ON THE NUMBER OF LATTICE POINTS IN THE SQUARE $|x|+|y| \leqq u$ WITH A CERTAIN CONGRUENCE CONDITION

Yosнiнiко YAMAMOTO*)

(Received December 11, 1978)
0. Introduction. Let $a(u ; p, q)$ denote the number of lattice points $(x, y) \in Z^{2}$ such that (i) $|x|+|y| \leqq u$ (ii) $x+p y \equiv 0(\bmod q)$, where u, p, and q are given positive integers. It is easy to see that $a(u ; p, q)$ is determined only by p modulo q, if q is fixed. Let p^{\prime} be another positive integer. We always assume $(p, q)=\left(p^{\prime}, q\right)=1$ in the following, where (,) means the greatest common divisor. It is easy to see that we have $a(u ; p, q)=a\left(u ; p^{\prime}, q\right)$ for every positive integer u if $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$. We will prove, in the present paper, that the converse is valid:

Theorem 1. Suppose $a(u ; p, q)=a\left(u ; p^{\prime}, q\right)$ for every positive integer u. Then $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.

Our problem is related with a problem in differential geometry, and gives an answer to it. Consider a 3-dimensional lens space with fundamental group of order q. We ask whether the spectrum of the Laplacian characterizes the space as a riemannian manifold. This geometric problem can be reduced to a problem in number theory. A special case of our theorem, where q is of the form l^{n} or $2 \cdot l^{n}$ (l a prime number), has been shown (cf. Ikeda-Yamamoto [3]). Now our Theorem 1 gives a complete affirmative answer to the above geometric problem (see Section 7 below).

If a lattice point (x, y) satisfies the conditions (i) and (ii), so does the point $(-x,-y)$. Denote by $b(u ; p, q)$ the number of lattice points (x, y) such that (i') $x \geqq 0$ and $x+|y|=u$ (ii) $x+p y \equiv 0(\bmod q)$. Then we see easily that Theorem 1 is equivalent to

Theorem 2. Suppose $b(u ; p, q)=b\left(u ; p^{\prime}, q\right)$ for every positive integer u. Then $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.

We introduce rational functions $F_{j}(X)(0 \leqq j \leqq q-1)$;

$$
F_{j}(X)=\frac{1}{\left(1-\zeta^{j} X\right)\left(1-\zeta^{p j} X\right)}+\frac{1}{\left(1-\zeta^{j} X\right)\left(1-\zeta^{-p j} X\right)}
$$

[^0]where $\zeta=e^{2 \pi i / q}$, a primitive $q-t h$ root of unity. The function $F_{j}(X)$ has the following expansion in X;
\[

$$
\begin{aligned}
F_{j}(X) & =\left(\sum_{x=0}^{\infty} \zeta^{j x} X^{x}\right)\left(\sum_{y=0}^{\infty} \zeta^{p j y} X^{y}\right)+\left(\sum_{x=0}^{\infty} \zeta^{j x} X^{x}\right)\left(\sum_{y=0}^{\infty} \zeta^{-p j y} X^{y}\right) \\
& =\sum_{x, y=0}^{\infty} \zeta^{j(x+p y)} X^{x+y}+\sum_{x, y=0}^{\infty} \zeta^{j(x-p y)} X^{x+y}
\end{aligned}
$$
\]

Put $G(X)=\sum_{j=0}^{q-1} F_{j}(X) . \quad$ Since $\sum_{j=0}^{q-1} \zeta^{j x}=q$ if $x \equiv 0(\bmod q),=0$ otherwise; we see easily that the power series expansion of $G(X)$ is given by

$$
G(X)=2 q+q \sum_{u=1}^{\infty} X^{q u}+q \sum_{u=1}^{\infty} b(u ; p, q) X^{u} .
$$

Define $F_{j}^{\prime}(X)$ and $G^{\prime}(X)$ in the same way, replacing p by p^{\prime}. Then, theorem 2 is equivalent to

Theorem 3. If $G(X)=G^{\prime}(X)$, then we have $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.
We shall prove theorem 3 in the rest of the paper.

1. Residues of $\boldsymbol{G}(\boldsymbol{X})$. By the definition, we see $G(X)$ has a pole of order at most two at $X=1, \zeta, \cdots, \zeta^{q-1}$. The point $X=\zeta^{k}$ is the pole of order two if and only if $k \equiv \pm k p(\bmod q)$ i.e. $k \equiv 0\left(\bmod r_{1}\right)$ or $k \equiv 0\left(\bmod r_{2}\right)$, where we put $r_{1}=\frac{q}{(p-1, q)}$ and $r_{2}=\frac{q}{(p+1, q)}$. Clearly $(p-1, p+1, q)=1$ or 2 according as q is odd or even. We put

$$
\left\{\begin{array}{l}
(p-1, q)=\varepsilon u_{1} \tag{1-1}\\
(p+1, q)=\varepsilon u_{2}
\end{array}\right.
$$

then (u_{1}, u_{2})=1 and $q=\varepsilon u_{1} u_{2} r$, where $\varepsilon=1$ if q is odd, $\varepsilon=2$ if q is even. The singular part of Laurent expansion of $G(X)$ at $X=\zeta^{-k}$ is as follows;

$$
\left\{\begin{array}{l}
\frac{2}{\left(1-\zeta^{k} X\right)^{2}} \quad\left(u_{1} r \mid k \text { and } u_{2} r \mid k\right), \tag{1-2}\\
\frac{1}{\left(1-\zeta^{k} X\right)^{2}}+\left(\frac{1}{1-\zeta^{-k(p+1)}}+\frac{1}{1-\zeta^{-k(s+1)}}\right) \frac{1}{1-\zeta^{k} X} \\
\frac{\left(u_{1} r X k \text { and } u_{2} r \mid k\right),}{\left(1-\zeta^{k} X\right)^{2}}+\left(\frac{1}{1-\zeta^{k(p-1)}}+\frac{1}{1-\zeta^{k(s-1)}}\right) \frac{1}{1-\zeta^{k} X} \\
\left(\frac{1}{1-\zeta^{k(p-1)}}+\frac{1}{1-\zeta^{k(s-1)}}+\frac{1}{1-\zeta^{-k(p+1)}}+\frac{1}{1-\zeta^{-k(s+1)}}\right) \frac{1}{1-\zeta^{k} X} \\
\left(u_{1} r X k \text { and } u_{2} r X k\right),
\end{array}\right.
$$

where s is an integer such that $p s \equiv 1(\bmod q)$, which is fixed in the following.
Lemma 1 (Chowla [2], Baker-Birch-Wirsing [1]). Let c_{1}, \cdots, c_{q-1} be rational numbers such that $c_{j}=0$ if $(j, q) \neq 1$ and $c_{j}=-c_{q-j}(j=1, \cdots, q-1)$. If

$$
\begin{equation*}
\sum_{j=1}^{q-1} \frac{c_{j}}{1-\zeta^{j}}=0 \tag{1-3}
\end{equation*}
$$

then $c_{j}=0$ for all j.
Proof. Operating the automorphism $\sigma_{k}: \zeta \mapsto \zeta^{k}$ of the q-th cyclotomic field $Q(\zeta)$ over Q to (1-3), we get

$$
\begin{equation*}
\sum_{j=1}^{q-1} \frac{c_{j}}{1-\zeta^{j k}}=0 \quad \text { for every } k, \quad(k, q)=1 \tag{1-4}
\end{equation*}
$$

We can canonically extend the sequence c_{1}, \cdots, c_{q-1} to an infinite sequence $\left\{c_{j}\right\}_{j \in Z}$ periodically with period q, satisfying $c_{j}=0$ if $(j, q) \neq 1$ and $c_{-j}=-c_{j}$. Then, from (1-4), we have

$$
\begin{equation*}
\sum_{j=1}^{q-1} \frac{c_{j k}}{1-\zeta^{j}}=0 \quad \text { for } k \in \boldsymbol{Z} \tag{1-5}
\end{equation*}
$$

Let χ be a Dirichlet character modulo q and put $d_{j}=\sum_{k=1}^{q-1} \chi(k) c_{j k}$. Then we get

$$
\begin{align*}
& d_{j}=\bar{\chi}(j) d_{1} \text { and } \tag{1-6}\\
& \begin{aligned}
\sum_{j=1}^{q-1} \frac{d_{j}}{1-\zeta^{j}} & =\sum_{j=1}^{q-1} \frac{1}{1-\zeta^{j}} \sum_{k=1}^{q-1} \chi(k) c_{j k} \\
& =\sum_{k=1}^{q-1} \chi(k) \sum_{j=1}^{q-1} \frac{c_{j k}}{1-\zeta^{j}} \\
& =0
\end{aligned} \tag{1-7}
\end{align*}
$$

Clearly $d_{1}=0$ if χ is even; $\chi(-j)=\chi(j)$. In case χ is odd; $\chi(-j)=-\chi(j)$; we have, from (1-6),

$$
\begin{align*}
\sum_{j=1}^{q-1} \frac{d_{j}}{1-\zeta^{j}} & =d_{1} \sum_{j=1}^{q-1} \frac{\bar{\chi}(j)}{1-\zeta^{j}} \tag{1-8}\\
& =d_{1} \sum_{j=1}^{q-1} \bar{X}(j)\left(\frac{1}{2}+\frac{1}{2} \cot \frac{j \pi}{q}\right) \\
& =\frac{d_{1}}{2} \sum_{j=1}^{q-1} \bar{X}(j) \cot \frac{j \pi}{q} \\
& =\frac{q d_{1}}{\pi} L(1, \bar{\chi}),
\end{align*}
$$

where $L(s, \bar{\chi})$ is the Dirichlet's L-function. Since $L(1, \bar{\chi}) \neq 0$, by Dirichlet's theorem, we get, from (1-7) and (1-8), that $d_{1}=0$ in case χ is odd, too. There-
fore $\sum_{j=1}^{q-1} \chi(j) c_{j}=0$ for any character χ, hence $c_{j}=0$ for every j. q.e.d.
Corollary. The $\frac{1}{2} \varphi(q)$ values of cotangent $\cot \frac{k \pi}{q}, 0<k<\frac{q}{2}$ and $(k, q)=1$, are linearly independent over Q.

In fact, since $\cot \frac{k \pi}{q}=\frac{i}{1-\zeta^{k}}-\frac{i}{1-\zeta^{q-k}}$, we get the linear independency of above cotangents directly from lemma 1.
2. Proof of Theorem 3. We may safely assume that $q>4$, since theorem 1 is trivial for $q=1,2,3$ and 4. Assume $G(X)=G^{\prime}(X)$, then $G(X)$ and $G^{\prime}(X)$ have the same Laurent expansion at every $X=\zeta^{-k}$. From (1-2), we get easily, after exchanging p^{\prime} and $-p^{\prime}$ if necessary;

$$
\left\{\begin{array}{l}
(p-1, q)=\left(p^{\prime}-1, q\right) \text { and } \tag{2-1}\\
(p+1, q)=\left(p^{\prime}+1, q\right)
\end{array}\right.
$$

and

$$
\begin{align*}
& \frac{1}{1-\zeta^{k(p-1)}}+\frac{1}{1-\zeta^{k(s-1)}}+\frac{1}{1-\zeta^{-k(p+1)}}+\frac{1}{1-\zeta^{-k(s+1)}} \tag{2-2}\\
= & \frac{1}{1-\zeta^{k\left(p^{\prime}-1\right)}}+\frac{1}{1-\zeta^{k\left(s^{\prime}-1\right)}}+\frac{1}{1-\zeta^{-k\left(p^{\prime}+1\right)}}+\frac{1}{1-\zeta^{-k\left(s^{\prime}+1\right)}},
\end{align*}
$$

for every integer k satisfying $k \neq 0\left(\bmod u_{1} r\right)$ and $k \equiv 0\left(\bmod u_{2} r\right)$, where s^{\prime} is an integer such that $p^{\prime} s^{\prime} \equiv 1(\bmod q)$. So we put

$$
\left\{\begin{array}{l}
(p-1, q)=\left(p^{\prime}-1, q\right)=\varepsilon u_{1} \tag{2-3}\\
(p+1, q)=\left(p^{\prime}+1, q\right)=\varepsilon u_{2} \\
q=\varepsilon u_{1} u_{2} r \text { and }\left(u_{1}, u_{2}\right)=1 \\
\varepsilon=2 \text { if } q \text { is even, } \varepsilon=1 \text { otherwise. }
\end{array}\right.
$$

Since $(p-1, q)=(s-1, q)$ and $(p+1, q)=(s+1, q)$, we put

$$
\left\{\begin{align*}
p-1 & =\varepsilon u_{1} a \text { and } & p^{\prime}-1 & =\varepsilon u_{1} a^{\prime} \tag{2-4}\\
s-1 & =\varepsilon u_{1} b & s^{\prime}-1 & =\varepsilon u_{1} b^{\prime} \\
p+1 & =\varepsilon u_{2} c & p^{\prime}+1 & =\varepsilon u_{2} c^{\prime} \\
s+1 & =\varepsilon u_{2} d & s^{\prime}+1 & =\varepsilon u_{2} d^{\prime}
\end{align*}\right.
$$

where a, b, a^{\prime} and b^{\prime} are integers prime to $u_{2} r$ and c, d, c^{\prime} and d^{\prime} are those prime to $u_{1} r$. Put

$$
I_{k}=\cot \frac{(p-1) k \pi}{q}+\cot \frac{(s-1) k \pi}{q}-\cot \frac{(p+1) k \pi}{q}-\cot \frac{(s+1) k \pi}{q}
$$

$$
=\cot \frac{a k \pi}{u_{2} r}+\cot \frac{b k \pi}{u_{2} r}-\cot \frac{c k \pi}{u_{1} r}-\cot \frac{d k \pi}{u_{1} r}
$$

and

$$
\begin{aligned}
I_{k}^{\prime} & =\cot \frac{\left(p^{\prime}-1\right) k \pi}{q}+\cot \frac{\left(s^{\prime}-1\right) k \pi}{q}-\cot \frac{\left(p^{\prime}+1\right) k \pi}{q}-\cot \frac{\left(s^{\prime}+1\right) k \pi}{q} \\
& =\cot \frac{a^{\prime} k \pi}{u_{2} r}+\cot \frac{b^{\prime} k \pi}{u_{2} r}-\cot \frac{c^{\prime} k \pi}{u_{1} r}-\cot \frac{d^{\prime} k \pi}{u_{1} r} .
\end{aligned}
$$

Then we get, from (2-2),

$$
\begin{equation*}
I_{k}=I_{k}^{\prime} \tag{2-5}
\end{equation*}
$$

for every integer k satisfying $k \equiv 0\left(\bmod u_{1} r\right)$ and $k \equiv 0\left(\bmod u_{2} r\right)$. It is sufficient that we prove the theorem in the following cases:
(1) $q=o d d$ or $2 \| q ; u_{1}=u_{2}=1$,
(2) (i) $q=o d d$ or $2 \| q ; u_{1} \geqq 3$,
(ii) $4 \| q ; u_{1} \geqq 3$,
(iii) $8 \mid q ; u_{1}=\operatorname{even}(\geqq 2)$,
(3) $4 \| q ; u_{1}=2$ and $u_{2}=1$,
since the transposition of u_{1} and u_{2} is induced by replacing p and p^{\prime} by $-p$ and $-p^{\prime}$ respectively.
3. Case 1: $q=o d d$ or $2 \| q ; u_{1}=u_{2}=1(q=\varepsilon r$ and $r=o d d)$.

From (2-5), we have $I_{1}=I_{1}^{\prime}$ i.e.

$$
\begin{align*}
& \cot \frac{a \pi}{r}+\cot \frac{b \pi}{r}-\cot \frac{c \pi}{r}-\cot \frac{d \pi}{r} \tag{3-1}\\
= & \cot \frac{a^{\prime} \pi}{r}+\cot \frac{b^{\prime} \pi}{r}-\cot \frac{c^{\prime} \pi}{r}-\cot \frac{d^{\prime} \pi}{r} .
\end{align*}
$$

We can apply Corollary of Lemma 1 to (3-1), since $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime} are all prime to r.

Lemma 2. $I_{1} \neq 0$.
Proof. Assume $I_{1}=0$. We see, by the Corollary, at least one of the following congruences must hold:

$$
\begin{cases}a \equiv-b & (\bmod r) \tag{1}\\ a \equiv c & (\bmod r) \\ a \equiv d & (\bmod r)\end{cases}
$$

Case (1): Multiplied by ε, we have $p-1 \equiv-(s-1)(\bmod q)$. So $p(p-1) \equiv$
$-p(s-1) \equiv p-1(\bmod q)$. Hence $(p-1)^{2} \equiv 0(\bmod q)$, so that $\varepsilon r \mid(\varepsilon a)^{2}$. Hence $r \mid \varepsilon$, since $(a, r)=1$. As r is odd, $r=1$ i.e. $q=\varepsilon \leqq 2$, a contradiction with $q>4$. Case (2): We have $p-1 \equiv p+1(\bmod q)$, hence $2 \equiv 0(\bmod q)$ i.e. $q \mid 2$, a contradiction with $q>4$.
Case (3): We also have $b \equiv c(\bmod r)$; so $p-1 \equiv s+1$ and $s-1 \equiv p+1(\bmod q)$; hence $p-s \equiv 2 \equiv-2(\bmod q)$ i.e. $q \mid 4$; this contradicts $q>4$ again. q.e.d.

By Lemma 2, we see that one of $a, b,-c$ and $-d$ is congruent to a^{\prime}, b^{\prime}, $-c^{\prime}$ or $-d^{\prime}$ modulo r, that is, multiplied by ε, the sets $\{p-1, s-1,-p-1$, $-s-1\}$ and $\left\{p^{\prime}-1, s^{\prime}-1,-p^{\prime}-1,-s^{\prime}-1\right\}$ have non-empty intersection in the residue classes modulo $q(=\varepsilon r)$. This implies Theorem 3 .
4. Case 2: (i) $q=o d d$ or $2 \| q ; u_{1} \geqq 3\left(q=\varepsilon u_{1} u_{2} r\right.$ and u_{1}, u_{2}, r are all odd $)$.
(ii) $4 \| q ; u_{1} \geqq 3\left(q=2 u_{1} u_{2} r, 2 \| u_{1} u_{2}\right.$ and $\left.r=o d d\right)$.
(iii) $8 \mid q ; u_{1}=$ even ($q=2 u_{1} u_{2} r, 4 \mid u_{1} r$ and $u_{2}=o d d$).

Take an integer k such that (a) $k \equiv-1\left(\bmod u_{2} r\right) ;(\mathrm{b})\left(k, u_{1} r\right)=1$ and $k \neq-1$ $\left(\bmod l^{l}\right)$ for every odd prime divisior l of $u_{1}, e=\operatorname{ord}_{l}\left(u_{1} r\right)$ i.e. $l^{e} \| u_{1} r$; if in case (iii), we further add (b) $k \neq-1\left(\bmod 2^{f}\right), f=\operatorname{ord}_{2}\left(u_{1} r\right)$. The existence of such k is assured by the assumption on u_{1}. It follows from (2-5) that $I_{1}+I_{k}=I_{1}^{\prime}+I_{k}^{\prime}$. Hence we have:

$$
\begin{align*}
& \cot \frac{c \pi}{u_{1} r}+\cot \frac{d \pi}{u_{1} r}+\cot \frac{c k \pi}{u_{1} r}+\cot \frac{d k \pi}{u_{1} r} \tag{4-1}\\
= & \cot \frac{c^{\prime} \pi}{u_{1} r}+\cot \frac{d^{\prime} \pi}{u_{1} r}+\cot \frac{c^{\prime} k \pi}{u_{1} r}+\cot \frac{d^{\prime} k \pi}{u_{1} r} .
\end{align*}
$$

Now we can apply Corollary of Lemma 1 to (4-1). In the first place, we have
Lemma 3. The following (1) or (2) do not hold in (4-1):
(1) $c \equiv-d\left(\bmod u_{1} r\right), c^{\prime} \equiv-d^{\prime}, c k \equiv-d k$, or $c^{\prime} k \equiv-d^{\prime} k\left(\bmod u_{1} r\right)$.
(2) $c \equiv-c k\left(\bmod u_{1} r\right), d \equiv-d k, c^{\prime} \equiv-c^{\prime} k$, or $d^{\prime} \equiv-d^{\prime} k\left(\bmod u_{1} r\right)$.

Proof. If $c \equiv-d\left(\bmod u_{1} r\right)$, we have, both hand sides multiplied by εu_{2}, $p+1 \equiv-(s+1)(\bmod q)$, so that $p(p+1) \equiv-(1+p)(\bmod q)$. \quad Since $(p+1, q)$ $=\varepsilon u_{2}$, we have $p \equiv-1\left(\bmod u_{1} r\right)$. Hence $u_{1} r \mid(p+1)$ i.e. $u_{1} r \mid \varepsilon u_{2} c$. Since $\left(u_{1} r, c\right)$ $=\left(u_{1}, u_{2}\right)=1$, we have $u_{1} \mid \varepsilon$. This is possible only in case (iii) with $u_{1}=\varepsilon=2$, so that $r \mid u_{2}$. Hence r is odd, this contradicts $4 \mid u_{1} r$. If $c \equiv-c k\left(\bmod u_{1} r\right)$, then $k \equiv-1\left(\bmod u_{1} r\right)$, this contradicts the choice of k. In the same way, we see that the other congruences are also impossible.

It is easy to see $p \equiv p^{\prime}$ or $p \equiv s^{\prime}(\bmod q)$ if either c or $d($ resp. $c k$ or $d k)$ is congruent to c^{\prime} or d^{\prime} (resp. $c^{\prime} k$ or $d^{\prime} k$) modulo $u_{1} r$. Hence we may assume that neither c nor d (resp. $c k$ nor $d k$) is congruent to c^{\prime} or d^{\prime} (resp. $c^{\prime} k$ or $d^{\prime} k$) modulo $u_{1} r$. Then we see, by Corollary of Lemma 1 and by Lemma 3, that only the
following cases may be possible in (4-1), after transposing p and s (resp. p^{\prime} and s^{\prime}) if necessary:
(A) $c \equiv-d k, d \equiv-c k, c^{\prime} \equiv-d^{\prime} k$ and $d^{\prime} \equiv-c^{\prime} k\left(\bmod u_{1} r\right)$.
(B) $c \equiv-d k, c^{\prime} \equiv-d^{\prime} k, d \equiv c^{\prime} k$ and $d^{\prime} \equiv c k\left(\bmod u_{1} r\right)$.
(C) $c \equiv c^{\prime} k, d \equiv d^{\prime} k, c^{\prime} \equiv c k$ and $d^{\prime} \equiv d k\left(\bmod u_{1} r\right)$.
(D) $c \equiv c^{\prime} k, d \equiv d^{\prime} k, c^{\prime} \equiv d k$ and $d^{\prime} \equiv c k\left(\bmod u_{1} r\right)$.

Case (A):
From $c \equiv-d k$ and $d \equiv-c k\left(\bmod u_{1} r\right)$ follows $p+1 \equiv-(s+1) k$ and $s+1 \equiv-(p+$ $1) k(\bmod q)$, so that $p \equiv s \equiv-k\left(\bmod u_{1} r\right)$ and $k^{2} \equiv 1\left(\bmod u_{1} r\right) . \quad$ As $k \equiv-p \equiv-1$ $\left(\bmod u_{1}\right)$, we have $k \equiv-1\left(\bmod l^{e}\right)$ for every odd prime divisor l of u_{1}, which contradicts the choice of k. Hence u_{1} must be a power of 2, and this is possible only in case (iii). Then we have $k \equiv-p \equiv-1(\bmod 4)$ and $k^{2} \equiv 1\left(\bmod 2^{f}\right)$, so that $k \equiv-1\left(\bmod 2^{f-1}\right)$. Furthermore we have $f \geqq 3$ since, by the choice of k, we have $p \equiv-k \equiv 1\left(\bmod 2^{f}\right)$ while $p \equiv 1(\bmod 4)$. On the other hand, we have $\left(u_{1} r, u_{2}\right)=1$, since $p \equiv-k \equiv 1(\bmod r)$ and $p \equiv-1\left(\bmod u_{2}\right)$. Therefore we get $p \equiv-k \equiv 1\left(\bmod \frac{u_{1} r}{2}\right), p \equiv-k \equiv 1\left(\bmod u_{1} r\right)$ and $p \equiv-1\left(\bmod u_{2}\right)$. In the same way, from $c^{\prime} \equiv-d^{\prime} k$ and $d^{\prime} \equiv-c^{\prime} k\left(\bmod u_{1} r\right)$, we have $p^{\prime} \equiv 1\left(\bmod \frac{u_{1} r}{2}\right), p^{\prime} \equiv 1$ $\left(\bmod u_{1} r\right)$ and $p^{\prime} \equiv-1\left(\bmod u_{2}\right)$. We see each one of p and p^{\prime} is congruent to $1+\frac{u_{1} r}{2}$ or $1-\frac{u_{1} r}{2}\left(\bmod 2 u_{1} r\right)$, hence $p \equiv p^{\prime}$ or $p \equiv s^{\prime}\left(\bmod 2 u_{1} r\right)$, since we have $f \geqq 3$ and $\left(1+\frac{u_{1} r}{2}\right)\left(1-\frac{u_{1} r}{2}\right) \equiv 1\left(\bmod 2 u_{1} r\right) . \quad$ As $p \equiv s \equiv p^{\prime} \equiv s^{\prime} \equiv-1\left(\bmod u_{2}\right)$, $q=2 u_{1} u_{2} r$ and $\left(2 u_{1} r, u_{2}\right)=1$, we have $p \equiv p^{\prime}$ or $p \equiv s^{\prime}(\bmod q)$.

Case (B):
From $c \equiv-d k$ and $c^{\prime} \equiv-d^{\prime} k\left(\bmod u_{1} r\right)$ follows $p \equiv p^{\prime} \equiv-k\left(\bmod u_{1} r\right)$. That $p \equiv-k \equiv 1(\bmod r)$ and $p \equiv-1\left(\bmod u_{2}\right)$ implies $\left(u_{1} r, u_{2}\right)=1$ or 2 . From $d \equiv$ $c^{\prime} k\left(\bmod u_{1} r\right)$ follows $s+1 \equiv\left(p^{\prime}+1\right) k(\bmod q) . \quad$ So $p+1 \equiv p(s+1) \equiv p\left(p^{\prime}+1\right) k \equiv$ $p(p+1)(-p) \equiv-(p+1) p^{2}\left(\bmod u_{1} r\right)$. Hence $(p+1)\left(p^{2}+1\right) \equiv \varepsilon u_{2} c\left(p^{2}+1\right) \equiv 0$ $\left(\bmod u_{1} r\right)$ i.e. $\varepsilon\left(p^{2}+1\right) \equiv 0\left(\bmod u_{1} r\right)$. We have $p^{2} \equiv-1(\bmod l)$ if there is an odd prime divisor l of u_{1}, while $p^{2} \equiv 1(\bmod l)$ since $p \equiv 1\left(\bmod u_{1}\right)$. Therefore u_{1} must be a power of 2 , this is possible only in case (iii). Then $p^{2} \equiv-1(\bmod$ 2^{f-1}), so that $f=2$ since $f \geqq 2$ by the assumption of (iii). As $p \equiv-k\left(\bmod u_{1} r\right)$, $p \equiv 1\left(\bmod \varepsilon u_{1}\right)$ and $u_{1} r \equiv \varepsilon u_{1} \equiv 0(\bmod 4)$, we have $k \equiv-1\left(\bmod 2^{f}\right)$, which contradicts the choice of k. Therefore case (B) is impossible.

Case (C) and (D):
We claim $p p^{\prime} \equiv 1(\bmod q)$ in these cases. From $c \equiv c^{\prime} k$ and $d \equiv d^{\prime} k\left(\bmod u_{1} r\right)$ follows $p+1 \equiv\left(p^{\prime}+1\right) k$ and $s+1 \equiv\left(s^{\prime}+1\right) k(\bmod q)$, so that $p^{\prime}(1+p) \equiv$ $p\left(1+p^{\prime}\right) k \equiv p(p+1)(\bmod q)$, hence we get $p \equiv p^{\prime}\left(\bmod u_{1} r\right)$. Since $p \equiv p^{\prime} \equiv 1$ $\left(\bmod \varepsilon u_{1}\right)$, we have $2 \equiv 2 k\left(\bmod \varepsilon u_{1}\right)$, so $k \equiv 1\left(\bmod u_{1}\right)$, while $k \equiv-1\left(\bmod u_{2} r\right)$.

Hence we see $\left(u_{1}, u_{2} r\right)=1$ or 2 . Let l be a prime divisor of q. It is enough to prove $p p^{\prime} \equiv 1\left(\bmod l^{\text {ord }_{l}(q)}\right)$.

In case $l=$ an odd prime:

Since $p \equiv p^{\prime}\left(\bmod u_{1} r\right)$, we get $p-p^{\prime} \equiv(p+1)-\left(p^{\prime}+1\right) \equiv \varepsilon u_{2}\left(c-c^{\prime}\right) \equiv \varepsilon u_{2} c^{\prime}(k-1)$ $\equiv 0\left(\bmod u_{1} r\right)$, so that

$$
\begin{equation*}
o\left(u_{2}\right)+o\left(c^{\prime}\right)+o(k-1) \geqq o\left(u_{1}\right)+o(r), \text { where } o()=\operatorname{ord}_{l}() \tag{4-2}
\end{equation*}
$$

(a) If $!\mid u_{1}$, then $l X u_{2} r$ and $o\left(u_{1}\right)=o(q)$. Since $p \equiv p^{\prime} \equiv 1\left(\bmod \varepsilon u_{1}\right)$, we have $p p^{\prime} \equiv 1\left(\bmod l^{o(q)}\right)$.
(b) If $l \mid\left(u_{2}, r\right)$, then $l \nmid u_{1}$ and $k \equiv-1 \equiv 1(\bmod l)$ therefore from (4-2) $o(q)=$ $o\left(u_{2}\right)+o(r)$. Since $c \equiv c^{\prime} k \equiv-c^{\prime}(\bmod r)$ and $o\left(u_{2}\right) \geqq o(r)$, we get $p p^{\prime}=$ $\left(\varepsilon u_{2} c-1\right)\left(\varepsilon u_{2} c^{\prime}-1\right)=\varepsilon^{2} u_{2}^{2} c c^{\prime}-\varepsilon u_{2}\left(c+c^{\prime}\right)+1 \equiv 1\left(\bmod l^{\circ(q)}\right)$.
(c) If $l \mid u_{2}$ and $l X r$, then $l X u_{1}$ and $o(q)=o\left(u_{2}\right)$. Since $p \equiv p^{\prime} \equiv-1(\bmod$ $\left.\varepsilon u_{2}\right)$, we have $p p^{\prime} \equiv 1\left(\bmod l^{o(q)}\right)$.
(d) If $l \mid r$ and $l X u_{2}$, then $l \nmid u_{1}$ and $0=o\left(u_{2}\right)<o\left(u_{1}\right)+o(r)=o(r)$, this is impossible since we have from (4-2), o(u_{2}) $o o\left(u_{1}\right)+o(r)$.

In case $l=2$:
It is enough to prove only in case (ii) and (iii).
(a) Case (ii); we see $4 \| q$ and $p \equiv p^{\prime} \equiv 1$ or $-1(\bmod 4)$ according as u_{1} is even or u_{2} is even. Hence $p p^{\prime} \equiv 1(\bmod 4)$.
(b) Case (iii); we have $o(q)=o\left(u_{1}\right)+o(r)+1 \geqq 3$ and $o\left(u_{1}\right)=1$. We get $\operatorname{Min}\left(o\left(u_{1}\right), o(r)\right) \leqq 1$ since $k \equiv 1\left(\bmod u_{1}\right)$ and $k \equiv-1\left(\bmod u_{2} r\right)$.
(b-1) If $o(r)=0$, then we have $o(q)=o\left(u_{1}\right)+1$ and $p \equiv p^{\prime} \equiv 1\left(\bmod 2 u_{1}\right)$, so that $p p^{\prime} \equiv 1\left(\bmod 2^{o(q)}\right)$.
(b-2) If $o(r)=1$, then $o(q)=o\left(u_{1}\right)+2$. Since $o(p-1)=o\left(p^{\prime}-1\right)=o\left(u_{1}\right)+1=$ $o(q)-1$, we have $p \equiv p^{\prime} \equiv 1+2^{o(q)-1}\left(\bmod 2^{o(q)}\right)$, so that $p p^{\prime} \equiv 1\left(\bmod 2^{o(q)}\right)$. (b-3) If $o\left(u_{1}\right)=1$, then $o(q)=o(r)+2 \geqq 3$. Since we have $p+1 \equiv\left(p^{\prime}+1\right) k(\bmod$ $\left.2^{o(q)}\right)$ and $p \equiv p^{\prime}\left(\bmod 2^{o\left(u_{1} r\right)}\right)$, we get $p+1 \equiv(p+1) k\left(\bmod 2^{\circ(q)-1}\right)$. Hence $k \equiv 1\left(\bmod 2^{\circ(r)}\right)$, while $k \equiv-1\left(\bmod 2^{o\left(\mu_{2} r\right)}\right)$. So we have $1 \equiv-1\left(\bmod 2^{\circ(r)}\right)$, so that $o(r) \leqq 1$. Since $o(q) \geqq 3$, we get $o(r)=1$ and $o(q)=3$. It follows from $o(p-1)=o\left(p^{\prime}-1\right)=2$ that $p \equiv p^{\prime} \equiv 5(\bmod 8)$, hence $p p^{\prime} \equiv 1\left(\bmod 2^{3}\right)$.

This completes the proof in Case 2.
5. Case 3: $4 \| q ; u_{1}=2$ and $u_{2}=1(q=4 r$ and $r=o d d>1)$.

We see

$$
\begin{aligned}
& I_{1}=\cot \frac{a \pi}{r}+\cot \frac{b \pi}{r}-\cot \frac{c \pi}{2 r}-\cot \frac{d \pi}{2 r} \\
& I_{r+1}=\cot \frac{a \pi}{r}+\cot \frac{b \pi}{r}-\cot \frac{(c+r) \pi}{2 r}-\cot \frac{(d+r) \pi}{2 r}
\end{aligned}
$$

By the duplication formula of cotangent, we get

$$
\begin{aligned}
& I_{1}+I_{r+1} \\
= & 2\left(\cot \frac{a \pi}{r}+\cot \frac{b \pi}{r}-\cot \frac{c \pi}{r}-\cot \frac{d \pi}{r}\right) .
\end{aligned}
$$

From (2-5), $I_{1}+I_{r+1}=I_{1}^{\prime}+I_{r+1}^{\prime}$. Halving both hand sides, we have

$$
\begin{align*}
& \cot \frac{a \pi}{r}+\cot \frac{b \pi}{r}-\cot \frac{c \pi}{r}-\cot \frac{d \pi}{r} \tag{5-1}\\
= & \cot \frac{a^{\prime} \pi}{r}+\cot \frac{b^{\prime} \pi}{r}-\cot \frac{c^{\prime} \pi}{r}-\cot \frac{d^{\prime} \pi}{r} .
\end{align*}
$$

Now we can apply Corollary of Lemma 1 to (5-1). In the first place we have
Lemma 4. The following (1), (2) or (3) do not hold in (5-1):
(1) $a \equiv-b, c \equiv-d, a^{\prime} \equiv-b^{\prime}$, or $c^{\prime} \equiv-d^{\prime}(\bmod r)$.
(2) $a \equiv c$ and $b \equiv d(\bmod r)$ or $a^{\prime} \equiv c^{\prime}$ and $b^{\prime} \equiv d^{\prime}(\bmod r)$.
(3) $a \equiv d$ and $b \equiv c(\bmod r)$ or $a^{\prime} \equiv d^{\prime}$ and $b^{\prime} \equiv c^{\prime}(\operatorname{mor} r)$.

Proof. (1) If $a \equiv-b(\bmod r)$, we have $4 a \equiv-4 b(\bmod q)$, i.e. $p-1 \equiv$ $-(s-1)(\bmod q)$. Hence $p(p-1) \equiv-(1-p)(\bmod q)$, so that $p \equiv 1(\bmod r)$ since $(p-1, q)=4$. This implies $r=1$, i.e. $q=4$, a contradiction with $q>4$. (2) If $a \equiv c$ and $b \equiv d(\bmod r)$, we have $4 a \equiv 4 c$ and $4 b \equiv 4 d(\bmod 4 r)$, i.e. $p-1 \equiv$ $2(p+1)$ and $s-1 \equiv 2(s+1)(\bmod 4 r)$. Hence we get $p \equiv s \equiv-3(\bmod 4 r)$. Then $1 \equiv p s \equiv 9(\bmod 4 r)$, i.e. $r=1$ or $r=2$, a contradiction with $q>4$ and $r=$ odd. (3) If $a \equiv d$ and $b \equiv c(\bmod r)$, we have $p-1 \equiv 2(s+1)$ and $s-1 \equiv 2(p+1)(\bmod$ 4r). Multiplied by p, we have $p(p-1) \equiv 2(1+p)$ and $1-p \equiv 2 p(p+1)(\bmod$ $4 r)$, i.e. $p^{2}-3 p-2 \equiv 0$ and $2 p^{2}+3 p-1 \equiv 0(\bmod 4 r)$. Hence $3 p^{2}-3 \equiv$ $3(p-1)(p+1) \equiv 0(\bmod 4 r)$. We have $3(p+1) \equiv 0(\bmod r)$, so that $3 \equiv 0(\bmod$ r), since $(p-1,4 r)=4$ and $(p+1,4 r)=2$. As $r \geqq 3$, we have $r=3$ and $q=4 r=12$. Since $p^{2} \equiv 1(\bmod 12), p^{2}-3 p-2 \equiv 0(\bmod 12)$ implies $3 p \equiv-1(\bmod 12)$, a contradiction.
The other cases can be checked in the same way.
q.e.d.

It is easy to see $p \equiv p^{\prime}$ or $p \equiv s^{\prime}(\bmod q)$ if either a or $b($ resp. c or $d)$ is congruent to a^{\prime} or b^{\prime} (resp. c^{\prime} or d^{\prime}) modulo r. Hence we may assume that neither a nor b (resp. c nor d) is congruent to a^{\prime} or b^{\prime} (resp. c^{\prime} or d^{\prime}) modulo r. Then, we see, by Corollary of Lemma 1 and by Lemma 4, that only the following cases may be possible in (5-1), after trasnposing p and s (resp. p^{\prime} and s^{\prime}) if necessary:
(A) $a \equiv c, a^{\prime} \equiv c^{\prime}, b \equiv-d^{\prime}$ and $b^{\prime} \equiv-d(\bmod r)$.
(B) $a \equiv d, a^{\prime} \equiv d^{\prime}, b \equiv-c^{\prime}$ and $b^{\prime} \equiv-c(\bmod r)$.
(C) $a \equiv c, a^{\prime} \equiv d^{\prime}, b \equiv-c^{\prime}$ and $b^{\prime} \equiv-d(\bmod r)$.
(D) $a \equiv-c^{\prime}, b \equiv-d^{\prime}, a^{\prime} \equiv-c$ and $b^{\prime} \equiv-d(\bmod r)$.
(E) $a \equiv-c^{\prime}, b \equiv-d^{\prime}, a^{\prime} \equiv-d$ and $b^{\prime} \equiv-c(\bmod r)$.

Case (A):
From $a \equiv c$ and $a^{\prime} \equiv c^{\prime}(\bmod r)$ follows $p \equiv p^{\prime} \equiv-3(\bmod q)$ (c.f. the proof of Lemma 4. (2)).
Case (B):
From $b \equiv-c^{\prime}$ and $b^{\prime} \equiv-c(\bmod r)$ follows $s-1 \equiv-2\left(p^{\prime}+1\right)$ and $s^{\prime}-1 \equiv$ $-2(p+1)(\bmod q)$, so that $2 p^{\prime}+s \equiv-1$ and $2 p+s^{\prime} \equiv-1(\bmod q)$. Hence we have $2 p p^{\prime}+1 \equiv-p$ and $2 p p^{\prime}+1 \equiv-p^{\prime}(\bmod q)$, so that $p \equiv p^{\prime}$ and

$$
\begin{equation*}
2 p^{2}+p+1 \equiv 0(\bmod q) \tag{5-2}
\end{equation*}
$$

On the other hand, from $a \equiv d(\bmod r)$, we have $p-1 \equiv 2(s+1)(\bmod q)$, so that

$$
\begin{equation*}
p^{2}-3 p-2 \equiv 0(\bmod q) \tag{5-3}
\end{equation*}
$$

From (5-2) and (5-3), we have $7 p \equiv-5(\bmod q)$. Then $0 \equiv 7^{2}\left(p^{2}-3 p-2\right) \equiv$ $(7 p)^{2}-21(7 p)-98 \equiv 32(\bmod q)$, so that $q \mid 32$ i.e. $r \mid 8$, a contradiction with $r=o d d>1$.

Case (C):
We have $p-1 \equiv 2(p+1), p^{\prime}-1 \equiv 2\left(s^{\prime}+1\right), \quad s-1 \equiv-2\left(p^{\prime}+1\right)$ and $s^{\prime}-1 \equiv$ $-2(s+1)(\bmod q)$. Hence $p \equiv-3, p^{\prime}-2 s^{\prime} \equiv 3,2 p^{\prime}+s \equiv-1$ and $2 s+s^{\prime} \equiv-1$ $(\bmod q)$. From the last three congruences, we get $6 \equiv 2\left(p^{\prime}-2 s^{\prime}\right) \equiv 2 p^{\prime}-4 s^{\prime} \equiv$ $-s-1-4(-2 s-1) \equiv 7 s+3(\bmod q)$, so that $7 s \equiv 3(\bmod q)$ i.e. $3 p \equiv 7(\bmod q)$. Since $p \equiv-3(\bmod q)$, we have $7 \equiv 3 p \equiv-9(\bmod q)$. Hence $q \mid 16$ i.e. $r \mid 4$, a contradiction.

Case (D):
From $a \equiv-c^{\prime}$ and $a^{\prime} \equiv-c(\bmod r)$ follows $p-1 \equiv-2\left(p^{\prime}+1\right)$ and $p^{\prime}-1 \equiv$ $-2(p+1)(\bmod q)$, so that $p+2 p^{\prime} \equiv 2 p+p^{\prime} \equiv-1(\bmod q)$. Hence $p \equiv p^{\prime}$ and $3 p \equiv$ $-1(\bmod q) . \quad$ From $b \equiv-d^{\prime}$ and $b^{\prime} \equiv-d(\bmod r)$, we get, in the same way, $3 s \equiv$
$-1(\bmod q)$. Therefore $9 \equiv(3 p)(3 s) \equiv(-1)^{2} \equiv-1(\bmod q)$, so that $q \mid 8$ i.e. $r \mid 2$, a contradiction.
Case (E):
From $a^{\prime} \equiv-d$ and $b^{\prime} \equiv-c(\bmod r)$ follows $p^{\prime}-1 \equiv-2(s+1)$ and $s^{\prime}-1 \equiv$ $-2(p+1)(\bmod q)$, so that $p^{\prime}+2 s \equiv-1$ and $s^{\prime}+2 p \equiv-1(\bmod q)$. Hence $p p^{\prime}+2 \equiv$ $-p$ and $1+2 p p^{\prime} \equiv-p^{\prime}(\bmod q)$. Eliminating $p p^{\prime}$, we have

$$
\begin{equation*}
2 p-p^{\prime} \equiv-3(\bmod q) \tag{5-4}
\end{equation*}
$$

On the other hand, from $a \equiv-c^{\prime}(\bmod r)$, we have

$$
\begin{equation*}
p+2 p^{\prime} \equiv-1(\bmod q) . \tag{5-5}
\end{equation*}
$$

From (5-4) and (5-5), we have $5 p \equiv-7$ and $5 p^{\prime} \equiv 1(\bmod q) . \quad$ Since $5^{2}\left(p p^{\prime}+2\right)$ $\equiv 5^{2}(-p)(\bmod q)$, we have $-7+50 \equiv 35(\bmod q)$, so that $q \mid 8$, a contradiction.

This completes the proof in Case 3 and completes the proof of Theorem 3 also.
6. Appendix. We can prove Theorem 3, without Lemma 1, or without non-vanishing of Dirichlet's L-functions at $s=1$, directly from (2-5) in case q is a prime number $\geqq 7$.

Assume q is prime $\geqq 7$. Let $K=Q(\zeta)$, a cyclotomic field of degree $q-1$, and \mathcal{O} be the ring of algebraic integers of K. Then the prime q is totally ramified in K, more precisely, the principal ideal $(q)=q \mathcal{O}$ in \mathcal{O} is the $(q-1)$-th power of prime ideal $(\lambda)=\lambda \Theta ;(q)=(\lambda)^{q-1}$, where $\lambda=1-\zeta$ and the residue class field $\mathcal{O} /(\lambda)$ is isomorphic to $\boldsymbol{Z} / q \boldsymbol{Z}$. We have

$$
\begin{aligned}
1-\zeta^{k}= & 1-(1-\lambda)^{k} \\
= & \lambda \sum_{j=1}^{k}\binom{k}{j}(-\lambda)^{j-1} \\
= & \lambda k \sum_{j=0}^{k-1}\binom{k-1}{j} \frac{(-\lambda)^{j}}{j+1} \\
= & \lambda k\left(1-\frac{k-1}{2} \lambda+\frac{(k-1)(k-2)}{6} \lambda^{2}-\frac{(k-1)(k-2)(k-3)}{24} \lambda^{3}\right. \\
& \left.+\frac{(k-1)(k-2)(k-3)(k-4)}{120} \lambda^{4}-\cdots\right)
\end{aligned}
$$

for $k=1,2, \cdots, q-1$. Hence

$$
\begin{align*}
\frac{\lambda}{1-\zeta^{k}}= & \frac{1}{k}\left(\sum_{j=0}^{k-1}\binom{k-1}{j} \frac{(-\lambda)^{j}}{j+1}\right)^{-1} \tag{6-1}\\
= & \frac{1}{k}\left(1+\frac{k-1}{2} \lambda+\frac{k^{2}-1}{12} \lambda^{2}+\frac{k^{2}-1}{24} \lambda^{3}\right. \\
& \left.-\frac{\left(k^{2}-1\right)\left(k^{2}-19\right)}{720} \lambda^{4}-\cdots\right),
\end{align*}
$$

where the last series, as is easily seen from the fact that each $\binom{k-1}{j} \frac{1}{j+1}=$ $\frac{1}{k}\binom{k}{j+1}$ is a λ-adic integer, converges λ-adically for $k=1, \cdots, q-1$. From (2-5), we have

$$
\begin{equation*}
\lambda I_{1}=\lambda I_{1}^{\prime} \tag{6-2}
\end{equation*}
$$

As $\frac{\lambda}{1-\zeta^{k}}$ belongs to θ for $k=1, \cdots, q-1$, both λI_{1} and λI_{1}^{\prime} are also in θ. Let

$$
\left\{\begin{array}{l}
\lambda I_{1}=g_{0}+g_{1} \lambda+g_{2} \lambda^{2}+g_{3} \lambda^{3}+g_{4} \lambda^{4}+\cdots \\
\lambda I_{1}^{\prime}=g_{0}^{\prime}+g_{1}^{\prime} \lambda+g_{2}^{\prime} \lambda^{2}+g_{3}^{\prime} \lambda^{3}+g_{4}^{\prime} \lambda^{4}+\cdots
\end{array}\right.
$$

be the λ-adic expansions of λI_{1} and λI_{1}^{\prime} respectively, where the representatives g_{k} and g_{k}^{\prime} of $\mathcal{O} /(\lambda)$ are taken from $\{0,1, \cdots, q-1\}$. From (6-2), we have

$$
\begin{equation*}
g_{k} \equiv g_{k}^{\prime}(\bmod q) \text { for } k=0,1, \cdots \tag{6-3}
\end{equation*}
$$

From (6-1), we get,

$$
\begin{aligned}
g_{0} & \equiv \sum_{k} \frac{1}{k} \equiv \frac{1}{p-1}+\frac{1}{s-1}-\frac{1}{p+1}-\frac{1}{s+1} \\
& \equiv \frac{1}{p-1}+\frac{p}{1-p}-\frac{1}{p+1}-\frac{p}{1+p} \\
& \equiv-2(\bmod q) \\
g_{1} & \equiv \frac{1}{2} \sum_{k}\left(1-\frac{1}{k}\right) \equiv 2-(-1) \equiv 3(\bmod q) \\
g_{2} & \equiv \frac{1}{12} \sum_{k}\left(k-\frac{1}{k}\right) \equiv-\frac{1}{6}(\bmod q) \\
g_{3} & \equiv \frac{1}{24} \sum_{k}\left(k-\frac{1}{k}\right) \equiv-\frac{1}{12}(\bmod q) \\
g_{4} & \equiv-\frac{1}{720} \sum_{k}\left(k^{3}-20 k+\frac{19}{k}\right) \equiv \frac{1}{120}\left(p^{2}+s^{2}\right)-\frac{19}{360}(\bmod q),
\end{aligned}
$$

where the summation is taken for $k=p-1, s-1,-p-1$ and $-s-1$, especially we see

$$
\begin{aligned}
\sum_{k} k & =(p-1)+(s-1)-(p+1)-(s+1)=-4 \\
\sum_{k} k^{3} & =(p-1)^{3}+(s-1)^{3}-(p+1)^{3}-(s+1)^{3} \\
& =-6\left(p^{2}+s^{2}\right)-4
\end{aligned}
$$

In the same way, we get

$$
\begin{aligned}
& g_{0}^{\prime} \equiv-2(\bmod q) \\
& g_{1}^{\prime} \equiv 3 \quad(\bmod q) \\
& g_{2}^{\prime} \equiv-\frac{1}{6}(\bmod q) \\
& g_{3}^{\prime} \equiv-\frac{1}{12}(\bmod q) \text { and } \\
& g_{4}^{\prime} \equiv \frac{1}{120}\left(p^{\prime 2}+{s^{\prime 2}}^{\prime 2}-\frac{19}{360}(\bmod q)\right.
\end{aligned}
$$

Comparing the case $k=4$ in (6-3), we have

$$
\begin{equation*}
p^{2}+s^{2} \equiv p^{\prime 2}+s^{\prime 2}(\bmod q) . \tag{6-4}
\end{equation*}
$$

Since $p s \equiv p^{\prime} s^{\prime} \equiv 1(\bmod q)$, we have, from (6-4),

$$
\left\{\begin{array}{l}
(p+s)^{2} \equiv\left(p^{\prime}+s^{\prime}\right)^{2}(\bmod q) \\
(p-s)^{2} \equiv\left(p^{\prime}-s^{\prime}\right)^{2}(\bmod q)
\end{array}\right.
$$

hence

$$
\left\{\begin{array}{l}
p+s \equiv \pm\left(p^{\prime}+s^{\prime}\right)(\bmod q) \tag{6-5}\\
p-s \equiv \pm\left(p^{\prime}-s^{\prime}\right)(\bmod q),
\end{array}\right.
$$

where the signs are taken independently. Then we see easily, from (6-5), that

$$
p \equiv \pm p^{\prime} \text { or } p \equiv \pm s^{\prime}(\bmod q) .
$$

Thus we get Theorem 3 for prime $q \geqq 7$.
7. Spectrum of 3-dimensional lens spaces. In the course of the proof of Theorem 3, we have shown the following

Proposition. Let q, p and p^{\prime} be as in Section 0. Assume we have (2-1) and $(2-2)$. Then $p \equiv \pm p^{\prime}$ or $p p^{\prime} \equiv \pm 1(\bmod q)$.

This proposition was the essential part of the proof of "Main Theorem" in [3] (cf. Lemma 4.4, Proposition 4.6), though only the case $q=l^{n}$ or $2 \cdot l^{n}$ had been shown there. Now we have proved completely

Theorem. Let q be a positive integer. If two 3-dimensional lens spaces with fundamental group of order q are isospectral, then they are isometric to each other.

References

[1] A. Baker, B.J. Birch and E.A. Wirsing: On a problem of Chowla, J. Number Theory 5 (1973), 224-236.
[2] S. Chowla: A special infinite series, Norske Vid. Selsk. Forh. 37 (1964), 85-87.
[3] A. Ikeda and Y. Yamamoto: On the spectra of 3-dimensional lens spaces, Osaka J. Math. 16 (1979), 447-469.

[^0]: *) Supported by Grant-in-Aid for Scientific Research

