Harada, M. Osaka J. Math. 17 (1980), 1-8

FACTOR RINGS OF A HEREDITARY AND QF-3 RING

Dedicated to Professor Goro Azumaya on his 60th birthday

MANABU HARADA

(Received April 19, 1979)

We have been studying many interesting properties of small submodules. W.W. Leonard [8] and M. Rayar [12] defined small modules and gave elementary properties of them. Recently, the author has studied non-small modules and given a class of rings which are concerned with non-small modules and located between QF-rings and QF-3 rings [4] and [5].

In this note we shall consider two conditions (*) and $(*)^*$ in [4] and [5] (see §1) and study a semi-primary ring whose every factor ring satisfies either (*) or $(*)^*$. We shall show such a ring with condition (QS) (see §1) coincides with a generalized uni-serial ring of the first category in the sense of Murase [9].

1. The main theorem

Let R be a ring with identity. We always assume that R is a semi-primary ring, namely the Jacobson radical J of R is nilpotent and R/J is artinian, and every R-module is an unitary right R-module unless otherwise stated. Let M be an R-module. By E(M) and J(M) we denote an injective hull and the Jacobson radical of M, respectively. If M is a small submodule in E(M), we say M is a small module [8], [12] and if M is not a small module, we say M is non-small module [5]. As the dual concept to the above, we define a non-cosmall module N as follows: there exist a projective module P and an epimorphism $f: P \rightarrow N$ such that ker f is not essential in P.

In [4] and [5] we have introduced two conditions:

(*) Every non-small module contains a non-zero injective module.

(*)* Every non-cosmall module contains a non-zero projective direct summand.

We have shown that if R satisfies either (*) or (*)*, then R is a right QF-3 ring [13] (E(R) is projective by [7]) and every QF-ring satisfies both (*) and (*)*. Thus, a class of rings satisfying either (*) or (*)* is located between a class of QF-rings and one of QF-3 rings when R is a left and right artinian ring. If R is left and right artinian and eR, Re have unique composition series for every

primitive idempotent e, we call R a generalized uni-serial ring [10]. It is easily seen that every generalized uni-serial ring satisfies both (*) and (*)^{*} (Corollary 1 to Lemma 1 below).

Following Murase [9] we say a two-sided indecomposable generalized uni-serial ring is in *the first category*, if there exists a primitive idempotent esuch that eR is simple. In order to show that some rings in the new class coincide with the above rings, we introduce the conditions:

(F*) (resp. (F**)) Every factor ring of R satisfies (*) (resp. (*)*). (FQF-3) Every factor ring of R is right QF-3. And (QS) If a factor ring of R is a QF-ring, then it is semi-simple. Now, we can state our theorem.

Theorem. Let R be a semi-primary ring. Then the following statements are equivalent.

- 1) R satisfies (F*) and (QS).
- 2) R satisfies (F^*) and (QS).
- 3) R satisfies (FQF-3) and (QS).
- 4) R is isomorphic to a factor ring of QF-3 and hereditary ring. And
- 5) R is a direct sum of generalized uni-serial rings of the first category.

We know from [2], Theorem 2 and [9], Theorems 17 and 18 that the ring R in the theorem is a direct sum of factor rings of rings of tri-angular matrices over division rings when R is basic. Hence, it has a perspective form.

We shall give remarks on the above conditions.

REMARKS 1. If R is a generalized uni-serial ring of the second category [9], R satisfies (F*), (F*^{*}) and (FQF-3) but not (QS) (see §2).

2. If R is a left and right artinian, then R is a generalized uni-serial ring if and only if R satisfies (FQF-3) [6].

3. Let $K \subseteq L$ be fields with $[L:K] < \infty$ and

$$R = \begin{pmatrix} K & L \\ 0 & K \end{pmatrix}.$$

Then R satisfies (QS) but not any of (F*), $(F*^*)$ and (FQF-3).

4. If R is a commutative artinian ring and satisfies (QS), then R is a direct sum of fields.

Because, we may assume R is a local ring with maximal ideal M. If $M \neq 0$, we could find a maximal one M' among ideals contained in M. Then R/M' is a QF-ring and so M/M'=0.

2. Proof of Theorem

We always assume that R is a semi-primary ring with identity and every

R-module *M* is an unitary right *R*-module. We shall denote the Jacobson radical and the injective hull by J(M) and E(M), respectively. Let *R* be as above and $1=\sum_{i=1}^{n}\sum_{j=1}^{p(i)}g_{ij}$, where $\{g_{ij}\}$ is a set of mutually orthogonal primitive idempotents such that $g_{ij}R\approx g_{i1}R$ for any *j* and $g_{ij}R\approx g_{i'j'}R$ for $i \neq i'$. We put $g=\sum_{i=1}^{n}g_{i1}$ and $R_0=gRg$ i.e. gRg is the basic ring of *R* [11] and [2]. It is well known that the category of right *R*-modules is Morita equivalent to one of right R_0 -modules. We have a one to one mapping between the set of two-sided ideals *A* in *R* and one of those A_0 in R_0 such that $A_0=gAg$ and $A=RA_0R$.

Lemma 1. Let A be a two-sided ideal. We put $\overline{R} = R/A$ and $A_0 = gAg$. Then $\overline{R}_0 = R_0/A_0$ is the basic ring of \overline{R} .

Proof. It is clear that $\overline{1} = \sum_{i=1}^{n} \sum_{j=1}^{p^{(i)}} \overline{g}_{ij}$ and $\overline{g}_{ij}\overline{R} \approx \overline{g}_{i1}\overline{R}$. If $\overline{g}_{ij} \neq \overline{o}, \overline{g}_{ij}$ is also a primitive idempotent and $\overline{g}_{ij}\overline{g}_{i'j'} = \delta_{ii'}\delta_{jj'}\overline{g}_{ij}$. We assume $\overline{g}_{i1}\overline{R} \approx \overline{g}_{j1}\overline{R}$ for $i \neq j$. Then there exists x in $g_{i1}Rg_{i1}$ such that $xg_{i1}R + g_{j1}A = g_{j1}R$. Since $g_{i1}R$ $\approx g_{j1}R$, $xg_{i1}R \subseteq g_{j1}J(R)$. Hence, $g_{j1}A = g_{j1}R$ by Nakayama's Lemma and so $g_{ik} \in A$ for any k. Thus, \overline{R}_0 is the basic ring of \overline{R} .

Corollary. R satisfies one of (F*), (F**), (FQF-3) and (QS) if and only if so does the basic ring of R.

Lemma 2. Let R be a generalized uni-serial ring. Then every idecomposable non-small (resp. non-cosmall) module is injective (resp. projective).

Proof. Every indecomposable module is uni-serial by [10]. Hence, the lemma is trivial from the definitions.

Corollary 1. Every generalized uni-serial ring satisfies (F*), (F**) and (FQF-3).

Corollary 2. Let R be left and right artinian. Then the following statements are equivalent.

- 1) R satisfies (FQF-3).
- 2) R satisfies (F*).
- 3) R satisfies (F**). And
- 4) R is a generalized uni-serial ring.

Proof. $1 \leftrightarrow 4$ is proved in [6]. Corollary 1 gives $4 \rightarrow 2$ and 3). We know $2 \rightarrow 1$ and $3 \rightarrow 1$ from [5], Propositions 2.5 and 3.4.

In order to prove the theorem, we may always assume from Lemma 1 that R is basic and $g_{i1}Rg_{i1}/g_{i1}Jg_{i1}=\Delta_i$ is a division ring. Let M_{ij} be a $\Delta_i - \Delta_j$ bimodule (i < j). We defined the ring of generalized upper tri-angular ma-

M. HARADA

trices $T_n(\Delta_i; M_{ij})$ [3]. When $\Delta_i = \Delta$ for all *i* and $M_{ij} = \Delta$, we shall denote the usual upper triangular matrix ring by $T_n(\Delta)$ and the set of matrix units by $\{e_{ij}\}_{i < j}$.

Lemma 3. Let Δ_i be division rings and $R = T_n(\Delta_i; M_{ij})$. 1) We assume $e_{ii}R$ is injective and $M_{ik} \neq 0$ and $M_{ii} = 0$ for all t > k. Then $\operatorname{Hom}_{\Delta_k}(Re_{kk}/(M_{i-1k} \oplus M_{i-2k} \oplus \cdots \oplus M_{1k}), \Delta_k)$ is isomorphic to $e_{ii}R$ by multiplications of elements in $e_{ii}R$ from the left side. Hence, $M_{ip} \neq 0$ if and only if $M_{pk} \neq 0$. 2) If R is a right QF-3, $e_{11}R$ is injective.

Proof. 1) Since M_{ik} is the socle of $e_{ii}R$, $[M_{ik}: \Delta_k]=1$. We have the natural homomorphism $\varphi: e_{ii}R \to \operatorname{Hom}_{\Delta_k}(Re_{kk}/(M_{i-1k} \oplus \cdots \oplus M_{1k}), \Delta_k))$. Since $\varphi(M_{ik}) \equiv 0$, φ is monomorphic. Let f be in $\operatorname{Hom}_{\Delta_k}(Re_{kk}/(M_{i-1k} \oplus \cdots \oplus M_{1k}), \Delta_k)) = \sum_{p=i}^{k} \oplus \operatorname{Hom}_{\Delta_k}(M_{pk}, M_{ik})$ and $f=\sum f_p; f_p \in \operatorname{Hom}_{\Delta_k}(M_{pk}, M_{ik})$. Put $F_p | M_{pk} = f_p$ $F_p(M_{pi}) = 0$ for t > k. Then $F_p \in \operatorname{Hom}_R(M_{pk}R, e_{ii}R)$, since $M_{ii} = 0$ for t > k. Hence, there exists an element x_p in $e_{ii}R$ such that $F_p(m_{pk}) = x_p m_{pk}(x_p \in M_{ip})$ for every m_{pk} , since $e_{ii}R$ is injective. Therefore, $f=\varphi(\sum x_p)$. Hence, φ is isomorphic. 2) If R is right QF-3, $E(R) \approx \sum_{i \in K} \oplus (e_{ii}R)^{n_i}$ since R is semi-primary. Being $e_{ii}Re_{11} = 0$ for i > 1, the index set K must contain 1. Hence, $e_{11}R$ is injective.

Let $R = T_n(\Delta)$ and A a two-sided ideal. It is clear [9]

$$R/A = \begin{pmatrix} \Delta & \begin{bmatrix} 0 \\ \Delta & \Delta \end{bmatrix} \\ 0 & \ddots \\ & \Delta \\ & & \Delta \end{pmatrix}$$
(2.1).

We call such a form the standard form of R/A. It is easily seen that R/A is a generalized uni-serial ring of the first category. Hence, from Lemmas 1 and 2 and [2], Theorem 2 (consider $e_{nn}R$) we have

Lemma 4. Let R be a factor ring of a QF-3 and hereditary ring. Then R satisfies (F*), (F**), (FQF-3) and (QS).

Now, we shall consider the converse case.

Lemma 5. If R satisfies one of (F*), (F**), (FQF-3) and (QS), then so does every factor ring of R.

It is clear.

Lemma 6. Let $R = T_2(\Delta_1, R_2; M_{12})$. If R is two-sided indecomposable and $e_{11}R$ is injective, then R_2 is indecomposable, where Δ_1 is a division ring and R_2 is a

semi-primary ring.

Proof. From the assumptions $e_{11}R$ contains a unique minimal submodule. Hence, R_2 is indecomposable if so is R.

Lemma 7. Let R be a semi-primary, two-sided indecomposable and basic ring. We assume $J^2=0$. If R satisfies (FQF-3) and (QS), then R is isomorphic to $T_n(\Delta)/J(T_n(\Delta))^2$, where Δ is a division ring.

Proof. Let $R = \sum_{i=1}^{n} \bigoplus e_i R \bigoplus \sum_{j=1}^{m} \bigoplus f_j R$ be a decomposition of R with indecomposable modules $e_i R$ and $f_j R$, where the $e_i R$ is injective and the $f_j R$ is small (see [5], Theorem 1.3). We quote here the argument in [6], Lemma in pp. 404-405. We know $\sum \bigoplus e_i R$ is faithful. Let $x \neq 0$ be in $f_j R$. Then $(\sum \bigoplus e_i R) x$ $\neq 0$ and so there exists $e_i r$ such that $0 \neq e_i r x = e_i r f_j x \in J x$. Hence, $x \notin f_j J$ since $J^2 = 0$. Therefore, $f_j R$ is simple if $f_j R \neq 0$. Since $e_i R$ is injective and $J^2 = 0$, $e_i R$ is uni-serial. Accordingly, R is right artinian. First, we assume m=0. Then R is self-injective and so a QF-ring (see [1], Theorem 1). Therefore, R is a division ring by (QS). Thus, we may assume $m \neq 0$. We know from the above that $f_1 R$ is simple. Hence, $f_1 R g = 0$ for any primitive idempotent g $(\approx f_1)$ and $f_1 R f_1 = \Delta$ is a division ring. Thus, we have

$$R = \begin{pmatrix} R_1 & FRf_1 \\ 0 & \Delta \end{pmatrix} \qquad (2.2),$$

where $F=1-f_1$ and $R_1=FRF$ satisfies (QS) and (FQF-3). We first assume s=n+m=2. Then n=m=1. Hence, R_1 is a division ring from the case m=0. Therefore, $R\approx T_2(\Delta)$ by [2], Theorem 2 and [3], Theorem 1. Now, we shall prove the lemma by induction on s=s(R) (we assume $m \neq 0$). We have done it when $s \leq 2$. Since $s(R) > s(R_1)$, $R_1 \approx \sum \bigoplus T_{n_i}(\Delta_i)/J(T_{n_i}(\Delta_i))^2$ by the induction, where the Δ_i is a division ring. Hence, we obtain $R=T_s(\Delta_1, \Delta_2, \cdots, \Delta_{s-1}, \Delta; M_{ij})$. Lemma 3,2) shows that $e_{11}R$ is injective. It is clear $e_{kk}Re_{11}=0$ for $k \neq 1$. We put $F'=1-e_{11}$ and $R_1'=F'RF'$. Then we have

$$R = \begin{pmatrix} \Delta_1 & e_{11}RF' \\ 0 & R_1' \end{pmatrix} \qquad (2.3) \,.$$

Here R_1' is two-sided idecomposable by Lemma 6. Hence, $R_1' \approx T_{s-1}(\Delta')/J(T_{s-1}(\Delta'))^2$ by the hypothesis of induction. Now R is of the form

$$\begin{pmatrix} \Delta_1 A_2 \cdots A_s \\ \Delta' \Delta' \\ \ddots \ddots \\ \ddots \\ 0 \\ \ddots \\ 0 \\ \ddots \\ \Delta' \end{pmatrix}$$
 (2.4)

M. HARADA

Since $e_{11}R$ contains a unique (minimal) submodule, only one A_i is not zero. If $i \neq 2$, $A_2=0$ implies $M_{i-1i}=\Delta'=0$ by Lemma 3. Hence, $A_i=0$ for i>2. Since $s \geq 3$, we have $\Delta' \approx \Delta_1$ and $A_2=\Delta_1$ by the induction (cf. [3], Lemma 13).

Lemma 8. If R satisfies (FQF-3) and (QS), then R is isomorphic to a factor ring of a semi-primary hereditary ring R' such that $R/J(R) \approx R'/J(R')$.

Proof. We know $R/J^2 \approx \sum \oplus T_{n_i}(\Delta_i)/J(T_{n_i}(\Delta_i))^2$ by Lemmas 5 and 7. Hence, gl. dim $R/J^2 < \infty$ by [3], Theorem 3. Therefore, we obtain the lemma by [3], Theorem 5 and its proof.

Since $R/J(R) \approx R'/J(R')$, R' is basic and $R' \approx T_n(\Delta_i; M_{ij})$ by [3], Theorem 4'. Let $\{f_{ij}\}$ be the usual matrix units in R'. Then $gR'f_{11}=0$ for any primitive idempotent g with $gR' \approx f_{11}R'$. Let $\varphi: R' \rightarrow R$ be the ring epimorphism. Then $J(R') = \varphi^{-1}(J(R))$ and $\{e_{ii} = \varphi(f_{ii})\}$ is a complete set of mutually orthogonal primitive idempotents in R. If $0 \neq e_{jj}Re_{11} = \varphi(f_{jj}R'f_{11})$ implies j=1. Furthermore, $e_{11}J(R)e_{11} = \varphi(f_{11}J(R')f_{11}) = 0$. From now on, we shall denote e_{ii} by e_i . Then $\Delta_1 = e_1Re_1$ is a division ring from the above.

Lemma 9. If R satisfies (FQF-3) and (QS), then R is isomorphic to $\sum \oplus T_{n_i}(\Delta_i)/C_i$, where C_i is a two-sided ideal in $T_{n_i}(\Delta_i)$.

Proof. We may assume R is a two-sided indecomposable. We shall use the notations above. Put $F=1-e_1$. Then

$$R \approx \begin{pmatrix} \Delta_1 & A \\ 0 & R_1 \end{pmatrix} \qquad (2.5) \,.$$

We shall prove the lemma by induction on n, where $1 = \sum_{i=1}^{n} e_i$. If $n \leq 2$, the lemma is true by Lemma 7. We assume $n \geq 3$. Then since $e_{11}R$ is injective by Lemma 3, 2), $R_1 \approx T_{n-1}(\Delta)/C$ by Lemma 6 and the induction. Thus, we obtain

$$R = \begin{pmatrix} \Delta_1 & A_2 \cdots A_n \\ & \Delta_n & 0 \\ & \ddots & \Delta_n \\ 0 & \ddots \\ & & \Delta \end{pmatrix}$$
(2.6).

If we take a two-sided ideal Re_n and use the induction hypothesis, we know $\Delta_1 = \Delta$ and $A_i(i < n)$ is equal to either zero or Δ (cf. [3], Lemma 13). We assume $A_n \neq 0$. Since e_1R is injective and has a simple socle, $[A_n: \Delta] = 1$ as a right Δ -module. Put $A_n = u\Delta$. We know by Lemma 3 that every Δ -endomorphism of $u\Delta$ is given by a unique element of $\Delta = e_1Re_1$. Let x be in e_1Re_1 ,

6

then $xu=u\delta(x)$, where δ is a ring homomorphism of Δ . Therefore, $\delta(\Delta)=\Delta$ from the above and so $A_n=\Delta$ as a two-sided Δ -module, if $A_n \neq 0$. Now we may assume $A_k=\Delta$ and $A_{k+1}=\cdots=A_n=0$. We shall show $A_2 \neq 0$. Assume $A_2=A_3=\cdots=A_{s-1}=0$ and $A_s=\Delta$ for some $s \leq k$. We put $D=\sum_{p>s+1}^n \oplus Re_p$. Then $\bar{R}=R/D$

$$\approx \begin{pmatrix} \Delta & 0 & 0 & \cdots & \Delta \\ \Delta & | & 0 & E_2 \\ & \ddots & \Delta | & E_3 \\ 0 & \ddots & \vdots \\ & & \ddots & E_{s^{-1}} \\ & & & \Delta \end{pmatrix}$$
(2.7).

Since e_1R is *R*-injective, $E_2 = \cdots = E_{s-1} = 0$ by Lemma 3. However, R_1 is indecomposable and is of the standard form. Hence, $E_{s-1} \neq 0$, which is a contradiction. Accordingly, $A_2 \neq 0$ and $e_2Re_k \neq 0$ by Lemma 3. Again, since R_1 is of standard form, $e_iRe_k \neq 0$ for $j \leq k$. Therefore, $R \approx T_n(\Delta)/C$.

Lemma 10 ([9], Theorems 17 and 18). Let R be a two-sided indecomposable basic and generalized uni-serial ring. If there exists a primitive idempotent e such that eR is simple, then R is isomorphic to $T_n(\Delta)/C$.

Proof. R satisfies (F*) by Corollary 1 to Lemma 2. First we assume $J^2=0$. We use the same notations in the proof of Lemma 7. We assume m=0 and e_nR is simple. Since R is a QF-ring, e_nR is a two-sided ideal. Hence, R is a division ring. If $m \neq 0$, we obtain the form (2.2) and so (2.3). Hence, we can use the same argument. In general case, noting that e_1R is not simple in (2.3), we can use the induction. Therefore, Lemma 8 is true for the ring in the lemma. Again we can use the same argument in the proof of Lemma 9.

References

- [1] C. Faith: Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 178–191.
- [2] M. Harada: QF-3 and semi-primary PP-rings I, Osaka J. Math. 2 (1965), 357-368.
- [3] ———: Hereditary semi-primary rings and tri-angular matix rings, Nagoya Math.
 J. 27 (1966), 463–484.
- [4] -----: Note on hollow modules, Rev. Un. Mat. Argentina 28 (1978), 186-194.
- [5] ———: Non-small modules and non-cosmall modules, to appear in Report of Conference of ring theory at Antwerp, 1978.
- [6] Y. Kawada: A generalization of Morita's theorem concerning generalized uniserial algebras, Proc. Japan Acad. 34 (1958), 404–406.
- [7] J.P. Jans: Projective, injective modules, Pacific J. Math. 9 (1959), 1103-1108.

M. HARADA

- [8] W.W. Leonard: Small modules, Proc. Amer. Math. Soc. 17 (1966), 527-531.
- [9] I. Murase: On the structure of generalized uni-serial rings I, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 1-22.
- [10] T. Nakayama: On Frobenius algebras II, Ann of Math. 42 (1941), 1-21.
- [11] M. Osima: Notes on basic rings, Math. J. Okayama Univ. 2 (1952-53), 103-110.
- [12] M. Rayar: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ. 1971.
- [13] R.M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan