Ohmori, Z. Osaka J. Math. 15. (1978), 359-363

ON THE SCHUR INDICES OF THE FINITE UNITARY GROUPS

Zyozyu OHMORI

(Received March 15, 1977) (Revised September 29, 1977)

Introduction

Let F_q denote the finite group of characteristic p with q elements. We consider the finite unitary group $U(n, q^2)$ of rank n relative to the quadratic extension F_{q^2}/F_q . For a complex irreducible character χ of a finite group, the Schur index of χ with respect to the field Q of rational numbers is defined to be the minimal degree among all the extensions $K/Q(\chi)$ such that χ is realizable in K. Here $Q(\chi)$ is the extension of Q generated by the values of χ . We denote this index by $m_Q(\chi)$. In this paper, we shall determine the Schur indices of all the complex irreducible characters of $U(n, q^2)$ for sufficiently large p and q. Our main result is the following theorem.

Main Theorem. Assume that p and q are sufficiently large. Then the Schur index of any complex irreducible character of $U(n, q^2)$ with respect to the field of rational numbers is one.

REMARK. If $n \le 5$, it is enough only to assume $p \ne 2$ (see §2).

The theorem follows from

Theorem A (R. Gow [3], p 112). For any complex irreducible character X of $U(n, q^2)$, $m_Q(X)$ divides 2.

Theorem B. The values of any complex irreducible character of $U(n, q^2)$ on unipotent elements are rational integers and its Schur index divides these values.

This will be proved in Section 4.

Theorem C. Assume that p and q are sufficiently large (if $n \le 5$, this assumption can be dropped out). Then for any complex irreducible character X of $U(n, q^2)$, there is a unipotent element u of $U(n, q^2)$ such that X(u) is equal to the p-part of the degree of X up to sign.

This will be proved in Section 2.

Z. Ohmori

I wish to thank Professor R. Hotta for giving me his preprint and for his kind advice.

NOTATION. Q is the field of rational numbers. All characters are complex ones. A *character* of a finite group means a non-negative integral linear combination of irreducible characters of the group.

1. The Schur index

To determine the Schur indices of irreducible characters of $U(n, q^2)$, we shall use the following property of the index.

Lemma 1.1. ([1], (70.21)). Let H be a finite group and let ξ be a character of H which is realizable in Q. Then, if χ is an irreducible character of H, $m_Q(\chi)$ divides the intertwining number (ζ , χ).

2. Ennola's conjecture implies Theorem C

In [2], V. Ennola stated the following conjecture (cf. [8]).

Conjecture of Ennola. The system of irreducible characters of $U(n, q^2)$ coincides with that of irreducible C-functions, which are obtained from the irreducible characters of the general linear group GL(n, q) by the simple formal change that q is everywhere replaced by -q.

This is checked by himself in [2] for $n \le 3$ and by S. Nozawa [8], [9] for n=4, 5. Recently, G. Lusztig, B. Srinivasan, R. Hotta, D. Kazhdan and T.A. Springer have proved the conjecture for sufficiently large p and q (See [5], [7]). Thus Theorem C follows from Theorem C of [10], which is the counterpart for GL(n, q).

3. Some lemmas on representation theory of algebraic groups

Let G be a connected, reductive linear algebraic group defined over F_q and F the corresponding Frobenius endomorphism. Then G^F is the finite group of F_q -rational points in G. Let Z denote the centre of G. Throughout this section, we shall assume that Z is connected and that p is not a bad prime for G for all the simple components of G.

Lemma 3.1. Let S be a Sylow p-subgroup of G^F . Then, if λ is a linear character of S, Ind ${}_{S}^{G^{F}}(\lambda)$ is a character of G^{F} which is realizable in Q.

For a proof, see [11], Cor. 2.3..

Corollary 3.2. If χ is an irreducible character of $U(n, q^2)$ of degree coprime to p, then $m_Q(\chi)$ is equal to 1.

360

Proof. Since the centre of the unitary group is connected, (3.2) follows from the main theorem of [11].

Recall that an element x of G (G is reductive) is called *regular* if $Z_G(x)$ (=the centralizer of x) has the minimal dimension.

Lemma 3.3. (i) G^F contains a regular unipotent element of G. (ii) The set of regular unipotent elements in G^F form a single conjugacy class.

This is well known.

Corollary 3.4. Any character of G^F takes rational integral values on regular unipotent elements.

Proof. If u is a regular unipotent element in G^F , for any integer k coprime to p, u^k is also regular; u and u^k are conjugate in G^F (by (3.3)). Then (3.4) follows from [10], (1.1) lemma or from [4], Lemma 2.

Lemma 3.5. If U is an F-stable maximal unipotent subgroup of G and ρ is an irreducible character of U^F of degree greater than one, we have that $\rho(u)=0$ for any regular unipotent element u in U^F .

Proof. Since the image of U in G/Z is isomorphic to U, we may assume that Z is trivial. Then (3.5) follows from Theorems A, A' of [6].

REMARK. In (3.5), the assumption that Z is connected is not needed.

4. Proof of Theorem B

Let $G=U_n$ (=GL_n) be the unitary group of rank *n* defined over F_q . The Frobenius *F* is given by $F((x_{ij}))={}^t(x_{ij}^q)^{-1}$. We also introduce an endomorphism F_0 of U_n defined by $F_0((x_{ij}))=(x_{ij}^{q^2})$. Then $U_n^{F_0}=GL(n, q^2)$.

Lemma 4.1. Two elements of $U(n, q^2)$ are conjugate in $U(n, q^2)$ if and only if they are conjugate in $GL(n, q^2)$.

For a proof, see [12], I.3.6.; also see [2].

Now we prove Theorem B. Let u be a unipotent element of U_n^F , $\mu = (\mu_1, \mu_2, \dots, \mu_s)$ the corresponding partition of n and P_{μ} the standard parabolic subgroup of U_n corresponding to μ i.e.

$$P_{\mu} = \left\{ egin{pmatrix} A_{11} & * & \ A_{22} & * & \ 0 & \ddots & \ & & A_{ss} \end{pmatrix}; \; A_{ii} \! \in \! U_{\mu_i}
ight\}.$$

Then $L = U_{\mu_1} \times \cdots \times U_{\mu_s}$, which is embedded diagonally into P_{μ} , is an F-stable

Z. Ohmori

Levi-subgroup of P; in particular, L is reductive and connected. Let u_0 be an F-stable regular unipotent element of L (such element exists by (3.3)) and let u_{μ} be the Jordan canonical form of u. We may assume that u_{μ} belongs to L. Since the centre of L is connected and since u_{μ} is a regular unipotent element of L, u_{μ} and u_0 are conjugate in $L^{F_0} = GL(\mu_1, q^2) \times \cdots \times GL(\mu_s, q^2)$. (Note that u_0 and u_{μ} are rational over F_{q^2}). Then u and u_0 are conjugate in $GL(n, q^2)$; by (4.1), they are conjugate in U_n^{F} . We may assume u to be u_0 . Let U be the unipotent radical of the F-stable Borel subgroup of L containing u. Then U is F-stable and contains u. Now let χ be an irreducible character of U_n^{F} . Then we have that

$$\chi \,|\, U^{\scriptscriptstyle F} = \sum\limits_{\lambda} a_{\lambda} \!\cdot\! \lambda \!+\! \sum\limits_{
ho} b_{
ho} \!\cdot\!
ho$$
 ,

where the first summation is over all the linear characters of U^F and the second summation is over all the non-linear irreducible characters of U^F . By (3.5), we have

$$\chi(u) = \sum_{\lambda} a_{\lambda} \cdot \lambda(u)$$
.

Since $a_{\lambda} = (\chi, \operatorname{Ind}_{U^{F}_{n}}^{U^{F}_{n}}(\lambda))$ and $\operatorname{Ind}_{U^{F}_{n}}^{U^{F}_{n}}(\lambda) = \operatorname{Ind}_{L^{F}}^{U^{F}_{n}}(\operatorname{Ind}_{U^{F}}^{L^{F}}(\lambda))$ is realizable in Q by (3.1), we see by (1.1) that $m_{Q}(\chi)$ divides a_{λ} . We can rewrite the above expression as

$$\chi(u)/m_Q(\chi) = \sum_{\lambda} (a_{\lambda}/m_Q(\chi)) \cdot \lambda(u)$$
.

In this expression, the right hand side is an algebraic integer. Then, to prove Theorem B, it suffices to show that $\chi(u)$ is rational. But any character of L^F takes a rational integral value on u(by (3.4)) and the restriction of χ to L^F is a non-negative integral linear combination of irreducible characters of L^F ; hence $\chi(u)$ is an integer. This completes the proof of Theorem B.

Tokyo Metropolitan University

References

- C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, John Wiley and Sons, Interscience, New York, 1962.
- [2] V. Ennola: On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. 323 (1963), 1-34.
- [3] R. Gow: Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
- [4] J.A. Green, G.I. Lehrer and G. Lusztig: On the degrees of certain group characters, Quart. J. Math. Oxford (2) 27 (1976), 1-4.
- [5] R. Hotta and T.A. Springer: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, to appear.

- [6] G.I. Lehrer: Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249–260.
- [7] G. Lusztig and B. Srinivasan: The characters of the finite unitary groups, to appear.
- [8] S. Nozawa: On the characters of the finite general unitary group U(4, q²), J. Fac. Sci. Univ. Tokyo 19 (1972), 257-293.
- [10] Z. Ohmori: On the Schur indices of GL(n, q) and SL(2n+1, q), J. Math. Soc. Japan 29 (1977), 693-707.
- [11] ———: On the Schur indices of reductive groups, Quart. J. Math. Oxford (2) 28 (1977), 357–361.
- [12] T.A. Springer and R. Steinberg: Conjugacy classes (Springer Lecture Notes Series 131), Springer-Verlag, New York/Berlin, 1970, 167-266.