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We have been studying many interesting properties of small submodules.
W.W. Leonard [8] and M. Rayar [12] defined small modules and gave elemen-
tary properties of them. Recently, the author has studied non-small modules
and given a class of rings which are concerned with non-small modules and
located between QF-rings and QF-3 rings [4] and [5].

In this note we shall consider two conditions (%) and (*)* in [4] and [5]
(see §1) and study a semi-primary ring whose every factor ring satisfies either
(%) or (*)*. We shall show such a ring with condition (QS) (see §1) coincides
with a generalized uni-serial ring of the first category in the sense of Murase

[9].

1. The main theorem

Let R be a ring with identity. We always assume that R is a semi-primary
ring, namely the Jacobson radical J of R is nilpotent and R/ is artinian, and
every R-module is an unitary right R-module unless otherwise stated. Let
M be an R-module. By E(M) and J(M) we denote an injective hull and the
Jacobson radical of M, respectively. If M is a small submodule in E(M), we
say M is a small module [8], [12] and if M is not a small module, we say M is
non-small module [5]. As the dual concept to the above, we define a non-cosmall
module N as follows: there exist a projective module P and an epimorphism
f: P—N such that ker f is not essential in P.

In [4] and [5] we have introduced two conditions:

(%) Ewvery non-small module contains a non-zero injective module.

(*)* Every non-cosmall module contains a non-zero projective direct summand.
We have shown that if R satisfies either (%) or (*)*, then R is a right QF-3 ring
[13] (E(R) is projective by [7]) and every QF-ring satisfies both () and (x)*. Thus,
a class of rings satisfying either (*) or ()" is located between a class of QF-
rings and one of QF-3 rings when R is a left and right artinian ring. If R is
left and right artinian and eR, Re have unique composition series for every
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primitive idempotent e, we call R a generalized uni-serial ring [10]. It is easily
seen that every generalized uni-serial ring satisfies both (*) and ()" (Corollary
1 to Lemma 1 below).

Following Murase [9] we say a two-sided indecomposable generalized
uni-serial ring is in the first category, if there exists a primitive idempotent e
such that eR is simple. In order to show that some rings in the new class coincide
with the above rings, we introduce the conditions:

(F*) (resp. (F**)) Ewvery factor ring of R satisfies (%) (resp. (*)%).

(FQF-3) Ewvery factor ring of R is right QF-3. And

(QS) If a factor ring of R is a QF-ring, then it is semi-simple.

Now, we can state our theorem.

Theorem. Let R be a semi-primary ring. Then the following statements are
equivalent.

1) R satisfies (F) and (QS).

2) R satisfies (Fx*) and (QS).

3) R satisfies (FQF-3) and (QS).

4) R is isomorphic to a factor ring of QF-3 and hereditary ring. And

5) R is a direct sum of generalized uni-serial rings of the first category.

We know from [2], Theorem 2 and [9], Theorems 17 and 18 that the ring
R in the theorem is a direct sum of factor rings of rings of tri-angular ma.rices
over division rings when R is basic. Hence, it has a perspective form.

We shall give remarks on the above conditions.

RemARks 1. If R is a generalized uni-serial ring of the second category
[9], R satisfies (Fx), (F**) and (FQF-3) but not (QS) (see §2).

2. If R is a left and right artinian, then R is a generalized uni-serial ring
if and only if R satisfies (FQF-3) [6].

3. Let K<L be fields with [L: K]< oo and

K L
#=(o o)
0 XK/.
Then R satisfies (QS) but not any of (F%), (F+*) and (FQF-3).
4. If R is a commutative artinian ring and satisfies (QS), then R is a direct
sum of fields.
Because, we may assume R is a local ring with maximal ideal M. If M=0,
we could find a maximal one M’ among ideals contained in M. Then R/M'is a
QF-ring and so M/M'=0.

2. Proof of Theorem

We always assume that R is a semi-primary ring with identity and every
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R-module M is an unitary right R-module. We shall denote the Jacobson
radical and the injective hull by J(M) and E(M), respectively. Let R be as

above and lzé %) gij» where {g;;} is a set of mutually orthogonal primitive
i=1j=1

idempotents such that g;;R~g,R for any j and g;;RAxg/7R for i%i’. We

put g=i} ga and Ry=gRg i.e. gRg is the basic ring of R [11] and [2]. Itis

well known that the category of right R-modules is Morita equivalent to one
of right R-modules. We have a one to one mapping between the set of two-sided
ideals 4 in R and one of those 4, in R, such that 4,=gAg and A=RAR.

Lemma 1. Let A be a two-sided ideal. We put R=R|A and A,~gAg.

Then Ry=R,|A, is the basic ring of R.
_ n_ p() — _ .

Proof. It is clear that 1=3}312,; and g;;R~g,R. If g,;%0, g,; is also
a primitive idempotent and g;8/y=38;78;/8;;. We assume g,R~g,R for
t#j4. Then there exists x in g;Rg, such that xg,R+g,A=g,R. Since g,R
AgiR, xg,RC gy J(R). Hence, gyA=g;R by Nakayama’s Lemma and so
g EA for any k. Thus, R, is the basic ring of R.

Corollary. R satisfies one of (Fx), (Fx*), (FQF-3) and (QS) if and only
if so does the basic ring of R.

Lemma 2. Let R be a generalized uni-serial ring. Then every idecom-
posable non-small (resp. non-cosmall) module is injective (resp. projective).

Proof. Every indecomposable module is uni-serial by [10]. Hence, the
lemma is trivial from the defintions.

Corollary 1. Every generalized unmi-serial ring satisfies (Fx), (Fx*) and
(FQF-3).

Corollary 2. Let R be left and right artinian. Then the following state-
ments are equivalent.

1) R satisfies (FQF-3).

2) R satisfies (Fx).

3) R satisfies (F+*). And

4) R is a generalized uni-serial ring.

Proof. 1)e»4) is proved in [6]. Corollary 1 gives 4)—2) and 3). We
know 2)—1) and 3)—1) from [5], Propositions 2.5 and 3.4.

In order to prove the theorem, we may always assume from Lemma 1 that
R is basic and g;Rg,/g.Jga=A; is a division ring. Let M,; be a A,—A;
bimodule (:<j). We defined the ring of generalized upper tri-angular ma-
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trices T,(A,; M;;) [3]. When A,=A for all 7 and M;;=A, we shall denote
the usual upper tri-angular matrix ring by 7,(A) and the set of matrix units

by {e;j}i<;-

Lemma 3. Let A; be division rings and R=T,(A;; M;;). 1) We assume
e;;R is injective and M ;,+0 and M;,=0 for all t>k. Then Hom, (Rey/(M;
DBM;_,D---PMy), A,) is isomorphic to e R by multiplications of elements in
e;;R from the left side. Hence, M,,=+0 if and only if M,,=+0.

2) If Ris a right QF-3, e,,R is injective.

Proof. 1) Since M, is the socle of e;R, [M;,: A,]J=1. We have the
natural homomorphism @: e;R—Hom, (Re,/(M; D --- ©My), A;). Since
@(M;)=*0, @ is monomorphic. Let f be in Hom, (Rey/(M;_,,D--- DMy), A,)

k
:gp @HomAk(Mpk, Mik) and f=2f},;fp€HomAk(Mpk, M'-k). Put Flepk:‘_fﬁ

F(M,)=0 for t>k. Then F,&Homg(M,R, ¢;R), since M;=0 for t>k.
Hence, there exists an element x, in ¢;R such that F,(m,)=x,m,(x,€M,,) for
every m,,, since e;;R is injective. Therefore, f=@(3 x,). Hence, @ is isomorphic.
2) If R is right QF-3, E(R)ziezl]c@(ei,-R)"i since R is semi-primary. Being

e;;Re;,=0 for :> 1, the index set K must contain 1. Hence, e;,R is injective.

Let R=T,(A) and 4 a two-sided ideal. It is clear [9]
A 0

A Al
R/A = = @,

A
A

We call such a form the standard form of R/A. It is easily seen that R/4 is a
generalized uni-serial ring of the first category. Hence, from Lemmas 1 and 2
and [2], Theorem 2 (consider e,,R) we have

Lemma 4. Let R be a factor ring of a QF-3 and hereditary ring. Then
R satisfies (Fx), (Fx"), (FQF-3) and (QS).

Now, we shall consider the converse case.

Lemma 5. If R satisfies one of (Fx), (Fx*), (FQF-3) and (QS), then so
does every factor ring of R.

It is clear.

Lemma 6. Let R=T,(A,, Ry; My,). If R is two-sided indecomposable and
enR is injective, then R, is indecomposable, where A, is a division ring and R, is a



Facror RiNGs oF A HErepITARY AND QF-3 RiNG 5
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Proof. From the assumptions e;,R contains a unique minimal submodule.
Hence, R, is indecomposable if so is R.

Lemma 7. Let R be a semi-primary, two-sided indecomposable and basic
ring. We assume J*=0. If R satisfies (FQF-3) and (QS), then R is isomorphic
to T,(A)/J(T,(A))?, where A is a division ring.

Proof. Let R=$ GBe,-REBﬁ @ f;R be a decomposition of R with inde-

composable modules ¢;R and f;R, where the ¢,R is injective and the f;R is small
(see [5], Theorem 1.3). We quote here the argument in [6], Lemma in pp.
404 -405. We know X)@e;R is faithful. Let x+0 be in f;R. Then (3)Pe¢;R)x
%0 and so there exists e such that Oferx=ezfxE Jx. Hence, x¢ f;] since
J?=0. Therefore, f;R is simple if f;R=+0. Since ¢R is injective and J*=0,
e;R is uni-serial. Accordingly, R is right artinian. First, we assume m=0.
Then R is self-injective and so a QF-ring (see [1], Theorem 1). Therefore,
R is a division ring by (QS). Thus, we may assume m=0. We know from
the above that fiR is simple. Hence, fRg=0 for any primitive idempotent g
(=& 1) and fiRfi=A is a division ring. Thus, we have

R:(I;‘ E ff‘) 2.2),

where F=1—f; and R,=FRF satisfies (QS) and (FQF-3). We first assume
s=n+m=2. Then n=m=1. Hence, R, is a division ring from the case
m=0. Therefore, R~T,(A) by [2], Theorem 2 and [3], Theorem 1. Now,
we shall prove the lemma by induction on s=s(R) (we assume m==0). We have
done it when s<2. Since s(R)>s(R)), Ri=X1PT,(A)J(T,(A))} by the
induction, where the A, is a division ring. Hence, we obtain R=T(A,, A,
A, Ay M;;). Lemma 3,2) shows that ¢, R is injective. It is clear e,Re;=0
for k#=1. We put F'=1—¢; and R,'=F'RF’. Then we have

Al euRFI)
R= 2.3).
( 0 Rll ( )

Here R," is two-sided idecomposable by Lemma 6. Hence, R,/’~T, ;(A’)/
J(T,_,(A"))? by the hypothesis of induction. Now R is of the form

Ay Ay eerene A,
A A
e 0 2.4)
0 A
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Since e;,R contains a unique (minimal) submodule, only one A4; is not zero. If
i%+2, A,=0 implies M; ;;=A'=0 by Lemma 3. Hence, 4;=0 for >2.
Since s>3, we have A’~A, and 4,=A, by the induction (cf. [3], Lemma 13).

Lemma 8. If R satisfies (FQF-3) and (QS), then R is isomorphic to a factor
ring of a semi-primary hereditary ring R’ such that R[J(R)~R’[J(R').

Proof. We know R/*~3 DT, (A)J(T,(A))? by Lemmas 5 and 7.
Hence, gl. dim R/J?*< oo by [3], Theorem 3. Therefore, we obtain the lemma
by [3], Theorem 5 and its proof.

Since R/J(R)~R'[J(R’), R’ is basic and R'~T,(A;; M;;) by [3], Theorem
4’. Let {f;} be the usual matrix units in R’. Then gR'f;=0 for any
primitive idempotent g with gR'Axf;,R’. Let @: R'— R be the ring epimor-
phism. Then J(R)=¢@ }(J(R)) and {e;=o(f,)} is a complete set of
mutually orthogonal primitive idempotents in R. If Oze;;Re,=(f;;R'fn)
implies j=1. Furthermore, e, J(R)en=o(fuJ(R')f1)=0. From now on, we
shall denote e; by e;, Then A;=eRe, is a division ring from the above.

Lemma 9. If R satisfies (FQF-3) and (QS), then R is isomorphic to
2DT,(A)[C;, where C; is a two-sided ideal in T, (A,).

Proof. We may assume R is a two-sided indecomposable. We shall use
the notations above. Put F=1—e¢,. Then

R~ (‘3‘ ]‘:) (2.5).

We shall prove the lemma by induction on n, where 1=i} e;. If n<2, the

lemma is true by Lemma 7. We assume #>3. Then since ¢, R is injective
by Lemma 3, 2), Ry~T,_,(A)/C by Lemma 6 and the induction. Thus, we
obtain

Ay Apeererees A,
A ., |-' 0
R= N (2.6)
0
A

If we take a two-sided ideal Re, and use the induction hypothesis, we know
A=A and AJ(i<n) is equal to either zero or A (cf. [3], Lemma 13). We
assume A4,+0. Since R is injective and has a simple socle, [4,: A]=1 as a
right A-module. Put 4,=uA. We know by Lemma 3 that every A-endo-
morphism of %A is given by a unique element of A=e;Re;. Let x be in e,Re,,
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then xu=ud(x), where 8 is a ring homomorphism of A. Therefore, §(A)=A
from the above and so 4,=A as a two-sided A-module, if 4,4+0. Now we
may assume A,=A and 4,,,=---=A4,=0. We shall show A,#%0. Assume

Ay=Ay=--=A,_,=0 and A,=A for some s<k. We put D= é @®Re,. Then
P>s+1
R=R/D

Pl @2.7).

Since ¢,R is R-injective, E,=...=E,_ ;=0 by Lemma 3. However, R, is in-
decomposable and is of the standard form. Hence, E,_,#+0, which is a con-
tradiction. Accordingly, 4,%0 and e,Re,#0 by Lemma 3. Again, since R, is
of standard form, e;Re,#0 for j<k. Therefore, R~T,A)/C.

Lemma 10 ([9], Theorems 17 and 18). Let R be a two-sided indecomposable
basic and generalized uni-serial ring. If there exists a primitive idempotent e such
that eR is simple, then R is isomorphic to T (A)/C.

Proof. R satisfies (F%) by Corollary 1 to Lemma 2. First we assume
J?=0. We use the same notations in the proof of Lemma 7. We assume
m=0 and ¢,R is simple. Since R is a QF-ring, ¢,R is a two-sided ideal. Hence,
R is a division ring. If m=0, we obtain the form (2.2) and so (2.3). Hence,
we can use the same argument. In general case, noting that ¢R is not simple
in (2.3), we can use the induction. Therefore, Lemma 8 is true for the ring in
the lemma. Again we can use the same argument in the proof of Lemma 9.
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