ON THE COMMUTATIVITY OF THE RADICAL OF THE GROUP ALGEBRA OF A FINITE GROUP

Kaoru MOTOSE and Yasushi NINOMIYA

(Received December 27, 1978)

Let K be an algebraically closed field of characteristic $p>0$, and G a finite group of order $p^{a} m$ where $(p, m)=1$ and $a>0$. We denote by $J(K G)$ the radical of the group algebra $K G$. In case p is odd, D.A.R. Wallace [6] proved that $J(K G)$ is commutative if and only if G is abelian or $G^{\prime} P$ is a Frobenius group with complement P and kernel G^{\prime}, where P is a Sylow p-subgroup of G and G^{\prime} the commutator subgroup of G. On the other hand, in case $p=2, \mathrm{~S}$. Koshitani [1] has recently given a necessary and sufficient condition for $J(K G)$ to be commutative. In this paper, we shall give alternative conditions for $J(K G)$ to be commutative.

If $J(K G)$ is commutative, then G is a p-nilpotent group and a Sylow p subgroup of G is abelian ([6], Theorem 2). We may therefore restrict our attention to a p-nilpotent group. Now, we put $N=O_{p^{\prime}}(G)$. For a central primitive idempotent ε of $K N$, we put $G_{\mathrm{g}}=\left\{g \in G \mid g \varepsilon g^{-1}=\varepsilon\right\}$. Let $a_{i}(i=1$, $2, \cdots, s)$ be a complete residue system of $G\left(\bmod G_{\varepsilon}\right)$

$$
G=G_{\mathrm{e}} a_{1} \cup G_{\mathrm{\varepsilon}} a_{2} \cup \cdots \cup G_{\mathrm{e}} a_{s}
$$

Then K. Morita [2] proved the following:
Theorem 1. If G is a p-nilpotent group, then $e=\sum_{i=1}^{s} \varepsilon^{a_{i}}$ is a central primitive idempotent of $K G$ and $K G e$ is isomorphic to the matrix ring $\left(K P_{\mathrm{z}}\right)_{f}$ of degree f over $K P_{\mathrm{e}}$ for some f, where $P_{\mathrm{\varepsilon}}$ is a Sylow p-subgroup of G_{q}.

In what follows, for a subset S of G, we denote by \hat{S} the element $\sum_{x \in S} x$ of $K G$. By [5], Theorem, it holds that $J(K G)^{2}=0$ if and only if $p^{a}=2$. When this is the case, $J(K G)$ is trivially commutative. Therefore we may restrict our attention to the case $p^{a} \geqq 3$. The following proposition contains [1], Theorem 2.

Proposition. If G is a non-abelian group and $p^{a} \geqq 3$, then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) $\left(G^{\prime} P\right)^{\prime}=G^{\prime}$ and $J\left(K G^{\prime} P\right)$ is commutative.
(3) (i) G^{\prime} is a p^{\prime}-group, and
(ii) each block of $K G^{\prime} P$, which is not the principal block, is of defect 0 if $p \neq 2$ and of defect 1 or 0 if $p=2$.
(4) (i) G^{\prime} is a p^{\prime}-group, and
(ii) for each $x \in G^{\prime}-1, C_{G^{\prime} P}(x)$ is a p^{\prime}-group if $p \neq 2$ and its order is not divisible by 4 if $p=2$.

Proof. $(1) \Rightarrow(2)$: We put $H=G^{\prime} P$. Since H is a normal subgroup of G, we have $J(K H) \subset J(K G)$. Hence $J(K H)$ is commutative, and so, by [6], Theorem 2, $\left|H^{\prime}\right|$ is not divisible by p. Since $J(K G)$ is commutative and $J(K G) \supset J(K H) \supset J\left(K H^{\prime} P\right) \supset \hat{H}^{\prime} J(K P)$, by [6], Lemma 3, we have $\hat{G}^{\prime} K G \supset$ $J(K G)^{2} \supset \hat{H}^{\prime 2} J(K P)^{2}=\hat{H}^{\prime} J(K P)^{2} \ni \hat{H}^{\prime} \hat{P}$. Thus, we have $G^{\prime} \subset H^{\prime} P$. Since G^{\prime} is a p^{\prime}-group by [6], Theorem 2, we have $G^{\prime}=H^{\prime}$.
$(2) \Rightarrow(3)$: Since $J\left(K G^{\prime} P\right)$ is commutative and $\left(G^{\prime} P\right)^{\prime}=G^{\prime}, G^{\prime}$ is a p^{\prime}-group by [6], Theorem 2. Now, we put $e_{1}=\left|G^{\prime}\right|^{-1} \hat{G}^{\prime}$, and $e_{2}=1-e_{1}$. Then e_{1} and e_{2} are central idempotents of $K G^{\prime} P$. Thus we have $J\left(K G^{\prime} P\right)=e_{1} J\left(K G^{\prime} P\right)$ $\oplus e_{2} J\left(K G^{\prime} P\right)$. Since $J\left(K G^{\prime} P\right)$ is commutative, by [6], Lemma 3, we have $J\left(K G^{\prime} P\right)^{2}=e_{1} J\left(K G^{\prime} P\right)^{2} \oplus e_{2} J\left(K G^{\prime} P\right)^{2} \subset\left(\widehat{G^{\prime} P}\right)^{\prime} K G^{\prime} P=\hat{G}^{\prime} K G^{\prime} P=e_{1} K G^{\prime} P$. Therefore $e_{2} J\left(K G^{\prime} P\right)^{2}=0$, and so by Theorem 1, every non-simple block of $e_{2} K G^{\prime} P$ is isomorphic to the matrix ring over $K D$, where K is of characteristic 2 and D is a group of order 2. Hence $e_{2} K G^{\prime} P$ is a direct sum of blocks of defect 0 or of defect 1 or 0 according as p is odd or 2 . Since $e_{1} K G^{\prime} P\left(=e_{1} K P\right)$ is the principal block, we obtain (3).
$(3) \Rightarrow(4)$: This is easy by [3], Theorem 4.
$(4) \Rightarrow(3)$ is trivial.
$(3) \Rightarrow(1)$: Since $G^{\prime} P$ is a normal subgroup of G and $\left[G: G^{\prime} P\right]$ is not divisible by p, we have $J(K G)=J\left(K G^{\prime} P\right) K G$. We put $e_{1}=\left|G^{\prime}\right|^{-1} \hat{G}^{\prime}$, and $e_{2}=$ $1-e_{1}$. Then e_{1} and e_{2} are central idempotents of $K G$ and $J(K G)=e_{1} J\left(K G^{\prime} P\right)$. $K G \oplus e_{2} J\left(K G^{\prime} P\right) K G$. Since $e_{1} J\left(K G^{\prime} P\right) K G \subset \hat{G}^{\prime} K G, e_{1} J\left(K G^{\prime} P\right) K G$ is a central ideal of $K G$ by [4], Lemma 5. By Theorem 1, every block of $e_{2} K G^{\prime} P$ is isomorphic to the matrix ring over $K D$, where D is a p-group. From our assumption, every non-simple block of $e_{2} K G^{\prime} P$ has the radical of square zero. Hence $e_{2}\left[J\left(K G^{\prime} P\right) K G\right]^{2}=e_{2} J\left(K G^{\prime} P\right)^{2} K G=0$, and so $e_{2} J\left(K G^{\prime} P\right) K G$ is commutative. Thus, $J(K G)$ is commutative.

Remark. The condition (4) of Proposition for p odd is equivalent to the condition of Wallace's result ([6]) that $G^{\prime} P$ is a Frobenius group with complement P and kernel G^{\prime}.

Now, in case $p=2$, we shall give the conditions for $J(K G)$ to be commutative.

Theorem 2. Assume that $p=2,2^{a} \geqq 4$ and $G^{\prime} \neq 1$. Then the following conditions are equivalent:
(1) $J(K G)$ is commutative.
(2) G^{\prime} is of odd order and $\left|P \cap P^{h}\right| \leqq 2$ for every $h \in G^{\prime} P-P$.
(3) G^{\prime} is of odd order and $C_{G^{\prime} P}(s) \mid\langle s\rangle$ is either a 2-group or a Frobenius group with complement $P /\langle s\rangle$ for every involution s of P.

Proof. $(1) \Rightarrow(2)$: Suppose that $J(K G)$ is commutative. Then, by Proposition, G^{\prime} is of odd order. Let h be an arbitrary element of $G^{\prime} P-P$, and x an arbitrary element of $P \cap P^{h}$. Then $h x h^{-1} x^{-1} \in P \cap G^{\prime}=1$, and so $x \in C_{G^{\prime} P}(h)$. Thus, $P \cap P^{h} \subset C_{G^{\prime} P}(h)$. Since we may assume that $h \in G^{\prime}-1$, we obtain $\left|P \cap P^{h}\right| \leqq 2$ by Proposition.
$(2) \Rightarrow(3):$ Let s be an arbitrary involution of P such that $C_{G^{\prime} P}(s) \neq P$. Then $P \cap P^{x}=\langle s\rangle$ for $x \in C_{G^{\prime} P}(s)-P$, and so $C_{G^{\prime} P}(s) /\langle s\rangle$ is a Frobenius group with complement $P /\langle s\rangle$.
(3) $\Rightarrow(1)$: Let x be an element of $G^{\prime}-1$, and S a Sylow 2 -subgroup of $C_{G^{\prime} P}(x)$. Suppose that $S \neq 1$. Then $S \subset P^{u}$ for some $u \in G^{\prime} P$, and $x \in C_{G^{\prime} P}(S) \subset$ $C_{G^{\prime} P}(s)$ for every involution s of S. Hence, $C_{G^{\prime} P}(s)$ is not a 2 -group, and so $C_{G^{\prime} P}(s) \mid\langle s\rangle$ is a Frobenius group with complement $P^{u} \mid\langle s\rangle$. Thus, we have $S \subset P^{u} \cap P^{u x}=\langle s\rangle$, and hence $\left|C_{G^{\prime} P}(x)\right|$ is not divisible by 4, which implies (1) by Proposition.

Corollary. Assume that $p=2,2^{a} \geqq 4$ and $G^{\prime} \neq 1$. If $J(K G)$ is commutative, then a Sylow 2-subgroup of G is a cyclic group or an abelian group of type (2, 2^{a-1}).

Proof. Suppose that $J(K G)$ is commutative. Then, by Theorem 2, $\left|P \cap P^{h}\right| \leqq 2$ for every $h \in G^{\prime} P-P$. If $P \cap P^{h}=1$ for all $h \in G^{\prime} P-P$, then $G^{\prime} P$ is a Frobenius group with complement P and kernel G^{\prime}. Hence P is cyclic. On the other hand, if $P \cap P^{h}=\langle s\rangle$ for some $h \in G^{\prime} P-P$ and some involution s of P, then $h s h^{-1} s^{-1} \in P \cap G^{\prime}=1$, and so $h \in C_{G^{\prime} P}(s)$ and $h \notin P$. Therefore $C_{G^{\prime} P}(s)$ properly contains P. Hence, $C_{G^{\prime} P}(s) \mid\langle s\rangle$ is a Frobenius group with complement $P /\langle s\rangle$ by the condition (3) of Theorem 2. Hence $P \mid\langle s\rangle$ is cyclic, and so P is a cyclic group or an abelian group of type ($2,2^{a-1}$).

Remark. In case G is a non-abelian group and $p^{a} \geqq 3$, S. Koshitani [1] proved that if $J(K G)$ is commutative, then $N_{G}(P)$ is abelian. This is included in the following proposition: Let G be a non-abelian group, and $p^{a} \geqq 3$. If $J(K G)$ is commutative then G is a semi-direct product of G^{\prime} by (abelian) $N_{G}(P)$.

Proof. It is easy to see $G=G^{\prime} N_{G}(P)$. Suppose that $J(K G)$ is commutative. Let x be a p^{\prime}-element of $N_{G^{\prime} P}(P)$. Since $G^{\prime} P$ is a p-nilpotent group, $N_{G^{\prime} P}(P)$ is the direct product of P and a normal p^{\prime}-subgroup, and so $C_{G^{\prime} P}(x)$ contains P. Hence, by Proposition (4), we have $x=1$, which implies that $G^{\prime} \cap N_{G}(P)=1$.

References

[1] S. Koshitani: Remarks on the commutativity of the radicals of group algebras, Glasgow Math. J. 20 (1979), 63-68.
[2] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku A 4 (1951), 177-194.
[3] M. Osima: On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan 24 (1942), 1-9.
[4] D.A.R. Wallace: Group algebras with central radicals, Proc. Glasgow Math. Assoc. 5 (1962), 103-108.
[5] -: Group algebras with radicals of square zero, ibid. 5 (1962), 158-159.
[6] -: On the commutativity of the radical of a group algebra, ibid. 7 (1965), 1-8.

Department of Mathematics Shinshu University
Matsumoto 390, Japan

