THE RIEMANN-ROCH THEOREM FOR COMPLEX V-MANIFOLDS

TETSURO KAWASAKI¹⁾

(Received January 31, 1978)

Introduction and statement of theorem. This note is the sequel to our work [10]. We shall apply our method to the $\bar{\partial}$ -operators over complex V-manifolds. Our result is a generalization of the Hirzebruch-Riemann-Roch Theorem (see Atiyah-Singer [4] and Hirzebruch [8]) to the case of complex V-manifolds and holomorphic vector V-bundles.

Let M be a compact complex manifold with a holomorphic action of a finite group G and let $E \to M$ be a G-equivariant holomorphic vector bundle. We denote by $\mathcal{O}(E)$ the sheaf of local holomorphic sections of E. Then Atiyah-Singer [4] proved: For each $g \in G$,

(I)
$$\begin{aligned} \chi(g, M; \mathcal{O}(E)) &= \sum_{i} (-1)^{i} \operatorname{trace}_{c}[g \mid H^{i}(M; \mathcal{O}(E))] \\ &= \langle \mathfrak{I}^{g}(M; E), [M^{g}] \rangle. \end{aligned}$$

Here $\mathcal{Q}^{\mathfrak{g}}(M; E)$ is the equivariant Todd class.

Now the orbit space M/G has a structure of an analytic space and the local G-invariant holomorphic sections of E define a coherent analytic sheaf $\mathcal{O}_v(E/G)$ over M/G. Then, by averaging (I) for all $g \in G$, we have:

(II)
$$\begin{aligned} \chi(M/G; \mathcal{O}_{V}(E/G)) &= \sum_{i} (-1)^{i} \dim_{C} H^{i}(M/G; \mathcal{O}_{V}(E/G)) \\ &= \frac{1}{|G|} \sum_{g \in G} \langle \mathcal{G}^{g}(M; E), [M^{g}] \rangle. \end{aligned}$$

We shall generalize this formula to the case of complex V-manifolds. The notion of V-manifold was introduced by Satake [11]. In [10] we have stated the precise definitions concerning V-manifold structures. So, here we put a brief description of complex V-manifolds and holomorphic vector V-bundles. Let X be an analytic space admitting only quotient singularities. A complex V-manifold structure \mathcal{V}^c over X is the following: For each sufficiently small connected open set U in $X, \mathcal{V}^c(U)= (G_v, \tilde{U}) \to U$ is a ramified covering $\tilde{U} \to U$ such that \tilde{U} is a connected complex manifold with an effective

¹⁾ From April 1, 1979, the author will move to: Gakushuin University, Faculty of Science, Tokyo.

holomorphic action of a finite group G_U and the projection $\tilde{U} \to U$ gives an identification $U \simeq \tilde{U}/G_U$ of analytic spaces. For a connected open subset $V \subset U$, we assume also, that there is a biholomorphic open embedding $\varphi \colon \tilde{V} \to \tilde{U}$ that covers the inclusion $V \subset U$. Then the choice of φ is unique upto the action of G_U and each φ defines an injective group homomorphism $\lambda_{\varphi} \colon G_V \to G_U$ that makes φ be λ_{φ} -equivariant. Let $p \colon E \to X$ be a holomorphic map between analytic spaces. A holomorphic vector V-bundle structure \mathcal{B} on " $E \to X$ " is the following: For small $U \subset X$, $\mathcal{B}(U) = (G_U, \tilde{p}_U \colon \tilde{E}_V \to \tilde{U})$ is a G_U -equivariant holomorphic vector bundle with an identification " $p \mid p^{-1}(U) \colon p^{-1}(U) \to U$ " \cong " $\tilde{p}_U/G_U \colon \tilde{E}_U/G_U \to$ \tilde{U}/G_U ". For $V \subset U$, we assume that there is a holomorphic bundle map $\Phi \colon \tilde{E}_V$ $\to \tilde{E}_U$ over some open embedding $\varphi \colon \tilde{V} \to \tilde{U}$ that covers the inclusions $p^{-1}(V)$ $\subset p^{-1}(U)$ and $V \subset U$. Then Φ becomes a λ_{φ} -equivariant bundle map. (In the terminology of [10], (E, \mathcal{B}) is a "proper" holomorphic vector V-bundle).

Now let X be a compact complex V-manifold and let $E \to X$ be a holomorphic vector V-bundle. The local G_U -invariant holomorphic sections of $\tilde{E}_U \to \tilde{U}$ define a coherent analytic sheaf $\mathcal{O}_V(E)$ over an analytic space X. Then we have the arithemtic genus $\chi(X; \mathcal{O}_V(E)) = \sum_i (-1)^i \dim_C H^i(X; \mathcal{O}_V(E))$. We can choose invariant smooth linear connections on complex vector bundles $\tilde{E}_U \to \tilde{U}$, complex tangent bundles $T\tilde{U} \to \tilde{U}$ and complex normal bundles $\nu(\tilde{U}^g \subset \tilde{U}) \to \tilde{U}^g$ for all U and for all $g \in G_U$, such that they are compatible with open embeddings Φ 's and φ 's. Then, by the Weil homomorphism, we have the equivariant Todd form $\mathfrak{Q}^g(\tilde{U}; \tilde{E}_U)$ for each \tilde{U}^g . Then we can state our theroem in the following form. Let $\{f_U\}$ be a (smooth or continuous) partition of unity on X, then,

(III)
$$\chi(X; \mathcal{O}_{v}(E)) = \sum_{\sigma} \frac{1}{|G_{v}|} \sum_{g \in G_{\sigma}} \int_{\widetilde{U}^{g}} f_{U} \mathcal{I}^{g}(\widetilde{U}; \widetilde{E}_{v}).$$

For each local coordinate (G_U, \tilde{U}) and for each $g \in G_U$, we consider \tilde{U}^g as a complex manifold on which the centralizer $Z_{G_U}(g)$ acts. For $V \subset U$, the open embedding $\varphi \colon \tilde{V} \to \tilde{U}$ defines a natural open embedding $\tilde{V}^h/Z_{G_V}(h) \to \tilde{U}^g/Z_{G_U}(g)$ of analytic spaces, where $g = \lambda_{\varphi}(h)$. This embedding is unique for a fixed pair (g, h). We patch all $\tilde{U}^g/Z_{G_U}(g)$'s together by these identifications. Then we get a disjoint union of complex V-manifolds of various dimensions:

$$X \perp \widetilde{\Sigma} X = \bigcup_{(G_U, \widetilde{U}), g \in G_U} \widetilde{U}^g / Z_{G_U}(g) ,$$

(X corresponds to the portion defined by g=1).

We have a canonical map $\overline{\tilde{\Sigma}}X \to X$ covered locally by the inclusion $\widetilde{U}^{g} \subset \widetilde{U}$. For each $x \in X$, we can choose a coordinate neighbourhood (G_x, \widetilde{U}_x) such that $x \in \widetilde{U}_x$ is a fixed point of G_x . G_x is unique up to isomorphisms. Then the number of pieces of $\widetilde{\tilde{\Sigma}}X$ over x is equal to the number of the conjugacy classes of G_x other

than the identity class.

Let $\widetilde{\widetilde{\Sigma}}X_1$, $\widetilde{\widetilde{\Sigma}}X_2$, ..., $\widetilde{\widetilde{\Sigma}}X_c$ be all the connected components of $\widetilde{\widetilde{\Sigma}}X$. To each $\widetilde{\widetilde{\Sigma}}X_i$, we assign a number m_i , defined by:

$$m_i = |\operatorname{kernel}[Z_{G_{\overline{U}}}(g) \to \operatorname{Aut}(\widehat{U}^{\overline{g}})]|,$$

$$(\widetilde{U}^{\overline{g}}/Z_{G_{\overline{U}}}(g) \subset \widetilde{\Sigma}X_i).$$

Now the formal sum $\sum_{g \in G_{\overline{U}}} \mathfrak{I}^{g}(U; E_{U})$ defines a "differential form" on $X \perp \widetilde{\Sigma} X$. It represents a cohomology class $\mathfrak{I}(X; E) + \mathfrak{I}^{\Sigma}(X; E)$ in $H^{*}(X \perp \widetilde{\Sigma} X; C)$. This class is independent of the choice of the connections. Then we get the following theorem:

Theorem. Let X be a compact complex V-manifold and let $E \rightarrow X$ be a holomorphic vector V-bundle. Then:

(IV)
$$\begin{aligned} \chi(X;\,\mathcal{O}_V(E)) &= \langle \mathcal{G}(X;\,E),\,[X] \rangle \\ &+ \sum_{i=1}^c \frac{1}{m_i} \langle \mathcal{G}^{\mathcal{I}}(X;\,E),\,[\widetilde{\mathcal{I}}X_i] \rangle \,. \end{aligned}$$

REMARK 1. Since the class $\mathcal{D}(X; E)$ is defined over rationals, the term $\langle \mathcal{D}(X; E), [X] \rangle$ is a rational number.

REMARK 2. For the case when $X = \Gamma \setminus \tilde{X}$, where \tilde{X} is a complex manifold and Γ is a properly discontinuous group acting holomorphically on \tilde{X} , the number $\langle \mathcal{I}(X; E), [X] \rangle$ is just the Γ -index $\operatorname{ind}_{\Gamma}((\bar{\partial} + \bar{\partial}^*)^{0, ev}_{E})$ defined by Atiyah [1]. (Though Γ acts freely in [1], the similar argument holds for the case when Γ has finite isotropies, see III) below).

The proof of our theorem is a combination of our work [10] and Gilkey's result [7] on the Lefschetz fixed point formula for the Dolbeault complexes. Here we shall place a complete proof.

Proof of Theorem. In this proof, we use the "heat kernel-zeta function" method. We reivew the results briefly. (See Seeley [12], Atiyah-Bott-Patodi [2], Gilkey [6], [7], Donnelly-Patodi [5] and Kawasaki [10]).

Let U be a germ of a Riemannian manifold and let $E_U \rightarrow U$ be a smooth complex vector bundle with a smooth Hermitian fibre metric. Let $g: E_U \rightarrow E_U$ be an isometry of the pair (U, E_U) . Let $A: \mathcal{C}^{\infty}(U; E_U) \rightarrow \mathcal{C}^{\infty}(U: E_U)$ be a g-invariant, formally self-adjoint, positive semi-definite, elliptic differential operator. Then we have a smooth measure Z_A^g on the fixed point set U^g . Z_A^g is a local invariant of the action of g and of the operator A. It is given by a universal expression in g and A. The explicit form of Z_A^g is given in [10]. Z_A^g has the following properties:

I) Let M be a compact Riemannian manifold and let $g: M \to M$ be an isometry. Let E, F be two g-equivariant smooth complex vector bundles over M with g-invariant Hermitian fibre metrics. Let $D: \mathcal{C}^{\infty}(M; E) \to \mathcal{C}^{\infty}(M; F)$ be a g-invariant elliptic differential operator. Then we have the adjoint operator $D^*: \mathcal{C}^{\infty}(M; F) \to \mathcal{C}^{\infty}(M; E)$ and two g-invariant, self-adjoint, positive semi-definite, elliptic differential operators D^*D and DD^* . Pur $\mu_D^e = Z_{D*D}^e - Z_{DD*}^e$. Then the equivariant index ind(g, D) is given by:

$$\operatorname{ind}(g, D) = \int_{M^g} \mathrm{d}\mu_D^g$$

II) (Kawasaki [10]). Let X be a compact Riemannian V-manifold and let E, F be two "proper" differentiable complex vector V-bundles over X. Let $D: C^{\infty}_{V}(X; E) \rightarrow C^{\infty}_{V}(X; F)$ be an elliptic differential operator, that is, a family $\{\tilde{D}_{U}: C^{\infty}(\tilde{U}; \tilde{E}_{U}) \rightarrow C^{\infty}(\tilde{U}; \tilde{F}_{U}\})_{(G_{U},\tilde{U})}$ of invariant elliptic differential operators that are compatible with attaching maps $\{\Phi\}: \tilde{E}_{V} \rightarrow \tilde{E}_{U}$ and $\{\Psi\}: \tilde{F}_{V} \rightarrow \tilde{F}_{U}$. Then D operates on the differentiable V-sections and the kernel and the cokernel of the operator D are finite dimensional. We define the V-index $\operatorname{ind}_{V}(D)$ of the operator D by:

$$\operatorname{ind}_{V}(D) = \dim_{C} \operatorname{kernel}[D \colon \mathcal{C}^{\infty}_{V}(X; E) \to \mathcal{C}^{\infty}_{V}(X; F)]$$

$$-\dim_{C} \operatorname{cokernel}[D \colon \mathcal{C}^{\infty}_{V}(X; E) \to \mathcal{C}^{\infty}_{V}(X; F)].$$

For each coordinate neighbourhood (G_U , \tilde{U}), we have a formal sum of measures:

$$\sum_{g \in G_U} \mu_{\widetilde{D}_U}^g = \sum_{g \in G_U} (Z_{\widetilde{D}_U}^{g*} \widetilde{D}_U - Z_{\widetilde{D}_U}^g \widetilde{D}_U).$$

These formal sums define a measure $\mu_D + \mu_D^{\gamma}$ over $X \perp \perp \widetilde{\Sigma} X$. Then the V-index ind_V(D) is given by:

$$\operatorname{ind}_{V}(D) = \int_{X} \mathrm{d}\mu_{D} + \sum_{i=1}^{c} \frac{1}{m_{i}} \int_{\widetilde{\Sigma}_{X_{i}}} \mathrm{d}\mu_{D}^{\Sigma}.$$

III) (See Aityah [1]). Let \tilde{X} be a (non-compact) Riemannian manifold and let Γ be a properly discontinuous group acting on \tilde{X} as isometries. We assume that the orbit V-manifold $X=\Gamma\setminus\tilde{X}$ is compact. Let \tilde{E} , \tilde{F} be two Γ equivariant complex vector bundles over \tilde{X} with Γ -invariant Hermitian fibre metrics. Let $\tilde{D}: C^{\infty}(\tilde{X}; \tilde{E}) \to C^{\infty}(\tilde{X}; \tilde{F})$ be a Γ -invariant elliptic differential operator. Then we consider the completions $\mathcal{L}^2(\tilde{X}; \tilde{E}), \mathcal{L}^2(\tilde{X}; \tilde{F})$ and the unbounded operators $\tilde{D}: \mathcal{L}^2(\tilde{X}; \tilde{E}) \to \mathcal{L}^2(\tilde{X}; \tilde{F}), \tilde{D}^*: \mathcal{L}^2(\tilde{X}; \tilde{F}) \to \mathcal{L}^2(\tilde{X}; \tilde{E})$. (In this case the formal adjoint coincides with the Hilbert space adjoint). We put:

$$\begin{split} \mathcal{H}_0 &= \{ f \in \mathcal{L}^2(\tilde{X};\, \tilde{E}) \, | \, \tilde{D}f = 0 \} \subset \mathcal{L}^2(\tilde{X};\, \tilde{E}) \,, \\ \mathcal{H}_1 &= \{ g \in \mathcal{L}^2(\tilde{X};\, \tilde{F}) \, | \, \tilde{D}^*g = 0 \} \subset \mathcal{L}^2(\tilde{X};\, \tilde{F}) \,. \end{split}$$

154

Then \mathcal{H}_i becomes a Γ -invariant closed subspace (i=0, 1). Let H_i be the orthogonal projection onto \mathcal{H}_i . Then H_i has a smooth kernel $H_i(\tilde{x}, \tilde{y})$ and we get a smooth measure trace $_{C}[H_i(\tilde{x}, \tilde{x})]$ over \tilde{X} . Since the operator H_i is Γ -invariant, we may consider trace $_{C}[H_i(\tilde{x}, \tilde{x})]$ as a measure over $X=\Gamma \setminus \tilde{X}$. Then the Γ -index of the operator \tilde{D} is defined by:

$$\operatorname{ind}_{\Gamma}(\tilde{D}) = \int_{X} d\left(\operatorname{trace}_{c}[H_{0}(\tilde{x}, \tilde{x})] - \operatorname{trace}_{c}[H_{1}(\tilde{x}, \tilde{x})]\right).$$

Now the elliptic differential operator \tilde{D} over \tilde{X} defines an elliptic differential operator $D: C_{\tilde{V}}^{\infty}(X; E) \rightarrow C_{\tilde{V}}^{\infty}(X; F)$ over a V-manifold X and we have a measure μ_{D} over X. Then $\operatorname{ind}_{l'}(\tilde{D})$ is given by:

$$\operatorname{ind}_{\Gamma}(\tilde{D}) = \int_{X} \mathrm{d}\mu_{D} \,.$$

Now we return to our problem: Let X be a compact complex V-manifold and let $E \to X$ be a holomorphic vector V-bundle. We denote by **T** the holomorphic part of the complexified cotangent vector V-bundle. Consider the sheaf $\mathfrak{A}_{V}^{p,q}(E) = \mathcal{C}_{V}^{\infty}(\Lambda^{p} \mathbf{T} \otimes \Lambda^{q} \overline{\mathbf{T}} \otimes E)$ of germs of E-valued (p, q)-forms over X. Then we have the $\overline{\partial}$ -operators $\overline{\partial}: \mathfrak{A}_{V}^{p,q}(E) \to \mathfrak{A}_{V}^{p,q+1}(E)$ and a soft resolution:

$$0 \to \mathcal{O}_{V}(\Lambda^{p} \mathbf{T} \otimes E) \hookrightarrow \mathfrak{A}^{p,0}_{V}(E) \xrightarrow{\overline{\partial}} \mathfrak{A}^{p,1}_{V}(E) \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathfrak{A}^{p,n}_{V}(E) \to 0 .$$

Put $A_V^{p,q}(X; E) = \Gamma(X; \mathfrak{A}_V^{p,q}(E))$, then we have a complex:

$$0 \to A^{\flat,0}_V(X; E) \xrightarrow{\overline{\partial}} A^{\flat,1}_V(X; E) \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} A^{\flat,n}_V(X; E) \to 0 ,$$

whose *i*-th cohomology group is $H^i(X; \mathcal{O}_V(\Lambda^p \mathbf{T} \otimes E))$. Choose a Hermitian metric h on X and a Hermitian fibre metric h_E on E. Then we have the adjoint operator $\overline{\partial}^*: A_V^{b,q}(X; E) \to A_V^{b,q-1}(X; E)$ of $\overline{\partial}$. Consider a differential operator:

$$(\bar{\partial} + \bar{\partial}^*)_{E}^{0,ev} = \bar{\partial} + \bar{\partial}^* | A_V^{0,ev} \colon A_V^{0,ev}(X;E) \to A_V^{0,od}(X;E) ,$$
$$(A_V^{0,ev}(X;E) = \bigoplus_{\substack{q : e^* \\ e^* d^{n}}} A_V^{0,q}(X;E)) .$$

Then $(\bar{\partial} + \bar{\partial}^*)^{0, ev}_E$ is an elliptic operator and:

$$\operatorname{ind}_{V}((\bar{\partial}+\bar{\partial}^{*})^{0,ev}_{E})=\chi(X;\mathcal{O}_{V}(E)).$$

Thus we can express the arithmetic genus as the V-index of an elliptic operator $(\bar{\partial} + \bar{\partial}^*)_E^{0,ev}$. Then, by II) above, we have a measure $\mu_{(\bar{\partial} + \bar{\partial}^*)_E^{0,ev}} + \mu_{(\bar{\partial} + \bar{\partial}^*)_E^{0,ev}}^{\Sigma} + \mu_{(\bar{\partial} + \bar$

Now let (X, h) and (E, h_E) be as before. Consider the almost complex structure (TX, J). (TX, J) is a holomorphic vector V-bundle. The Hermitian metric h define a reduction U(n) (TX) of the principal tangent V-bundle. We consider U(n) as a subgroup of $Spin^{c}(2n)=Spin(2n)\times_{Z_2}U(1)$. (See Atiyah-Bott-Shapiro [2]). Let $Spin^{c}(2n)$ (TX) be the associated $Spin^{c}(2n)$ -principal tangen V-bundle. We construct a connection ∇^{c} on $Spin^{c}(2n)$ (TX) as follows: We have a Riemannian connection ∇_{so} on SO(2n) (TX) and a Hermitian connection ∇_{L} on $L=\Lambda^{n}((TX,J)$. Then ∇^{c} is a unique lift of $\nabla_{so}\times\nabla_{L}$ on $(SO(2n)\times U(1))(TX)$ by the double covering $Spin^{c}(2n) \rightarrow SO(2n) \times U(1)$. Let $\Delta^{\pm,c}$ be the half $Spin^{c}$ representations. Then we have two complex vector V-bundles:

$$\Delta^{\pm,c}(TX) = Spin^{c}(2n) (TX) \times_{Spin^{c}(2n)} \Delta^{\pm,c},$$

with induced connections $\nabla^{\pm,c}$. The Clifford module structures on $\Delta^{\pm,c}$ define the Clifford multiplications:

$$m\colon TX\otimes_{\mathbf{R}}\Delta^{\pm,c}(TX)\to\Delta^{\mp,c}(TX).$$

On (E, h_E) we have the Hermitian connection ∇_E . Then the Spin^c Dirac operator $d_E^{+,c}$ is defined by:

$$d_{E}^{+,c}: \mathcal{C}_{V}^{\infty}(X; \Delta^{+,c}(TX) \otimes_{c} E)$$

$$\xrightarrow{\nabla^{+,c} \otimes 1 + 1 \otimes \nabla_{E}} \mathcal{C}_{V}^{\infty}(X; T^{*}X \otimes_{R} \Delta^{+,c}(TX) \otimes_{c} E)$$

$$\xrightarrow{m} \mathcal{C}_{V}^{\infty}(X; \Delta^{-,c}(TX) \otimes_{c} E).$$

Here we identify $TX = T^*X$ by the real Hermitian metric $\mathcal{R}_e h$.

Since $Spin^{c}(2n)(TX)$ has a reduction U(n)(TX), we have:

$$\Delta^{\pm,c}(TX) \simeq \Lambda^{\widetilde{od}}(TX,J)$$
.

The Hermitian metric *h* defines a *V*-bundle isometry ψ : $(TX, J) \approx \overline{T}$. So we have a *V*-bundle isomorphism:

$$\psi^{\pm} \colon \Delta^{\pm,c}(TX) \bigotimes_{C} E \simeq \Lambda^{\stackrel{ev}{od}} \overline{T} \bigotimes_{C} E.$$

By a standard computation (see Hitchin [9]), we have:

Proposition. The two operators $(\bar{\partial} + \bar{\partial}^*)^{0,ev}_E$ and $d_E^{+,c}$ have the same principal symbol (via ψ^{\pm}) upto a constant factor.

As a corollary, we have:

$$egin{aligned} \chi(X;\,\mathcal{O}_{v}(E))&=\operatorname{ind}_{v}(d_{E}^{+,c})\ &=\int_{X}\!\mathrm{d}\mu_{d_{E}^{+,c}}\!+\!\sum_{i=1}^{c}rac{1}{m_{i}}\!\int_{\widetilde{\mathfrak{T}}X_{i}}\!\mathrm{d}\mu_{d_{E}^{+,c}}^{\Sigma}\,. \end{aligned}$$

156

Now the operator $d_E^{+,c}$ does not depend on the complex structure on X. It depends only on the Spin^c-structure Spin^c(2n) (TX), the metric connection ∇_L and the Hermitian V-bundle (E, h_E, ∇_E) . Its index $\operatorname{ind}_V(d_E^{+,c})$ does not depend on the choices of metrics h and h_E , nor the choices of connections ∇_L and ∇_E . So we can change metrics and connections.

We consider over a coordinate neighbourhood $(G_U, \tilde{U}) \rightarrow U$. Choose a metric h on \tilde{U} so that, for each $g \in G_U$, on a neighbourhood of \tilde{U}^g in \tilde{U} , h is equal to the Riemannian metric over the total space N_g of the normal bundle $\nu_g = \nu(\tilde{U}^g \subset \tilde{U})$ induced from a g-invariant Hermitian structure $(\nu_g, h_{\nu_g}, \nabla_{\nu_g})$. We identify N_g with a neighbourhood of \tilde{U}^g in \tilde{U} . Then, over N_g , the principal bundle $Spin^c(2n)(T\tilde{U})$ reduces equivariantly to $\pi^*(Spin^c(2n_0)(T\tilde{U}^g) \times_{\tilde{U}^g} U(n-n_0)(\nu_g))$, where $\pi: N_g \rightarrow \tilde{U}^g$ is the projection of ν_g and $2n_0 = \dim_R U^g$. The associated line bundle L splits into a tensor product $\pi^*(L_0 \otimes \Lambda^{n-n_0}\nu_g)$, where L_0 is the associated line bundle of $Spin^c(2n_0)(T\tilde{U}^g)$.

The actions of g on the first factors $Spin^{c}(2n_{0})(T\tilde{U}^{g})$ and L_{0} are trivial. On L_{0} , we have the induced metric $h_{L_{0}}$. Choose a metric connection $\nabla_{L_{0}}$ on $(L_{0}, h_{L_{0}})$. Then we choose a metric connection ∇_{L} so that, over N_{g} , ∇_{L} is equal to the induced connection $\pi^{*}(\nabla_{L_{0}} \otimes \Lambda^{n-n_{0}} \nabla_{\nu_{g}})$. Also, we choose a Hermitian structure (E, h_{E}, ∇_{E}) so that, over N_{g} , it is equal to the induced structure $(\pi^{*}(E | \tilde{U}^{g}), \pi^{*}(h_{E} | \tilde{U}^{g}), \pi^{*}(\nabla_{E} | \tilde{U}^{g}))$.

Then, over a neighbourhood N_g of \tilde{U}^g in \tilde{U} , the operator $d_E^{\pm,c}$ is completely determined by the data over \tilde{U}^g , that is, the *Spin*^c-structure *Spin*^c(2n_0) ($T\tilde{U}^g$), the metric connection ∇_{L_0} and the g-equivariant Hermitian bundles $(g; \nu_g, h_{\nu_g}, \nabla_{\nu_g})$ and $(g; E | U^g, h_E | U^g, \nabla_E | U^g)$.

We remark here that we can choose a metric h, a metric connection ∇_L and a hermitian structure (E, h_E, ∇_E) over a V-manifold X so that the above conditions are satisfied for all coordinate neighbourhood $(G_U, \tilde{U}) \rightarrow U$ and for all $g \in G_U$ at the same time.

Now we consider differently: Let (U_0, h_0) be a germ of $(2n_0)$ -dimensional Reimannian manofold with trivial g-action and assume that we are given a Hermitian line bundle $(L_0, h_{L_0}, \nabla_{L_0})$ with trivial g-action and two g-equivariant Hermitian bundles $(g; \nu, h_{\nu}, \nabla_{\nu})$ (dim_c $\nu = n - n_0$) and $(g; E, h_E, \nabla_E)$ over U_0 . So g acts on each fibre of ν and E. We assume that the fixed points in ν are all in the zero section. We may assume that U_0 is contractible. Then an orientation o, the Riemannian metric h_0 and the Hermitian line bundle $(L_0, h_{L_0}, \nabla_{L_0})$ define a unique $Spin^c$ -structure $Spin^c(2n_0)(TU_0)$ upto $Spin^c$ -isomorphisms. (There are two canonical isomorphisms). The Riemannian metric h_0 and the metric connection ∇_{L_0} define a connection ∇_0^c on $Spin^c(2n_0)$ (TU_0). Consider the total space N of ν . The Hermitian structure $(\nu, h_{\nu}, \nabla_{\nu})$ define a $Spin^c(2n_0)$ $\times U(n-n_0)$ -structure over N. Also we have the action of g that preserve the above structure. Then we have the associated $Spin^c(2n)$ -structure with

g-action over N. Its associated line bundle is $\pi^*(L_0 \otimes \Lambda^{n-n_0}\nu)$ and the metric connection $\nabla_{L_0} \otimes \Lambda^{n-n_0} \nabla_{\nu}$ defines a connection ∇^c on $Spin^c(2n)$ (TN). Also we have an induced g-equivariant Hermitian bundle $(g; \pi^*E, \pi^*h_E, \pi^*\Delta_E)$ over N.

Then the $Spin^c$ -structure $Spin^c(2n)$ (TN) with connection ∇^c and the Hermitian bundle $(\pi^*E, \pi^*h_E, \pi^*\nabla_E)$ define the $Spin^c$ Dirac operator $d_{\pi^*E}^{+,c}$. The operator $d_{\pi^*E}^{+,c}$ and the action of g define a measure $\mu_{d_{\pi^*E}}^{g_{+,c}}$ over U_0 . The only ambiguity of this construction comes from the choice of the orientation o over U_0 . If we change the orientation, then the measure $\mu_{d_{\pi^*E}}^{g_{+,c}}$ changes its sign. So the measure $\mu_{d_{\pi^*E}}^{g_{+,c}}$ defines a $2n_0$ -form $d\mu_{d_{\pi^*E}}^{g_{+,c}}$ with no ambiguity.

Thus we have shown that the $2n_0$ -form $d\mu_{d_\pi^*E}^{g_+,c}$ is a local invariant of a Riemannian structure (U_0, h_0) and Hermitian bundles $(L_0, h_{L_0}, \nabla_{L_0})$, $(g; \nu_{\nu}, h_{\nu}, \nabla_{\nu})$ and $(g; E, h_E, \nabla_E)$. In [10], we have an explicit form of μ_D^g . Then we can see that the $2n_0$ -form $d\mu_{d_\pi^*E}^{g_+,c}$ is a homogeneous regular local invariant of weight 0, in the terminology of Atiyah-Bott-Patodi [2]. Then, by Gilkey's Theorem (see [2]), we can conclude:

Proposition. $d\mu_{d_{\pi}^{*}E}^{e_{\pi},c}$ is expressed by a universal polynomial in the Pontrjagin forms of (U_0, h_0) , the first Chern form of $(L_0, h_{L_0}, \nabla_{L_0})$, the equivariant Chern forms of $(g; \nu, h_{\nu}, \nabla_{\nu})$ and the equivariant Chern forms of $(g; E, h_E, \nabla_E)$.

We restrict ourselves to the case when TU_0 has an almost complex structure J_0 and $L_0 = \Lambda^{n_0}(TU_0, J_0)$. Let M be a compact complex manifold and let $E \to M$ be a holomorphic vector bundle. Let g be an automorphism of the pair (M, E) that generates a compact transformation group. Then by Atiyah-Singer [4] we know:

$$\begin{split} \int_{M^{g}} d\mu_{d_{E}}^{g_{+,c}} &= \sum_{i} (-1)^{i} \operatorname{trace}_{c}[g \mid H^{i}(M; \mathcal{O}(E))] \\ &= \langle \mathcal{I}^{g}(M; E), \ [M^{g}] \rangle \,. \end{split}$$

The computations over the products of complex projective spaces with linear actions show that the expression of $d\mu_{d_{\pi}*E}^{g_{+},c}$ in the characteristic classes must be unique. This shows:

$$\mathrm{d}\mu_{d_{F}}^{g_{+,c}} = \mathcal{Q}^{g}(M; E).$$

Now we return to the original situation. Over a coordinate neighbourhood $(G_v, \tilde{U}) \rightarrow U$, we have:

$$\mu_{d_E^+,c} + \mu_{d_E^+,c}^{\Sigma_+,c} = \sum_{g \in G_{\overline{g}}} \mu_{d_E^+,c}^g.$$

Then, by choosing suitable metrics and connections, we have:

$$\mathrm{d}\mu_{d_E^{+,c}} + \mathrm{d}\mu_{d_E^{+,c}}^{\Sigma_{+,c}} = \mathcal{I}(X; E) + \mathcal{I}^{\Sigma}(X; E) \,.$$

Hence we have:

THE RIEMANN-ROCH THEOREM FOR COMPLEX V-MANIFOLDS

$$\begin{split} \chi(X;\,\mathcal{O}_{V}(E)) &= \int_{X} d\mu_{d_{E}^{+,c}} + \sum_{i=1}^{c} \frac{1}{m_{i}} \int_{\widetilde{\mathfrak{T}}_{X_{i}}} d\mu_{d_{E}^{+,c}}^{\Sigma} \\ &= \langle \mathfrak{I}(X;\,E),\,[X] \rangle \\ &+ \sum_{i=1}^{c} \frac{1}{m_{i}} \left\langle \mathfrak{I}^{\Sigma}(X;\,E),\,[\widetilde{\Sigma}X_{i}] \right\rangle. \end{split}$$

The both sides are independent of the metrics and connections.

OSAKA UNIVERSITY

References

- M.F. Atiyah: Elliptic operators, discrete groups and von Neumann algebras, Société Mathématique de France, Astérisque 32-33 (1976), 43-72.
- M.F. Atiyah, R. Bott and V.K. Patodi: On the heat equation and the index theorem, Invent. Math. 19 (1973), 379–330.
- [3] M.A. Atiyah, R. Bott and A. Shapiro: Clifford modules, Topology 3 (1964), Suppl. 1, 3-38.
- [4] M.F. Atiyah and I.M. Singer: The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-604.
- [5] H. Donnelly and V.K. Patodi: Spectrum and the fixed point sets of isometries -II, Topology 16 (1977), 1-11.
- [6] P.B. Gilkey: Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Math. 10 (1973), 344–382.
- [7] P.B. Gilkey: Spectral geometry and the Lefschetz formulas for a holomorphic isometry of an almost complex manifold, to appear.
- [8] F. Hirzebruch: Topological methods in algebraic geometry, Springer-Verlag, 1966.
- [9] N. Hitchin: Harmonic spinors, Advances in Math. 14 (1974), 1-55.
- [10] T. Kawasaki: The signature theorem for V-manifolds, Topology 17 (1978) 75-83.
- [11] I. Satake: The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492.
- [12] R.T. Seeley: Complex powers of an elliptic operator, Proc. Sympos. Pure Math. Math. 10, Amer. Math. Soc. (1967), 288-307.

159