R is w.regular and $M|N_R$ is f.g., then $Hom_R(M|N, M|N)$ is a left w.regular ring.

Proof. By Proposition 2 (1) and Proposition 1 (5), $N=M\mathfrak{a}$ with some $\mathfrak{a} \in U_T(RR)$. Since $\mathfrak{a}=T\mathfrak{a}=M^*(M)\mathfrak{a}=M^*(N)$ and N is a right R-module, \mathfrak{a} is a two-sided ideal of R. It is easy to see that $M/M\mathfrak{a}$ is a w.regular module as an f.g. right R/\mathfrak{a} -module. Then $\operatorname{Hom}_R(M/N, M/N) = \operatorname{Hom}_{R/\mathfrak{a}}(M/M\mathfrak{a}, M/M\mathfrak{a})$ is a left w.regular ring by Theorem 8.

EXAMPLE 3. Let R be a commutative regular ring with countably infinite set of orthogonal idempotents e_i . We consider $M = \sum_{i=1}^{\infty} \bigoplus R_i$; $R_i = R$. As usual, S can be regarded as the ring of column finite matrices over R with matrix units e_{ij} . If $a = \sum_{i=1}^{\infty} e_i e_{1i}$, then Sa consists of all elements of the form $\sum_{j=1}^{n} \sum_i a_j e_i e_{ji}$. Now, we can easily see that $a \notin SaSa$, which means that S is not left w.regular.

References

- G.S. Garfinkel: Universally torsionless and trace modules, Trans. Amer. Math. Soc. 215 (1976), 119-144.
- [2] V.S. Ramamurthi: Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321.
- [3] J.M. Zelmanowitz: Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355.
- [4] B. Zimmermann-Huisgen: Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233-245.

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan