ON THE COMMUTATIVITY OF THE RADICAL OF THE GROUP ALGEBRA OF AN INFINITE GROUP

Yasushi NINOMIYA

(Received February 16, 1979)

Throughout K will represent an algebraically closed field of characteristic $p>0$, and G a group. Let G^{\prime} be the commutator subgroup of G. The Jacobson radical of the group algebra $K G$ will be denoted by $J(K G)$. In case G is a finite group and p is odd, D.A.R. Wallace [6] proved that $J(K G)$ is commutative if and only if G is abelian or $G^{\prime} P$ is a Frobenius group with complement P and kernel G^{\prime}, where P is a Sylow p-subgroup of G. On the other hand, when we consider the case $p=2$, by the following theorem, we may restrict our attention to the case $|P| \geqq 4$.

Theorem 1 ([5]). Let G be a group of order $p^{a} m$. where $(p, m)=1$. Then $J(K G)^{2}=0$ if and only if $p^{a}=2$.

In the previous paper [3], we obtained the following
Theorem 2. Let $p=2$, and G a non-abelian group of order $2^{a} m$, where m is odd and $a \geqq 2$. Then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) $\quad G^{\prime}$ is of odd order and $\left|P \cap P^{x}\right| \leqq 2$ for each $x \in G^{\prime} P-P$.
(3) G^{\prime} is of odd order and $C_{G^{\prime} P}(s) \mid\langle s\rangle$ is either a 2-group or a Frobenius group with complement $P \mid\langle s\rangle$ for every involution s of P.
(4) G^{\prime} is of odd order and each block of $K G^{\prime} P$, except the principal block, is of defect 1 or 0 .

In case G is an infinite group and p is odd, D.A.R. Wallace [8] gave also a necessary and sufficient condition for $J(K G)$ to be commutative. Let G be an infinite non-abelian group. We suppose that $J(K G)$ is non-trivial. By [8], Theorem 1.1, if $p=2$ and $J(K G)$ is commutative, then the following three cases can arise:
(α) G^{\prime} is an infinite group and $J(K G)^{2}=0$.
(β) G^{\prime} is a finite group of odd order.
(γ) G^{\prime} is a finite group of even order and the order of a Sylow 2-group P of G is not greater than 4.

If (α) holds, then $J(K G)$ is trivially commutative. Next, we consider the cases (β) and (γ). If $|P|=2$ then $J\left(K G^{\prime} P\right)^{2}=0$ by Theorem 1. Since $G / G^{\prime} P$ is abelian and has no elements of order 2, we have $J(K G)=J\left(K G^{\prime} P\right) K G$ by [4], Theorem 17.7, and so $J(K G)^{2}=J\left(K G^{\prime} P\right)^{2} K G=0$. In this paper, we shall therefore investigate the cases (β) and (γ) under the hypothesis that P contains at least four elements, and by making use of Theorem 2 we shall give the conditions for $J(K G)$ to be commutative.

At first, we shall prove the next lemma, which plays an important role in studying the case (β).

Lemma 1. Let $p=2$. Assume that G^{\prime} is finite and of odd order. If $J(K G)$ is commutative, then any Sylow 2-subgroup of G is finite.

Proof. Let Q be a finite subgroup of a Sylow 2-subgroup P of G such that $|Q| \geqq 4$. Suppose $H=G^{\prime} Q$ is abelian. Since Q is characteristic in H, Q is a normal subgroup of G, and so $J(K Q) K G \subset J(K G)$. Let $s, t(\neq 1)$ be distinct elements of Q, and x, y elements of G suth that $x y \neq y x$. Then, since Q is contained in the center of G ([7], Lemma 2.6) and (1-s) $x(1-t) y=(1-t)$. $y(1-s) x$, we have $(1+s+t+s t) x y x^{-1} y^{-1}=1+s+t+s t$. But, this is impossible. Hence, H is a non-abelian group. Since H is a finite normal subgroup of G, $J(K H)$ is contained in $J(K G)$, and so $J(K H)$ is commutative. Hence, by Theorem $2,\left|Q \cap Q^{x}\right| \leqq 2$ for each $x \in H^{\prime} Q-Q$. If $Q \cap Q^{x}=1$ for all $x \in H^{\prime} Q-Q$, then $H^{\prime} Q$ is a Frobenius group with complement Q, and therefore $\left|H^{\prime}\right|=1+$ $k|Q|$ for some positive integer k, which implies that $|Q|<\left|H^{\prime}\right| \leqq\left|G^{\prime}\right|$. Next, if $Q \cap Q^{x}=\langle s\rangle$ for some $x \in H^{\prime} Q-Q$ and some involution s of Q then $s x s^{-1} x^{-1} \in$ $H^{\prime} \cap Q=1$, and so $C_{H^{\prime} Q}(s) \neq Q$. Hence, by Theorem 2, $C_{H^{\prime} Q}(s) /\langle s\rangle$ is a Frobenius group with complement $Q /\langle s\rangle$. Then we have $|N|=1+k^{\prime}|Q /\langle s\rangle|$ for some positive integer k^{\prime}, where N is the Frobenius kernel of $C_{Q^{\prime} H}(s) \mid\langle s\rangle$. This implies that $|Q|\langle s\rangle\left|<|N| \leqq\left|H^{\prime}\right| \leqq\left|G^{\prime}\right|\right.$. Hence, $| Q|<2| G^{\prime} \mid$. Thus, the order of any finite subgroups of the abelian Sylow 2-subgroup P is not greater than $2\left|G^{\prime}\right|$. This is only possible if P itself is finite.

Remark 1. In case G^{\prime} is finite, if a Sylow p-subgroup of G is finite then any two Sylow p-subgroups of G are conjugate. In fact, $G / G^{\prime} P$ has no elements of order p, and so every Sylow p-subgroup of G is contained in $G^{\prime} P$.

Given a finite subset S of G, we denote by \hat{S} the element $\sum_{x \in S} x$ of $K G$.
Lemma 2. Let G be a non-abelian group with G^{\prime} finite. Assume that P contains at least three elements. If $J(K G)$ is commutative, then $J\left(K G^{\prime} P\right)$ is commutative and $\left(G^{\prime} P\right)^{\prime}=O_{p^{\prime}}\left(G^{\prime}\right)$.

Proof. We put $H=G^{\prime} P$. Suppose $J(K G)$ is commutative. If G^{\prime} is a p^{\prime}-group, then P is a finite group by Lemma 1 and [8], Theorem 1.1. If $\left|G^{\prime}\right|$
is divisible by p, then $p=2$ or 3 and $|P|=4$ or 3 by [8], Theorem 1.1 and our assumption. In either case, H is a finite normal subgroup of G. Thus, $J(K H)$ is commutative as a subset of $J(K G)$. Hence, by [6], Theorem 2, H is a p-nilpotent group with an abelian Sylow p-subgroup, and so H^{\prime} is a p^{\prime} group. Since G^{\prime} is finite, by [7], Lemma 2.5 (2) we have $\hat{G}^{\prime} K G \supset J(K G)^{2}$. It is easy to see that $J(K G) \supset J(K H) \supset J\left(K H^{\prime} P\right) \supset \hat{H}^{\prime} J(K P)$. Since H^{\prime} is a normal subgroup of G, the above facts imply that $\hat{G}^{\prime} K G \supset \hat{H}^{\prime 2} J(K P)^{2}=$ $\hat{H}^{\prime} J(K P)^{2} \ni \hat{H}^{\prime} \hat{P}$. Thus, we have $H^{\prime}\left[G^{\prime} \cap P\right]=G^{\prime}$, whence it follows $H^{\prime}=$ $O_{p}{ }^{\prime}\left(G^{\prime}\right)$.

For a finite group H, we denote by $O(H)$ the largest normal subgroup of odd order in H. The next lemma plays an important role in studying the case (γ).

Lemma 3. Let $p=2$, and G a non-abelian group with G^{\prime} finite. Assume that $|P|=4$ and $O\left(G^{\prime}\right)=1$. Then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) $G=C_{G}(P)$ and
(i) $\left|G^{\prime}\right|=2$, or
(ii) $G^{\prime}=P$ and P is elementary abelian.

Proof. (1) $\Rightarrow(2)$: Suppose $J(K G)$ is commutative. Since G^{\prime} is a finite normal subgroup of $G, J\left(K G^{\prime}\right)$ is commutative as a subset of $J(K G)$. Hence, by [6], Theorem 2 and $O\left(G^{\prime}\right)=1, G^{\prime}$ is included in P, and so P is a normal subgroup of G. Thus, we have $G=C_{G}(P)$ by [7], Lemma 2.6. Now, we assume that $G^{\prime}=P$. Since $\hat{G}^{\prime} K G \supset J(K G)^{2} \supset J(K P)^{2}$ by Lemma 2.5 (2), we have $J(K P)^{2}=K \hat{P}$. Hence, P is elementary abelian.
$(2) \Rightarrow(1)$: Since G / P is abelian and has no elements of order 2, we have $J(K G)=J(K P) K G$ by [4], Theorem 17.7. We claim here that $J(K P)^{2} \subset \hat{G}^{\prime} K G$. In case P is elementary abelian, the assertion is trivial by $G^{\prime} \subset P$. In case P is a cyclic group generated by $a, G^{\prime}=\left\langle a^{2}\right\rangle$ by our assumption, and hence $J(K P)^{2}=\left(1+a^{2}\right) K P \subset \hat{G}^{\prime} K G$. Now, by making use of this fact we can prove that $J(K G)$ is commutative. In fact, for $u, v \in P-1$ and $x, y \in G$, we have $(1-u) x(1-v) y=(1-v)(1-u) x y=(1-v)(1-u) x y x^{-1} y^{-1} y x=(1-v)(1-u) y x=$ $(1-v) y(1-u) x$, which implies that $J(K G)$ is commutative.

Now, concerning the cases (β) and (γ) we shall give the conditions for $J(K G)$ to be commutative. At first, concerning the case (β), we have the following:

Theorem 3. Let $p=2$, and G a non-abelian group. Assume that P contains at least four elements. If G^{\prime} is a finite group of odd order, then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) P is a finite group with $\left(G^{\prime} P\right)^{\prime}=G^{\prime}$, and for every involution s of P, $C_{G^{\prime} P}(s) /\langle s\rangle$ is either a 2-group or a Frobenius group with complement $P /\langle s\rangle$.

Next, concerning the case (γ), we have the following:
Theorem 4. Let $p=2$, and G a non-abelian group. Assume that $|P|=4$. If G^{\prime} is a finite group of order $2 m$ with odd m, then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(i) $\left|G^{\prime}\right|=2$ and $G=C_{G}(P)$, or
(ii) $1 \neq\left(G^{\prime} P\right)^{\prime}=O\left(G^{\prime}\right) \supset[G, P]$, and for every involution s of P, $C_{G^{\prime} P^{\prime}}(s) /\langle s\rangle$ is either a 2-group or a Frobenius group with complement $P /\langle s\rangle$.

Theorem 5. Let $p=2$, and G a non-abelian group. Assume that $|P|=4$. If G^{\prime} is a finite group of order $4 m$ with odd m, then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) P is elementary abelian and
(i) $G^{\prime}=P$ and $G=C_{G}(P)$, or
(ii) $1 \neq G^{\prime \prime}=O\left(G^{\prime}\right) \supset[G, P]$, and for every involution s of $P, C_{G^{\prime}}(s) /\langle s\rangle$ is either a 2-group or a Frobenius group with complement $P \mid\langle s\rangle$.

In order to prove these theorems, we require a result of K. Morita [2]: If G is a finite p-nilpotent group and B is a block of $K G$ with defect group D, then B is isomorphic to the matrix ring $(K D)_{f}$ for some f. Especially, this implies the following:

Theorem 6. Let $p=2$, and G a finite 2-nilpotent group. If B is a block of $K G$ of defect 1 , then $J(B)^{2}=0$.

Now, we shall prove Theorems 3, 4 and 5 together.
Proof of Theorems 3-5. We put $N=O\left(G^{\prime}\right)$, and $e=|N|^{-1} \hat{N}$.
Suppose $J(K G)$ is commutative. In case G^{\prime} is of odd order, P is finite by Lemma 1. Since $J\left(K G^{\prime} P\right)$ is commutative and $\left(G^{\prime} P\right)^{\prime}=G^{\prime}$ (Lemma 2), we obtain (2) of Theorem 3 by Theorem 2. Next, we assume that G^{\prime} is of even order. If $G^{\prime} P$ is abelian, then $1=\left(G^{\prime} P\right)^{\prime}=N$ by Lemma 2. Hence, by Lemma $3 G$ satisfies the condition (2)(i) of Theorem 4 or that of Theorem 5. In case $G^{\prime} P$ is non-abelian, since e is a central idempotent of $K G, K G e(\cong K G / N)$ is a direct summand of $K G$, and so $J(K G / N)$ is commutative. Furtheremore, since $J\left(K G^{\prime} P\right)$ is commutative and $\left(G^{\prime} P\right)^{\prime}=N$ (Lemma 2), the rest of the verification of (2) in Theorems 4 and 5 is easy by Lemma 3 and Theorem 2.

Now, we shall prove the converse implication. We put $H=G^{\prime} P$. Then we have $J(K G)=e J(K G) \oplus(1-e) J(K H) K G$ by $J(K G)=J(K H) K G$ ([4], Theorem 17.7). Firstly, $e J(K G)$ is commutative. In fact, $e J(K G) \cong J(K G / N)$ by $e K G \cong K G / N$. If G^{\prime} is of odd order then G / N is abelian; if G^{\prime} is of even order then the assertion is immediate by Lemma 3. Secondly, since $J(K H)$ is commutative and $H^{\prime}=N,(1-e) K H$ is a direct sum of blocks of defect 1 or 0 (Theorem 2), and so $(1-e) J(K H)^{2}=0$ by Theorem 6. Then $[(1-e) J(K H) K G]^{2}=$ $(1-e) J(K H)^{2} K G=0$, and hence $(1-e) J(K H) K G$ is commutative.

By Theorem 3 and [3], Corollary, we readily obtain the following:
Corollary 1. Let $p=2$, and G a non-abelian group with G^{\prime} finite. If $J(K G)$ is commutative, then P is a finite cyclic group or a finite abelian group of type (2, 2^{a-1}).

Corollary 2. Let G be a non-abelian group with G^{\prime} finite. Assume that P contains at least three elements. If $J(K G)$ is commutative, then G is a semi-direct product of $O_{p^{\prime}}\left(G^{\prime}\right)$ by $N_{G}(P)$.

Proof. If $J(K G)$ is commutative then G^{\prime} is a p-nilpotent group. Hence, one can easily see that $G=G^{\prime} N_{G}(P)=O_{p^{\prime}}\left(G^{\prime}\right) N_{G}(P)$. Since $J\left(K G^{\prime} P\right)$ is commutative and $\left(G^{\prime} P\right)^{\prime}=O_{p^{\prime}}\left(G^{\prime}\right)\left(\right.$ Lemma 2), by [3], Remark we have $O_{p^{\prime}}\left(G^{\prime}\right) \cap$ $N_{G}(P)=\left(G^{\prime} P\right)^{\prime} \cap N_{G^{\prime} P}(P)=1$.

Remark 2. In Theorems 4 and 5, the condition $O\left(G^{\prime}\right) \supset[G, P]$ may be replaced by the condition $N_{G}(P)=C_{G}(P)$. In fact, if $O\left(G^{\prime}\right) \supset[G, P]$ then $\left[N_{G}(P), P\right] \subset O\left(G^{\prime}\right) \cap P=1$, and so $N_{G}(P)=C_{G}(P)$. Conversely, suppose $N_{G}(P)$ $=C_{G}(P)$. Since G^{\prime} is a 2-nilpotent group by $\left(G^{\prime} P\right)^{\prime}=O\left(G^{\prime}\right)$ (Theorem 4) or by $G^{\prime \prime}=O\left(G^{\prime}\right)$ (Theorem 5), we have $[G, P]=\left[G^{\prime} N_{G}(P), P\right]=\left[O\left(G^{\prime}\right) C_{G}(P), P\right]$ $\subset O\left(G^{\prime}\right)$.

In what follows, we shall give examples which satisfy the conditions of Theorems 3, 4 and 5, respectively (cf. also Corollary 1).

Example 1 (cf. [1], Example). Let $G=Z \times H$, where Z is an infinite cyclic group and $H=\left\langle a, b \mid a^{4}=b^{3}=1, a b a^{-1}=b^{-1}\right\rangle$, Then $G^{\prime}=\langle b\rangle$ and G has a cyclic Sylow 2-subgroup $P=\langle a\rangle$. Hence $G^{\prime} P=H$. It is easy to see thar G satisfies the condition (2) of Theorem 3.

Next, we consider $G=Z \times D$, where $D=\left\langle a, b \mid a^{6}=b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ is a dihedral group of order 12. Then $G^{\prime}=D^{\prime}$ and a Sylow 2-subgroup P of G is an elementary abelian group $\left\langle a^{3}, b\right\rangle$ of order 4. Hence $G^{\prime} P=D$. Again we can easily see that G satisfies the condition (2) of Theorem 3.

Example 2 (cf. [7], Example 6.3). Let C be the complex field. Let U
be the subgroup of $G L(2, C)$ generated by $x=\left(\begin{array}{rr}2 & 0 \\ 0 & -2\end{array}\right)$ and $y=\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)$. We put $z=x y x^{-1} y^{-1}=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.

Let H be the group defined in Example 1. Identifying z with a^{2}, we construct the central product G of U and H with respect to $\langle z\rangle$. As is easily seen, H includes a Sylow 2 -subgroup P of G. Hence P is a cyclic group of order 4. Since $G^{\prime}=\langle z, b\rangle$, we have $G^{\prime} P=H$, whence it follows $\left(G^{\prime} P\right)^{\prime}=H^{\prime}=$ $\langle b\rangle=O\left(G^{\prime}\right)$. Since $[G, P]=[H, P] \subset H^{\prime}, G$ satisfies the condition (2) (ii) of Theorem 4. Furtheremore, $G / O\left(G^{\prime}\right)$ satisfies the condition (2) (i) of Theorem 4, and this is isomorphic to the subgroup of $G L(2, C)$ generated by x, y and $\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & \sqrt{-1}\end{array}\right)$.

Next, let D be the dihedral group of order 12 in Example 1. Identifying z with a^{3}, we construct the central product G of U and D with respect to $\langle z\rangle$. We can see that D includes a Sylow 2 -subgroup P of G. Hence P is an elementary abelian group of order 4. Since $G^{\prime}=\left\langle z, a^{2}\right\rangle$, we have $G^{\prime} P=D$, whence it follows $\left(G^{\prime} P\right)^{\prime}=D^{\prime}=\left\langle a^{2}\right\rangle=O\left(G^{\prime}\right)$. Since $[G, P]=[D, P] \subset D^{\prime}$, again G satisfies the condition (2) (ii) of Theorem 4. Furtheremore, $G / O\left(G^{\prime}\right)$ satisfies the condition (2) (i) of Theorem 4, and this is isomorphic to the direct product of U and a group of order 2 .

Example 3. Let U be the infinite group defined in Example 2, and Q an elementary abelian group of order 9 generated by b_{1} and b_{2}. We define a homomorphism $\theta: U \rightarrow G L(2,3)(\cong A u t Q)$ by

$$
\theta(x)=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \theta(y)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Now, let V be the semi-direct product of Q by U with respect to θ. Then the following relations hold:

$$
x b_{1} x^{-1}=b_{1}, \quad x b_{2} x^{-1}=b_{2}^{-1}, \quad y b_{1} y^{-1}=b_{2}, \quad y b_{2} y^{-1}=b_{1}
$$

Now let $U_{0}=\left\langle x_{0}, y_{0}\right\rangle$ be a group which is isomorphic to U, where $x_{0} \leftrightarrow x, y_{0} \leftrightarrow y$. We put $G=U_{0} \times V$, and $z_{0}=x_{0} y_{0} x_{0}{ }^{-1} y_{0}{ }^{-1}$. Then the elementary abelian group $\left\langle z_{0}\right\rangle \times\langle z\rangle$ is a Sylow 2-subgroup P of G. Since $z b_{1} z^{-1}=b_{1}^{-1}, z b_{2} z^{-1}=b_{2}^{-1}$ and $G^{\prime}=\left\langle z_{0}\right\rangle \times\left\langle z, b_{1}, b_{2}\right\rangle$, we have $G^{\prime \prime}=\left\langle b_{1}, b_{2}\right\rangle=O\left(G^{\prime}\right)=[G, P]$. As is easily seen, $C_{G^{\prime}}(z)=C_{G^{\prime}}\left(z_{0} z\right)=P$ and $C_{G^{\prime}}\left(z_{0}\right) /\left\langle z_{0}\right\rangle$ is a Frobenius group with complement $P /\left\langle z_{0}\right\rangle$. Hence, G satisfies the condition (2) (ii) of Theorem 5. Furtheremore, $G / O\left(G^{\prime}\right)(\cong U \times U)$ satisfies the condition (2) (i) of Theorem 5.

Acknowledgement. The author is indebted to Dr. K. Motose for his stimulant discussion and helpful advice during the preparation of this work.

References

[1] S. Koshitani: Remarks on the commutativity of the radicals of group algebras, to appear.
[2] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku A 4 (1951), 155-172.
[3] K. Motose and Y. Ninomiya: On the commutativity of the radical of the group algebra of a finite group, Osaka J. Math. 17 (1980), 23-26.
[4] D.S. Passman: Infinite group rings, Dekker, 1971.
[5] D.A.R. Wallace: Group algebras with radicals of square zero, Proc. Glasgow Math. Assoc. 5 (1962), 158-159.
[6] -: On the commutativity of the radical of a group algebra, ibid. 7 (1965), 1-8.
[7] -: On the commutative and central conditions on the Jacobson radical of the group algebra of a group, Proc. London Math. Soc. 19 (1969), 385-402.
[8] —: II, J. London Math. Soc. 4 (1971), 91-99.

Department of Mathematics Shinshu University
Matsumoto 390, Japan

