THE RIEMANN-ROCH THEOREM FOR COMPLEX V-MANIFOLDS

Tetsuro KAWASAKI ${ }^{1)}$

(Received January 31, 1978)

Introduction and statement of theorem. This note is the sequel to our work [10]. We shall apply our method to the $\bar{\partial}$-operators over complex V manifolds. Our result is a generalization of the Hirzebruch-Riemann-Roch Theorem (see Atiyah-Singer [4] and Hirzebruch [8]) to the case of complex V manifolds and holomorphic vector V-bundles.

Let M be a compact complex manifold with a holomorphic action of a finite group G and let $E \rightarrow M$ be a G-equivariant holomorphic vector bundle. We denote by $\mathcal{O}(E)$ the sheaf of local holomorphic sections of E. Then AtiyahSinger [4] proved: For each $g \in G$,

$$
\begin{align*}
\chi(g, M ; \mathcal{O}(E)) & =\sum_{i}(-1)^{z} \operatorname{trace}_{C}\left[g \mid H^{\imath}(M ; \mathcal{O}(E))\right] \tag{I}\\
& =\left\langle\mathscr{I}^{g}(M ; E),\left[M^{g}\right]\right\rangle .
\end{align*}
$$

Here $\mathscr{D}^{g}(M ; E)$ is the equivariant Todd class.
Now the orbit space M / G has a structure of an analytic space and the local G-invariant holomorphic sections of E define a coherent anayltic sheaf $\mathcal{O}_{V}(E / G)$ over M / G. Then, by averaging (I) for all $g \in G$, we have:

$$
\begin{align*}
\chi\left(M / G ; \mathcal{O}_{V}(E / G)\right) & =\sum_{i}(-1)^{2} \operatorname{dim}_{C} H^{2}\left(M / G ; \mathcal{O}_{V}(E / G)\right) \tag{II}\\
& =\frac{1}{|G|} \sum_{g \in G}\left\langle\mathscr{I}^{g}(M ; E),\left[M^{g}\right]\right\rangle .
\end{align*}
$$

We shall generalize this formula to the case of complex V-manifolds. The notion of V-manifold was introduced by Satake [11]. In [10] we have stated the precise definitions concerning V-manifold structures. So, here we put a brief description of complex V-manifolds and holomorphic vector V bundles. Let X be an analytic space admitting only quotient singularities. A complex V-manifold structure Q^{c} over X is the following: For each sufficiently small connected open set U in $X, C^{c}(U)="\left(G_{U}, \widetilde{U}\right) \rightarrow U^{\prime \prime}$ is a ramified covering $\widetilde{U} \rightarrow U$ such that \widetilde{U} is a connected complex manifold with an effective

[^0]holomorphic action of a finite group G_{L} and the projection $\tilde{U} \rightarrow U$ gives an identification $U \approx \widetilde{U} / G_{U}$ of analytic spaces. For a connected open subset $V \subset U$, we assume also, that there is a biholomorphic open embedding $\varphi: \widetilde{V} \rightarrow \tilde{U}$ that covers the inclusion $V \subset U$. Then the choice of φ is unique upto the action of G_{U} and each φ defines an injective group homomorphism $\lambda_{\varphi}: G_{V} \rightarrow G_{U}$ that makes φ be λ_{φ}-equivariant. Let $p: E \rightarrow X$ be a holomorphic map between analytic spaces. A holomorphic vector V-bundle structure \mathscr{B} on " $E \rightarrow X$ " is the following: For small $U \subset X, \mathcal{B}(U)=\left(G_{U}, \widetilde{p}_{U}: \widetilde{E}_{U} \rightarrow \widetilde{U}\right)$ is a G_{U}-equivariant holomorphic vector bundle with an identification " $p \mid p^{-1}(U): p^{-1}(U) \rightarrow U$ " \cong " $\tilde{p}_{U} / G_{U}: \widetilde{E_{U}} / G_{U} \rightarrow$ $\widetilde{U} / G_{U} "$. For $V \subset U$, we assume that there is a holomorphic bundle map $\Phi: \widetilde{E_{V}}$ $\rightarrow \widetilde{E}_{U}$ over some open embedding $\varphi: \widetilde{V} \rightarrow \widetilde{U}$ that covers the inclusions $p^{-1}(V)$ $\subset p^{-1}(U)$ and $V \subset U$. Then Φ becomes a λ_{φ}-equivariant bundle map. (In the terminology of [10], (E, \mathcal{B}) is a "proper" holomorphic vector V-bundle).

Now let X be a compact complex V-manifold and let $E \rightarrow X$ be a holomorphic vector V-bundle. The local G_{U}-invariant holomorphic sections of $\widetilde{E_{U}} \rightarrow \widetilde{U}$ define a coherent analytic sheaf $\mathcal{O}_{V}(E)$ over an analytic space X. Then we have the arithemtic genus $\chi\left(X ; \mathcal{O}_{V}(E)\right)=\sum_{i}(-1)^{i} \operatorname{dim}_{c} H^{i}\left(X ; \mathcal{O}_{V}(E)\right)$. We can choose invariant smooth linear connections on complex vector bundles $\widetilde{E_{U}} \rightarrow \widetilde{U}$, complex tangent bundles $T \widetilde{U} \rightarrow \widetilde{U}$ and complex normal bundles $\nu\left(\widetilde{U}^{g} \subset \widetilde{U}\right) \rightarrow \widetilde{U}^{g}$ for all U and for all $g \in G_{U}$, such that they are compatible with open embeddings Φ 's and φ 's. Then, by the Weil homomorphism, we have the equivariant Todd form $\mathscr{\beth}^{g}\left(\widetilde{U} ; \widetilde{E}_{U}\right)$ for each \widetilde{U}^{g}. Then we can state our theroem in the following form. Let $\left\{f_{U}\right\}$ be a (smooth or continuous) partition of unity on X, then,

$$
\begin{equation*}
\chi\left(X ; \mathcal{O}_{V}(E)\right)=\sum_{U} \frac{1}{\left|G_{U}\right|} \sum_{g \in G_{U}} \int_{\widetilde{U}^{g}} f_{U} \mathscr{L}^{g}\left(\widetilde{U} ; \widetilde{E}_{U}\right) . \tag{III}
\end{equation*}
$$

For each local coordinate $\left(G_{U}, \widetilde{U}\right)$ and for each $g \in G_{U}$, we consider \widetilde{U}^{g} as a complex manifold on which the centralizer $Z_{G_{J}}(g)$ acts. For $V \subset U$, the open embedding $\varphi: \widetilde{V} \rightarrow \widetilde{U}$ defines a natural open embedding $\widetilde{V}^{h} / Z_{G_{V}}(h) \rightarrow{\widetilde{U^{g}}}^{g} / Z_{G_{V}}(g)$ of analytic spaces, where $g=\lambda_{\varphi}(h)$. This embedding is unique for a fixed pair (g, h). We patch all $\widetilde{U}^{g} / Z_{G_{J}}(g)$'s together by these identifications. Then we get a disjoint union of complex V-manifolds of various dimensions:

$$
X \Perp \widetilde{\Sigma} X=\underset{\left(G_{U}, \tilde{u}\right), g \in G_{U}}{\cup} \widetilde{U}^{g} / Z_{G_{U}}(g),
$$

(X corresponds to the portion defined by $g=1$).
We have a canonical map $\widetilde{\widetilde{\Sigma}} X \rightarrow X$ covered locally by the inclusion $\widetilde{U}^{g} \subset \tilde{U}$. For each $x \in X$, we can choose a coordinate neighbourhood (G_{x}, \widetilde{U}_{x}) such that $x \in \widetilde{U}_{x}$ is a fixed point of $G_{x} . G_{x}$ is unique upto isomorphisms. Then the number of pieces of $\widetilde{\widetilde{\Sigma}} X$ over x is equal to the number of the conjugacy classes of G_{x} other
than the identity class.
Let $\widetilde{\Sigma} X_{1}, \widetilde{\bar{\Sigma}} X_{2}, \cdots, \widetilde{\bar{\Sigma}} X_{c}$ be all the connected components of $\widetilde{\bar{\Sigma}} X$. To each $\widetilde{\widetilde{\Sigma}} X_{i}$, we assign a number m_{i}, defined by:

$$
\begin{aligned}
& m_{i}=\left|\operatorname{kernel}\left[Z_{G_{J}}(g) \rightarrow \operatorname{Aut}\left(\widetilde{U}^{g}\right)\right]\right| \\
& \quad\left(\widetilde{U}^{g} / Z_{G_{J}}(g) \subset \widetilde{\widetilde{\Sigma}} X_{i}\right)
\end{aligned}
$$

Now the formal sum $\sum_{g \in G_{U}} \mathscr{I}^{g}\left(U ; E_{U}\right)$ defines a "differential form" on $X \Perp \widetilde{\widetilde{\Sigma}} X$. It represents a cohomology class $\mathcal{I}(X ; E)+\mathscr{I}^{\Sigma}(X ; E)$ in $H^{*}(X \Perp \widetilde{\widetilde{\Sigma}} X ; \boldsymbol{C})$. This class is independent of the choice of the connections. Then we get the following theorem:

Theorem. Let X be a compact complex V-manifold and let $E \rightarrow X$ be a holomorphic vector V-bundle. Then:

$$
\begin{align*}
& \chi\left(X ; \Theta_{V}(E)\right)=\langle\mathscr{I}(X ; E),[X]\rangle \tag{IV}\\
& \quad+\sum_{i=1}^{c} \frac{1}{m_{i}}\left\langle\mathscr{I}^{\Sigma}(X ; E),\left[\widetilde{\widetilde{\Sigma}} X_{i}\right]\right\rangle .
\end{align*}
$$

Remark 1. Since the class $\mathcal{I}(X ; E)$ is defined over rationals, the term $\langle\mathscr{I}(X ; E),[X]\rangle$ is a rational number.

Remark 2. For the case when $X=\Gamma \backslash \tilde{X}$, where \tilde{X} is a complex manifold and Γ is a properly discontinuous group acting holomorphically on \tilde{X}, the number $\langle\mathscr{I}(X ; E),[X]\rangle$ is just the Γ-index $\operatorname{ind}_{\Gamma}\left(\left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}\right)$ defined by Atiyah [1]. (Though Γ acts freely in [1], the similar argument holds for the case when Γ has finite isotropies, see III) below).

The proof of our theorem is a combination of our work [10] and Gilkey's result [7] on the Lefschetz fixed point formula for the Dolbeault complexes. Here we shall place a complete proof.

Proof of Theorem. In this proof, we use the "heat kernel-zeta function" method. We reivew the results briefly. (See Seeley [12], Atiyah-Bott-Patodi [2], Gilkey [6], [7], Donnelly-Patodi [5] and Kawasaki [10]).

Let U be a germ of a Riemannian manifold and let $E_{U} \rightarrow U$ be a smooth complex vector bundle with a smooth Hermitian fibre metric. Let $g: E_{U} \rightarrow E_{U}$ be an isometry of the pair $\left(U, E_{U}\right)$. Let $A: \mathcal{C}^{\infty}\left(U ; E_{U}\right) \rightarrow \mathcal{C}^{\infty}\left(U: E_{U}\right)$ be a g-invariant, formally self-adjoint, positive semi-definite, elliptic differential operator. Then we have a smooth measure Z_{A}^{g} on the fixed point set $U^{g} . Z_{A}^{g}$ is a local invariant of the action of g and of the operator A. It is given by a universal expression in g and A. The explicit form of Z_{A}^{δ} is given in [10]. Z_{A}^{g} has the following properties:
I) Let M be a compact Riemannian manifold and let $g: M \rightarrow M$ be an isometry. Let E, F be two g-equivariant smooth complex vector bundles over M with g-invariant Hermitian fibre metrics. Let $D: \mathcal{C}^{\infty}(M ; E) \rightarrow \mathcal{C}^{\infty}(M ; F)$ be a g-invariant elliptic differential operator. Then we have the adjoint operator $D^{*}: \mathcal{C}^{\infty}(M ; F) \rightarrow \mathcal{C}^{\infty}(M ; E)$ and two g-invariant, self-adjoint, positive semi-definite, elliptic differential operators $D^{*} D$ and $D D^{*}$. Pur $\mu_{D}^{g}=Z_{D * D}^{g}-Z_{D D^{*}}^{g}$. Then the equivariant index ind (g, D) is given by:

$$
\operatorname{ind}(g, D)=\int_{M^{g}} \mathrm{~d} \mu_{D}^{g}
$$

II) (Kawasaki [10]). Let X be a compact Riemannian V-manifold and let E, F be two "proper" differentiable complex vector V-bundles over X. Let $D: \mathcal{C}_{V}^{\infty}(X ; E) \rightarrow \mathcal{C}_{V}^{\infty}(X ; F)$ be an elliptic differntial operator, that is, a family $\left\{\tilde{D}_{U}: \mathcal{C}^{\infty}\left(\widetilde{U} ; \widetilde{E}_{U}\right) \rightarrow \mathcal{C}^{\infty}\left(\widetilde{U} ; \widetilde{F}_{U}\right\}\right)_{\left(G_{G}, \tilde{U}\right)}$ of invariant elliptic differential operators that are compatible with attaching maps $\{\Phi\}: \widetilde{E}_{V} \rightarrow \widetilde{E}_{U}$ and $\{\Psi\}: \widetilde{F}_{V} \rightarrow \widetilde{F}_{U}$. Then D operates on the differentiable V-sections and the kernel and the cokernel of the operator D are finite dimensional. We define the V-index $\operatorname{ind}_{V}(D)$ of the operator D by:

$$
\begin{aligned}
& \operatorname{ind}_{V}(D)=\operatorname{dim}_{C} \operatorname{kernel}\left[D: \mathcal{C}_{V}^{\infty}(X ; E) \rightarrow \mathcal{C}_{V}^{\infty}(X ; F)\right] \\
& \quad-\operatorname{dim}_{C} \text { cokernel }\left[D: \mathcal{C}_{V}^{\infty}(X ; E) \rightarrow \mathcal{C}_{V}^{\infty}(X ; F)\right]
\end{aligned}
$$

For each coordinate neighbourhood $\left(G_{U}, \widetilde{U}\right)$, we have a formal sum of measures:

$$
\sum_{g \in G_{U}} \mu_{\tilde{D}_{U}}^{g}=\sum_{g \in G_{U}}\left(Z_{\tilde{D}_{J}^{*} \tilde{D}_{U}}^{g}-Z_{\tilde{D}_{U}}^{g} \tilde{D}_{U}^{*}\right) .
$$

These formal sums define a measure $\mu_{D}+\mu_{\bar{D}}$ over $X \Perp \widetilde{\bar{\Sigma}} X$. Then the V-index $\operatorname{ind}_{V}(D)$ is given by:

$$
\operatorname{ind}_{V}(D)=\int_{X} \mathrm{~d} \mu_{D}+\sum_{i=1}^{c} \frac{1}{m_{i}} \int_{\widetilde{\Sigma} x_{i}} \mathrm{~d} \mu_{\widetilde{D}}^{\Sigma} .
$$

III) (See Aityah [1]). Let \tilde{X} be a (non-compact) Riemannian manifold and let Γ be a properly discontinuous group acting on \tilde{X} as isometries. We assume that the orbit V-manifold $X=\Gamma \backslash \tilde{X}$ is compact. Let \widehat{E}, \widehat{F} be two Γ equivariant complex vector bundles over \tilde{X} with Γ-invariant Hermitian fibre metrics. Let $\tilde{D}: \mathcal{C}^{\infty}(\tilde{X} ; \widetilde{E}) \rightarrow \mathcal{C}^{\infty}(\tilde{X} ; \widetilde{F})$ be a Γ-invariant elliptic differential operator. Then we consider the completions $\mathcal{L}^{2}(\widetilde{X} ; \widetilde{E}), \mathcal{L}^{2}(\tilde{X} ; \widetilde{F})$ and the unbounded operators $\tilde{D}: \mathcal{L}^{2}(\tilde{X} ; \widetilde{E}) \rightarrow \mathcal{L}^{2}(\tilde{X} ; \widehat{F}), \tilde{D}^{*}: \mathcal{L}^{2}(\tilde{X} ; \widetilde{F}) \rightarrow \mathcal{L}^{2}(\tilde{X} ; \widetilde{E})$. (In this case the formal adjoint coincides with the Hilbert space adjoint). We put:

$$
\begin{aligned}
& \mathscr{H}_{0}=\left\{f \in \mathcal{L}^{2}(\tilde{X} ; \widetilde{E}) \mid \widetilde{D} f=0\right\} \subset \mathcal{L}^{2}(\tilde{X} ; \widetilde{E}), \\
& \mathscr{M}_{1}=\left\{g \in \mathcal{L}^{2}(\tilde{X} ; \widetilde{F}) \mid \tilde{D}^{*} g=0\right\} \subset \mathcal{L}^{2}(\tilde{X} ; \widetilde{F}) .
\end{aligned}
$$

Then \mathscr{H}_{i} becomes a Γ-invariant closed subspace $(i=0,1)$. Let H_{i} be the orthogonal projection onto \mathcal{H}_{i}. Then H_{i} has a smooth kernel $H_{i}(\tilde{x}, \tilde{y})$ and we get a smooth measure $\operatorname{trace}_{c}\left[H_{\imath}(\tilde{x}, \tilde{x})\right]$ over \tilde{X}. Since the operator H_{\imath} is Γ-invariant, we may consider $\operatorname{trace}_{C}\left[H_{2}(\tilde{x}, \tilde{x})\right]$ as a measure over $X=\Gamma \backslash \tilde{X}$. Then the Γ index of the operator \tilde{D} is defined by:

$$
\operatorname{ind}_{\Gamma}(\tilde{D})=\int_{X} \mathrm{~d}\left(\operatorname{trace}_{C}\left[H_{0}(\tilde{x}, \tilde{x})\right]-\operatorname{trace}_{C}\left[H_{1}(\tilde{x}, \tilde{x})\right]\right)
$$

Now the elliptic differential operator \tilde{D} over \tilde{X} defines an elliptic differential operator $D: \mathcal{C}_{V}^{\infty}(X ; E) \rightarrow \mathcal{C}_{V}^{\infty}(X ; F)$ over a V-manifold X and we have a measure μ_{D} over X. Then $\operatorname{ind}_{l}(\widetilde{D})$ is given by:

$$
\operatorname{ind}_{\Gamma}(\tilde{D})=\int_{X} \mathrm{~d} \mu_{D}
$$

Now we return to our problem: Let X be a compact complex V-manifold and let $E \rightarrow X$ be a holomorphic vector V-bundle. We denote by \boldsymbol{T} the holomorphic part of the complexified cotangent vector V-bundle. Consider the sheaf $\mathcal{Q}_{V}^{p, q}(E)=\mathcal{C}_{V}^{\infty}\left(\Lambda^{p} \boldsymbol{T} \otimes \Lambda^{q} \overline{\boldsymbol{T}} \otimes E\right)$ of germs of E-valued (p, q)-forms over X. Then we have the $\bar{\partial}$-operators $\bar{\partial}: \mathbb{Q}_{V}^{p, q}(E) \rightarrow \mathfrak{Q}_{V}^{p, q+1}(E)$ and a soft resolution:

$$
0 \rightarrow \mathcal{O}_{V}\left(\Lambda^{p} \boldsymbol{T} \otimes E\right) \hookrightarrow \mathfrak{Q}_{V}^{p, 0}(E) \xrightarrow{\bar{o}} \mathfrak{Q}_{V}^{p, 1}(E) \xrightarrow{\bar{\sigma}} \cdots \xrightarrow{\bar{o}} \mathfrak{Q}_{V}^{p, n}(E) \rightarrow 0 .
$$

Put $A_{V}^{\phi, q}(X ; E)=\Gamma\left(X ; \mathfrak{Q}_{V}^{\phi, q}(E)\right)$, then we have a complex:

$$
0 \rightarrow A_{V}^{p, 0}(X ; E) \xrightarrow{\bar{\sigma}} A_{V}^{p, 1}(X ; E) \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} A_{V}^{p, n}(X ; E) \rightarrow 0,
$$

whose i-th cohomology group is $H^{i}\left(X ; \mathcal{O}_{V}\left(\Lambda^{p} \boldsymbol{T} \otimes E\right)\right)$. Choose a Hermitian metric h on X and a Hermitian fibre metric h_{E} on E. Then we have the adjoint operator $\bar{\partial}^{*}: A_{V}^{p, q}(X ; E) \rightarrow A_{V}^{p, q-1}(X ; E)$ of $\bar{\partial}$. Consider a differential operator:

$$
\begin{aligned}
& \left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}=\bar{\partial}+\bar{\partial}^{*} \mid A_{V}^{0, e v}: A_{V}^{0, e v}(X ; E) \rightarrow A_{V}^{0, o d}(X ; E),
\end{aligned}
$$

Then $\left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}$ is an elliptic operator and:

$$
\operatorname{ind}_{V}\left(\left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}\right)=\chi\left(X ; \mathcal{O}_{V}(E)\right)
$$

Thus we can express the arithmetic genus as the V-index of an elliptic operator $\left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}$. Then, by II) above, we have a measure $\mu_{(\bar{\partial}+\bar{\partial} *)_{B}^{0, e v}}+\mu{ }_{(\bar{\partial}+\bar{\partial} *)_{B}^{S}, e v}$ over $X \Perp \widetilde{\bar{\Sigma}} X$ that gives the arithmetic genus. But this measure is not equal to the Todd class in general. So we use the $S \operatorname{Sin}^{c}$ Dirac operator instead, which gives the arithmetic genus for complex V-manifolds and is defined over more general V-manifolds.

Now let (X, h) and $\left(E, h_{E}\right)$ be as before. Consider the almost complex structure $(T X, J) .(T X, J)$ is a holomorphic vector V-bundle. The Hermitian metric h define a reduction $U(n)(T X)$ of the principal tangent V-bundle. We consider $U(n)$ as a subgroup of $\operatorname{Spin}^{c}(2 n)=\operatorname{Spin}(2 n) \times{ }_{Z_{2}} U(1)$. (See Atiyah-Bott-Shapiro [2]). Let $\operatorname{Spin}^{c}(2 n)(T X)$ be the associated $S_{\text {pin }}{ }^{c}(2 n)$-principal tangen V-bundle. We construct a connection ∇^{c} on $\operatorname{Spin}^{c}(2 n)(T X)$ as follows: We have a Riemannian connection $\nabla_{s o}$ on $S O(2 n)(T X)$ and a Hermitian connection ∇_{L} on $L=\Lambda^{n}\left((T X, J)\right.$. Then ∇^{c} is a unique lift of $\nabla_{S o} \times \nabla_{L}$ on $(S O(2 n) \times U(1))(T X)$ by the double covering $\operatorname{Spin}^{c}(2 n) \rightarrow S O(2 n) \times U(1)$. Let $\Delta^{ \pm, c}$ be the half S pin ${ }^{c}-$ representations. Then we have two complex vector V-bundles:

$$
\Delta^{ \pm, c}(T X)=\operatorname{Spin}^{c}(2 n)(T X) \times \operatorname{sptn}^{c}(2 n) \Delta^{ \pm, c},
$$

with induced connections $\nabla^{ \pm, c}$. The Clifford module structures on $\Delta^{ \pm . c}$ define the Clifford multiplications:

$$
m: T X \otimes_{R} \Delta^{ \pm, c}(T X) \rightarrow \Delta^{\mp, c}(T X)
$$

On $\left(E, h_{E}\right)$ we have the Hermitian connection ∇_{E}. Then the Spin^{c} Dirac operator $d_{E}^{+, c}$ is defined by:

$$
\begin{aligned}
d_{E}^{+, c}: & \mathcal{C}_{V}^{\infty}\left(X ; \Delta^{+, c}(T X) \otimes_{C} E\right) \\
& \xrightarrow{\nabla^{+, c} \otimes 1+1 \otimes \nabla_{E}} \mathcal{C}_{V}^{\infty}\left(X ; T^{*} X \otimes_{R} \Delta^{+, c}(T X) \otimes_{C} E\right) \\
& \xrightarrow{m} \mathcal{C}_{V}^{\infty}\left(X ; \Delta^{-, c}(T X) \otimes_{C} E\right) .
\end{aligned}
$$

Here we identify $T X=T^{*} X$ by the real Hermitian metric $\mathcal{R}_{e} h$.
Since $\operatorname{Spin}^{c}(2 n)(T X)$ has a reduction $U(n)(T X)$, we have:

$$
\Delta^{ \pm, c}(T X) \cong \Lambda^{e d}(T X, J)
$$

The Hermitian metric h defines a V-bundle isometry $\psi:(T X, J) \cong \bar{T}$. So we have a V-bundle isomorphism:

$$
\psi^{ \pm}: \Delta^{ \pm, c}(T X) \otimes_{C} E \cong \Lambda^{\stackrel{e d}{o v}} \overline{\boldsymbol{T}} \underset{\boldsymbol{C}}{\otimes} E
$$

By a standard computation (see Hitchin [9]), we have:
Proposition. The two operators $\left(\bar{\partial}+\bar{\partial}^{*}\right)_{E}^{0, e v}$ and $d_{E}^{+, c}$ have the same principal symbol (via $\psi^{ \pm}$) upto a constant factor.

As a corollary, we have:

$$
\begin{aligned}
\chi\left(X ; \mathcal{O}_{V}(E)\right) & =\operatorname{ind}_{V}\left(d_{E}^{+, c}\right) \\
& =\int_{X} \mathrm{~d} \mu_{d_{E}^{+}, c}^{+}+\sum_{i=1}^{c} \frac{1}{m_{i}} \int_{\widetilde{\Sigma} X_{i}} \mathrm{~d} \mu_{d_{E}, c}^{\Sigma} .
\end{aligned}
$$

Now the operator $d_{E}^{+, c}$ does not depend on the complex structure on X. It depends only on the Spin^{c}-structure $\operatorname{Spin}^{c}(2 n)(T X)$, the metric connection ∇_{L} and the Hermitian V-bundle $\left(E, h_{E}, \nabla_{E}\right)$. Its index $\operatorname{ind}_{V}\left(d_{E}^{+, c}\right)$ does not depend on the choices of metrics h and h_{E}, nor the choices of connections ∇_{L} and ∇_{E}. So we can change metrics and connections.

We consider over a coordinate neighbourhood $\left(G_{U}, \widetilde{U}\right) \rightarrow U$. Choose a metric h on \widetilde{U} so that, for each $g \in G_{U}$, on a neighbourhood of \widetilde{U}^{g} in \widetilde{U}, h is equal to the Riemannian metric over the total space N_{g} of the normal bundle $\nu_{g}=$ $\nu\left(\widetilde{U}^{g} \subset \widetilde{U}\right)$ induced from a g-invariant Hermitian structure $\left(\nu_{g}, h_{\nu_{g}}, \nabla_{\nu_{g}}\right)$. We identify N_{g} with a neighbourhood of \widetilde{U}^{g} in \widetilde{U}. Then, over N_{g}, the principal bundle $\operatorname{Spin}^{c}(2 n)(T \widetilde{U})$ reduces equivariantly to $\pi^{*}\left(S \operatorname{Sin}^{c}\left(2 n_{0}\right)\left(T \widetilde{U}^{g}\right) \times \widetilde{U}^{s} U\left(n-n_{0}\right)\left(\nu_{g}\right)\right)$, where $\pi: N_{g} \rightarrow \widetilde{U}^{g}$ is the projection of ν_{g} and $2 n_{0}=\operatorname{dim}_{R} U^{g}$. The associated line bundle L splits into a tensor product $\pi^{*}\left(L_{0} \otimes \Lambda^{n-n_{0}} \nu_{g}\right)$, where L_{0} is the associated line bundle of $\operatorname{Spin}^{c}\left(2 n_{0}\right)\left(T \widetilde{U}^{g}\right)$.

The actions of g on the first factors $\left.\operatorname{Spin}^{c}\left(2 n_{0}\right)\left(T \widetilde{U}^{g}\right)\right)$ and L_{0} are trivial. On L_{0}, we have the induced metric $h_{L_{0}}$. Choose a metric connection $\nabla_{L_{0}}$ on $\left(L_{0}, h_{L_{0}}\right)$. Then we choose a metric connection ∇_{L} so that, over N_{g}, ∇_{L} is equal to the induced connection $\pi^{*}\left(\nabla_{L_{0}} \otimes \Lambda^{n-n_{0}} \nabla_{\nu_{g}}\right)$. Also, we choose a Hermitian structure $\left(E, h_{E}, \nabla_{E}\right)$ so that, over N_{g}, it is equal to the induced structure $\left(\pi^{*}\left(E \mid \widetilde{U}^{g}\right)\right.$, $\left.\pi^{*}\left(h_{E} \mid \widetilde{U}^{g}\right), \pi^{*}\left(\nabla_{E} \mid \widetilde{U}^{g}\right)\right)$.

Then, over a neighbourhood N_{g} of \widetilde{U}^{g} in \widetilde{U}, the operator $d_{E}^{+, c}$ is completely determined by the data over \widetilde{U}^{g}, that is, the Spin^{c}-structure $\operatorname{Spin}^{c}\left(2 n_{0}\right)\left(T \widetilde{U}^{g}\right)$, the metric connection $\nabla_{L_{0}}$ and the g-equivariant Hermitian bundles (g; $\nu_{g}, h_{\nu_{g}}$, $\nabla_{\nu_{g}}$) and ($\left.g ; E\left|U^{g}, h_{E}\right| U^{g}, \nabla_{E} \mid U^{g}\right)$.

We remark here that we can choose a metric h, a metric connection ∇_{L} and a hermitian structure $\left(E, h_{E}, \nabla_{E}\right)$ over a V-manifold X so that the above conditions are satisfied for all coordinate neighbourhood $\left(G_{U}, \widetilde{U}\right) \rightarrow U$ and for all $g \in G_{U}$ at the same time.

Now we consider differently: Let (U_{0}, h_{0}) be a germ of $\left(2 n_{0}\right)$-dimensional Reimannian manofold with trivial g-action and assume that we are given a Hermitian line bundle ($L_{0}, h_{L_{0}}, \nabla_{L_{0}}$) with trivial g-action and two g-equivariant Hermitian bundles $\left(g ; \nu, h_{\nu}, \nabla_{\nu}\right)\left(\operatorname{dim}_{C} \nu=n-n_{0}\right)$ and $\left(g ; E, h_{E}, \nabla_{E}\right)$ over U_{0}. So g acts on each fibre of ν and E. We assume that the fixed points in ν are all in the zero section. We may assume that U_{0} is contractible. Then an orientation o, the Riemannian metric h_{0} and the Hermitian line bundle ($L_{0}, h_{L_{0}}, \nabla_{L_{0}}$) define a unique $S_{\operatorname{Sin}}{ }^{c}$-structure $\operatorname{Spin}^{c}\left(2 n_{0}\right)\left(T U_{0}\right)$ upto S pin c-isomorphisms. (There are two canonical isomorphisms). The Riemannian metric h_{0} and the metric connection $\nabla_{L_{0}}$ define a connection ∇_{0}^{c} on $\operatorname{Spin}^{c}\left(2 n_{0}\right)\left(T U_{0}\right)$. Consider the total space N of ν. The Hermitian structure $\left(\nu, h_{\nu}, \nabla_{\nu}\right)$ define a $\operatorname{Spin}^{c}\left(2 n_{0}\right)$ $\times U\left(n-n_{0}\right)$-structure over N. Also we have the action of g that preserve the above structure. Then we have the associated $\operatorname{Spin}^{c}(2 n)$-structure with
g-action over N. Its associated line bundle is $\pi^{*}\left(L_{0} \otimes \Lambda^{n-n_{0}} \nu\right)$ and the metric connection $\nabla_{L_{0}} \otimes \Lambda^{n-n_{0}} \nabla_{\nu}$ defines a connection ∇^{c} on $\operatorname{Spin}^{c}(2 n)(T N)$. Also we have an induced g-equivariant Hermitian bundle $\left(g ; \pi^{*} E, \pi^{*} h_{E}, \pi^{*} \Delta_{E}\right)$ over N.

Then the Spin^{c}-structure $\operatorname{Spin}^{c}(2 n)(T N)$ with connection ∇^{c} and the Hermitian bundle $\left(\pi^{*} E, \pi^{*} h_{E}, \pi^{*} \nabla_{E}\right)$ define the S pin ${ }^{c}$ Dirac operator $d_{\pi^{*} E}^{+c}$. The operator $d_{\pi^{*} E}^{+c}$ and the action of g define a measure $\mu_{d_{\pi^{*} E}^{*} \in}^{g}$ over U_{0}. The only ambiguity of this construction comes from the choice of the orientation o over U_{0}. If we change the orientation, then the measure $\mu_{d_{\pi^{*} E}^{b}{ }^{*} c}$ changes its sign. So the measure $\mu_{d_{\pi^{*} E}^{b}}^{+_{i}^{c}}$ defines a $2 n_{0}$-form $d \mu_{d_{\pi^{*} E}^{g}}^{+_{i} c}$ with no ambiguity.

Thus we have shown that the $2 n_{0}$-form $d \mu_{d_{\pi^{*} E}{ }^{+}, c}$ is a local invariant of a Riemannian structure (U_{0}, h_{0}) and Hermitian bundles $\left(L_{0}, h_{L_{0}}, \nabla_{L_{0}}\right),\left(g ; \nu_{\nu}, h_{\nu}\right.$, $\left.\nabla_{i}\right)$ and $\left(g ; E, h_{E}, \nabla_{E}\right)$. In [10], we have an explicit form of μ_{D}^{g}. Then we can see that the $2 n_{0}$-form $d \mu_{d_{\pi}^{*} E}^{+_{t}^{+} c}$ is a homogeneous regular local invariant of weight 0 , in the terminology of Atiyah-Bott-Patodi [2]. Then, by Gilkey's Theorem (see [2]), we can conclude:

Proposition. $d \mu_{d_{\pi^{*} E}^{*} c}^{g}{ }^{+}$is expressed by a universal polynomial in the Pontrjagin forms of $\left(U_{0}, h_{0}\right)$, the first Chern form of $\left(L_{0}, h_{L_{0}}, \nabla_{L_{0}}\right)$, the equivariant Chern forms of $\left(g ; \nu, h_{\nu}, \nabla_{\nu}\right)$ and the equivariant Chern forms of $\left(g ; E, h_{E}, \nabla_{E}\right)$.

We restrict ourselves to the case when $T U_{0}$ has an almost complex structure J_{0} and $L_{0}=\Lambda^{n_{0}}\left(T U_{0}, J_{0}\right)$. Let M be a compact complex manifold and let $E \rightarrow M$ be a holomorphic vector bundle. Let g be an automorphism of the pair (M, $E)$ that generates a compact transformation group. Then by Atiyah-Singer [4] we know:

$$
\begin{aligned}
\int_{M^{g}} \mathrm{~d} \mu_{d_{E}^{g}, c}^{g} & =\sum_{i}(-1)^{i} \operatorname{trace}_{C}\left[g \mid H^{i}(M ; \mathcal{O}(E))\right] \\
& =\left\langle\mathscr{I}^{g}(M ; E),\left[M^{g}\right]\right\rangle
\end{aligned}
$$

The computations over the products of complex projective spaces with linear actions show that the expression of $d \mu_{d_{*^{*} E}^{g}}^{\delta+c}$ in the characteristic classes must be unique. This shows:

$$
\mathrm{d} \mu_{d_{E}^{\prime}}^{g}, c=\mathscr{I}^{g}(M ; E)
$$

Now we return to the original situation. Over a coordinate neighbourhood $\left(G_{U}, \widetilde{U}\right) \rightarrow U$, we have:

$$
\mu_{d_{E}^{+}}, c+\mu_{d_{E}^{+}}^{\Sigma}=c=\sum_{g \in \epsilon_{J}^{G}} \mu_{d_{E}^{\prime}}^{g}, c
$$

Then, by choosing suitable metrics and connections, we have:

$$
\mathrm{d} \mu_{d_{E}^{+}}, c+\mathrm{d} \mu_{\vec{d}_{E}^{+}, c}^{\ddot{x}^{+}}=\mathscr{I}(X ; E)+\mathscr{L} \mathscr{I}(X ; E) .
$$

Hence we have:

$$
\begin{aligned}
\chi\left(X ; \mathcal{O}_{V}(E)\right)= & \int_{X} d \mu_{d_{E}^{+}, c}+\sum_{i=1}^{c} \frac{1}{m_{i}} \int_{\widetilde{\widetilde{\Sigma} x_{i}}} \mathrm{~d} \mu_{\tilde{d}_{E}^{+}, c}^{\stackrel{y}{c}} \\
= & \langle\mathscr{I}(X ; E),[X]\rangle \\
& +\sum_{i=1}^{c} \frac{1}{m_{i}}\left\langle\mathscr{I}^{v}(X ; E),\left[\widetilde{\bar{\Sigma}} X_{i}\right]\right\rangle .
\end{aligned}
$$

The both sides are independent of the metrics and connections.

Osaka University

References

[1] M.F. Atiyah: Elliptic operators, discrete groups and ron Neumann algebras, Société Mathématique de France, Astérisque 32-33 (1976), 43-72.
[2] M.F. Atiyah, R. Bott and V.K. Patodi: On the heat equation and the index theorem, Invent. Math. 19 (1973), 379-330.
[3] M.A. Atiyah, R. Bott and A. Shapiro: Clifford modules, Topology 3 (1964), Suppl. 1, 3-38.
[4] M.F. Atiyah and I.M. Singer: The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-604.
[5] H. Donnelly and V.K. Patodi: Spectrum and the fixed point sets of isometries II, Topology 16 (1977), 1-11.
[6] P.B. Gilkey: Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Math. 10 (1973), 344-382.
[7] P.B. Gilkey: Spectral geometry and the Lefschetz formulas for a holomorphic isometry of an almost complex manifold, to appear.
[8] F. Hirzebruch: Topological methods in algebraic geometry, Springer-Verlag, 1966.
[9] N. Hitchin: Harmonic spinors, Advances in Math. 14 (1974), 1-55.
[10] T. Kawasaki: The signature theorem for V-manifolds, Topology 17 (1978) 75-83.
[11] I. Satake: The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492.
[12] R.T. Seelev: Complex powers of an elliptic operator, Proc. Sympos. Pure Math. Math. 10, Amer. Math. Soc. (1967), 288-307.

[^0]: 1) From April 1, 1979, the author will move to: Gakushuin University, Faculty of Science, Tokyo.
