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We have been studying many interesting properties of small submodules.
W.W. Leonard [8] and M. Rayar [12] defined small modules and gave elemen-
tary properties of them. Recently, the author has studied non-small modules
and given a class of rings which are concerned with non-small modules and
located between QF-rings and QF-3 rings [4] and [5].

In this note we shall consider two conditions (*) and (*)* in [4] and [5]
(see §1) and study a semi-primary ring whose every factor ring satisfies either
(*) or (*)*. We shall show such a ring with condition (QS) (see §1) coincides
with a generalized uni-serial ring of the first category in the sense of Murase
[9]

l The main theorem

Let R be a ring with identity. We always assume that R is a semi-primary
ring, namely the Jacobson radical / of R is nilpotent and R/J is artinian, and
every i?-module is an unitary right jR-module unless otherwise stated. Let
M be an i?-module. By E(M) and J(M) we denote an injective hull and the
Jacobson radical of M, respectively. If M is a small submodule in E(M), we
say M is a small module [8], [12] and if M is not a small module, we say M is
non-small module [5]. As the dual concept to the above, we define a non-cosmall
module N as follows: there exist a projective module P and an epimorphism
/ : P-+N such that ker / is not essential in P.

In [4] and [5] we have introduced two conditions:
(*) Every non-small module contains a non-zero injective module.
(*)* Every non-cosmall module contains a non-zero projective direct summand.

We have shown that if R satisfies either (*) or (*)*, then J? is a right QF-3 ring
[13] (E(R) is projective by [7]) and every QF-ring satisfies both (*) and (*)*. Thus,
a class of rings satisfying either (*) or (*)* is located between a class of QF-
rings and one of QF-3 rings when R is a left and right artinian ring. If R is
left and right artinian and eR, Re have unique composition series for every
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primitive idempotent e, we call R a generalized uni-serial ring [10]. It is easily
seen that every generalized uni-serial ring satisfies both (*) and (*)* (Corollary
1 to Lemma 1 below).

Following Murase [9] we say a two-sided indecomposable generalized
uni-serial ring is in the first category', if there exists a primitive idempotent e
such that eR is simple. In order to show that some rings in the new class coincide
with the above rings, we introduce the conditions:

(F*) (resp. (F**)) Every factor ring of R satisfies (*) (resp. (*)*).
(FQF-3) Every factor ring of R is right QF-3. And
(QS) If a factor ring of R is a QF-ring, then it is semi-simple.
Now, we can state our theorem.

Theorem. Let Rbe a semi-primary ring. Then the following statements are
equivalent.

1) R satisfies (F*) and (QS).
2) R satisfies (F**) and (QS).
3) R satisfies (FQF-3) and (QS).
4) R is isomorphic to a factor ring of QF-3 and hereditary ring. And
5) R is a direct sum of generalized uni-serial rings of the first category.

We know from [2], Theorem 2 and [9], Theorems 17 and 18 that the ring
R in the theorem is a direct sum of factor rings of rings of tri-angular ma:rices
over division rings when R is basic. Hence, it has a perspective form.

We shall give remarks on the above conditions.

REMARKS 1. If R is a generalized uni-serial ring of the second category
[9], R satisfies (F*), (F**) and (FQF-3) but not (QS) (see §2).

2. If R is a left and right artinian, then R is a generalized uni-serial ring
if and only if R satisfies (FQF-3) [6].

3. Let K^L be fields with [L: K]<oo and

Mo
Then R satisfies (QS) but not any of (F*), (F**) and (FQF-3).

4. If R is a commutative artinian ring and satisfies (QS), then R is a direct
sum of fields.

Because, we may assume R is a local ring with maximal ideal M. If MΦO,
we could find a maximal one M' among ideals contained in M. Then R/M' is a
QF-ring and so M/M'=0.

2. Proof of Theorem

We always assume that R is a semi-primary ring with identity and every
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i?-module M is an unitary right i?-module. We shall denote the Jacobson
radical and the injective hull by J(M) and E(M), respectively. Let R be as

n KO

above and l = Σ Σ f t i » where {£,7} is a set of mutually orthogonal primitive

idempotents such that g^R^gaR for any j and g^R^gs/R for /=M'. We
n

put g=*Σga and R0=gRg i.e. £i?£ is the basic ring of R [11] and [2]. It is

well known that the category of right i?-modules is Morita equivalent to one
of right i?0-modules. We have a one to one mapping between the set of two-sided
ideals A in R and one of those Ao in Ro such that A0=gAg and A=RAQR.

Lemma 1. Let A be a two-sided ideal We put R=R/A and A0=gAg.
Then R0=R0JA0 is the basic ring of R.

_ n pCO _

Proof. It is clear that l = Σ Σ £ ι / a n d SijR^SnR- I f Su*0* Sijίs a l s o

a primitive idempotent and guSi'j'—^n'^jj'Eij We assume gnR^gjiR for
Then there exists x in gaRga such that xgaR+gjlA=gjlR. Since gaR
, xgaR^gjiJ(R) Hence, gjιA=gjιR by Nakayama's Lemma and so
for any k. Thus, l?0 is the basic ring of R.

Corollary. R satisfies one of (F*), (F**), (FQF-3) and (QS) if and only
if so does the basic ring of R.

Lemma 2. Let R be a generalized uni-serial ring. Then every {decom-
posable non-small (resp. non-cosmalΐ) module is injective (resp. projective). -

Proof. Every indecomposable module is uni-serial by [10]. Hence, the
lemma is trivial from the defintions.

Corollary 1. Every generalized uni-serial ring satisfies (F*), (F**) and
(FQF-3).

Corollary 2. Let R be left and right artinian. Then the following state-
ments are equivalent.

1) R satisfies (FQF-3).
2) R satisfies (F*).
3) R satisfies (F**). And
4) R is a generalized uni-serial ring.

Proof. l)<->4) is proved in [6]. Corollary 1 gives 4)-»2) and 3). We
know 2)->l) and 3)->l) from [5], Propositions 2.5 and 3.4.

In order to prove the theorem, we may always assume from Lemma 1 that
R is basic and giiRgiilgaJga=Ai is a division ring. Let M{j be a Δ,—Δy
bimodule (i<j)- We defined the ring of generalized upper tri-angular ma-
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trices Tn{At\Mi}) [3]. When Δ,=Δ for all i and M —Δ, we shall denote

the usual upper tri-angular matrix ring by Tn(A) and the set of matrix units

by K}ί<i

Lemma 3. Let Δf be division rings and i?=T n (Δ t ; Mh). 1) We assume
ei{R is injective and M|jfe4=θ and Mit=0 for all t>k. Then Hom^ k(Rekkl(M^lk

ΘM$ _2*Θ' 0Λ î*)> Δ*) is isomorphic to eHR by multiplications of elements in
eHRfrom the left side. Hence, Λί^ΦO if and only if Λf^ΦO.
2) If R is a right QF-3, enR is injective.

Proof. 1) Since Mik is the socle of eHR9 [Mik: Δ J = 1 . We have the
natural homomorphism φ: eiiR-+Homάk(Rekkl(Mi_lk(B (BMlk)9 Ak). Since
<p(Mik)^0, ψ is monomorphic. Let / be in HomΔΛ(i?eH/(M, _ u φ φ M u ) , Ak)

, Mik) and f=?lfp;fpelIomAk(Mpk, Mik). Put Fp\Mpk=fpΣ
Fp(Mpt)=O for t>k. Then FptΞΪlomR(MpkR, euR), since Mit=0 for t>k.
Hence, there exists an element xp in euR such that Fp(mpk)—xpmpk(xp&Mip) for
every mpk, since eHR is injective. Therefore, / = ^ > ( Σ ^ ) Hence, φ is isomorphic.
2) If JR is right Q F - S ^ ^ J ^ Σ θ M ) 1 1 ' since i? is semi-primary. Being

eiiRen=0 for ί > 1, the index set K must contain 1. Hence, euR is injective.

Let R= Tn(A) and 4̂ a two-sided ideal. It is clear [9]

/Δ I 0
Δ

o

Δ/

(2.1).

We call such a form the standard form of R/A. It is easily seen that R/A is a
generalized uni-serial ring of the first category. Hence, from Lemmas 1 and 2
and [2], Theorem 2 (consider ennR) we have

Lemma 4. Let R be a factor ring of a QF-3 and hereditary ring. Then
R satisfies (F*), (F**), (FQF-3) and (QS).

Now, we shall consider the converse case.

Lemma 5. // R satisfies one of (F*), (F**), (FQF-3) and (QS), then so
does every factor ring of R.

It is clear.

Lemma 6. Let R= T2(AU R2; M12). If R is two-sided indecomposable and
euR is injective, then R2 is indecomposable, where Ax is a division ring and R2 is a
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semi-primary ring.

Proof. From the assumptions enR contains a unique minimal submodule.
Hence, R2 is indecomposable if so is R.

Lemma 7. Let R be a semi-primary, two-sided indecomposable and basic
ring. We assume J2=0. If R satisfies (FQF-3) and (QS), then R is isomorphic
to Tn{A)IJ(Tn(A))\ where A is a division ring.

Proof. L e t i ? = Σ 0 ^ / ? θ Σ Θ//Λ be a decomposition of i? with inde-
composable modules e{R and /;i?, where the eti? is injective and the fjR is small
(see [5], Theorem 1.3). We quote here the argument in [6], Lemma in pp.
404-405. We know Σ Q e f i is faithful. Let *Φθ be in/;J?. Then (ΣlΦe^x
Φθ and so there exists e? such that 0^eirx=eirfjxG:Jx. Hence, x&fjj since
β=Q. Therefore, fjR is simple if/yi?Φθ. Since efi is injective and J*=0,
eJR is uni-serial. Accordingly, R is right artinian. First, we assume m=0.
Then R is self-injective and so a QF-ring (see [1], Theorem 1). Therefore,
R is a division ring by (QS). Thus, we may assume wΦO. We know from
the above that fxR is simple. Hence, fχRg=0 for any primitive idempotent g
(Φ/i) and fιRfι=A is a division ring. Thus, we have

where F=\-fλ and Rλ=FRF satisfies (QS) and (FQF-3). We first assume
ί = n + m = 2 . Then w=w=l. Hence, i?χ is a division ring from the case
m=0. Therefore, R^T2(A) by [2], Theorem 2 and [3], Theorem 1. Now,
we shall prove the lemma by induction on s=s(R) (we assume mΦO). We have
done it when s<2. Since s(R)>s(R1), R^^φT^A^/^T^Ai))2 by the
induction, where the Δ, is a division ring. Hence, we obtain R=Ts(Aly Δ2 ,
Δs_i, Δ; Mξj). Lemma 3,2) shows that enR is injective. It is clear ekkReu=0
for ΛΦl. We put F'=l-en and R^F'RF'. Then we have

Δ x enRF'

Here R.χ is two-sided idecomposable by Lemma 6. Hence, Rι<
' ) ) 2 by the hypothesis of induction. Now R is of the form

, Λ Aλ
Δ'Δ '

0 --.
Δ'/
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Since enR contains a unique (minimal) submodule, only one A{ is not zero. If
iΦ2, A2=0 implies M l _ l t = Δ / = 0 by Lemma 3. Hence, J , = 0 for i>2.
Since s>3, we have Δ ' « Δ i and A2=Aχ by the induction (cf. [3], Lemma 13).

Lemma 8. If R satisfies (FQF-3) and (QS), then R is isomorphic to a factor
ring of a semi-primary hereditary ring Rf such that RjJ{R)^R'IJ{R').

Proof. We know RjJ2^Σl@Tni{A^J{Tni{At))2 by Lemmas 5 and 7.
Hence, gl. dim R/J2<oo by [3], Theorem 3. Therefore, we obtain the lemma
by [3], Theorem 5 and its proof.

Since i?//(i?)^i?'//(i?')> R' is basic and i? '^Γ n (Δ t ; Mh) by [3], Theorem
4'. Let {fu} be the usual matrix units in R'. Then gR'fn=0 for any
primitive idempotent g with gR'^fnR

f. Let φ: R'-*R be the ring epimor-
phism. Then J{R')=φ~\J(R)) and {eii=φ(fii)} is a complete set of
mutually orthogonal primitive idempotents in R. If 0^ejjRen—φ(fjjR'f11)
implies j=l. Furthermore, euJ(R)en=φ(fnJ(R')fu)=O. From now on, we
shall denote eu by e{. Then Aι=exReι is a division ring from the above.

Lemma 9. If R satisfies (FQF-3) and (QS), then R is isomorphic to
,, where C, is a two-sided ideal in Tn.(At).

Proof. We may assume R is a two-sided indecomposable. We shall use
the notations above. Put F=\—ev Then

Δ,

n

We shall prove the lemma by induction on n, where l = Σ ^ i If w<2, the
= l

lemma is true by Lemma 7. We assume w>3. Then since euR is injective
by Lemma 3, 2), i?1^T'n^1(Δ)/C by Lemma 6 and the induction. Thus, we
obtain

/Δ,

R=

Δ . I °
' "•• Δj_

*Δ/

(2-6).

If we take a two-sided ideal i?eM and use the induction hypothesis, we know
Δχ=Δ and Ai{i<n) is equal to either zero or Δ (cf. [3], Lemma 13). We
assume 4̂n=t=0. Since exR is injective and has a simple socle, [An: Δ ] = l as a
right Δ-module. Put An=uA. We know by Lemma 3 that every Δ-endo-
morphism of uA is given by a unique element of A=e1Re1. Let x be in exReu
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then xu=uδ(x), where δ is a ring homomorphism of Δ. Therefore, δ(Δ)=Δ
from the above and so An=A as a two-sided Δ-module, if ^4nΦ0. Now we
may assume Ak=A and Ak+1=-~=An=0. We shall show A2^0. Assume

A2=A3= — =As_1=0 and ^4S=Δ for some s*ζk. We put D= 2 ®Re1). Then

R=RjD

/Δ 0 0
Δ

0

Δ \
E2

Δ7

(2.7).

Since eλR is i?-injective, E2= "=Es_1=0 by Lemma 3. However, Rλ is in-
decomposable and is of the standard form. Hence, Z ^ Φ O , which is a con-
tradiction. Accordingly, A2φ0 and e2RekΦ0 by Lemma 3. Again, since Rι is
of standard form, ejRek*0 for jtζk. Therefore, R^Tn(A)/C.

L e m m a 10 ([9], Theorems 17 and 18). Let R be a two-sided indecomposable
basic and generalized uni-serial ring. If there exists a primitive ίdempotent e such
that eR is simple, then R is isomorphic to TΛ(Δ)/C.

Proof. R satisfies (F*) by Corollary 1 to Lemma 2. First we assume
J2=0. We use the same notations in the proof of Lemma 7. We assume
m=0 and enR is simple. Since R is a QF-ring, enR is a two-sided ideal. Hence,
R is a division ring. If m+O, we obtain the form (2.2) and so (2.3). Hence,
we can use the same argument. In general case, noting that exR is not simple
in (2.3), we can use the induction. Therefore, Lemma 8 is true for the ring in
the lemma. Again we can use the same argument in the proof of Lemma 9.
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