K-GROUPS OF EIII AND FII

Haruo MINAMI

(Received December 9, 1975)

1. Let G be a compact, connected, simply-connected Lie group and K a closed connected subgroup of G of maximal rank. As is well known [3], the complex K-group of G / K is isomorphic to $R(K) \underset{R(G)}{\otimes} Z$ and it is a free abelian group with rank equal to the quotient of the order of the Weyl group of G by the order of the Weyl group of K. Here $R(G)$ is the complex representation ring of G. The purpose of this paper is to determine an additive structure of the complex K-groups of symmetric spaces $E I I I=E_{6} / \operatorname{Spin}(10) \cdot S O(2)$ and $F I I=$ $F_{4} / \operatorname{Spin}(9)$. To simplify the notation we write x for the element $x \otimes 1$ of $R(K) \underset{R(G)}{\otimes} Z$ in the following.

Let Δ^{+}and Δ^{-}be the half-spin representations of $\operatorname{Spin}(10)$, and let ρ and t be the canonical non-trivial 10- and 1-dimensional complex representations of $\operatorname{Spin}(10)$ and $S O(2)$ respectively. Then

$$
R(S p i n(10) \times S O(2))=Z\left[\lambda^{1} \rho, \lambda^{2} \rho, \lambda^{3} \rho, \Delta^{+}, \Delta^{-}, t, t^{-1}\right]
$$

and $R(\operatorname{Spin}(10) \cdot S O(2))$ is isomorphic to the subalgebra of $R(\operatorname{Spin}(10) \times S O(2))$ generated by the representations of $\operatorname{Spin}(10) \times S O(2)$ which are trivial on $\operatorname{Spin}(10) \cap S O(2)=Z_{4}$ (See [5] and [2, I], Prop. 2.1). Furthermore then our result is stated as follows.

Theorem.

$$
K^{*}(E I I I) \cong Z\left\{x^{i}, x^{i} w, x^{j} w^{2}, x^{k} v \mid 0 \leq i \leq 8,0 \leq j \leq 4,0 \leq k \leq 3\right\}
$$

where

$$
\begin{aligned}
& x=t^{4}-1 \\
& w=\left(t^{2} \rho-10\right)-x^{3}+2 x^{2}-5 x \\
& v=45 x w^{3}+26 x^{5} w^{2}
\end{aligned}
$$

and $Z\{a, b, c, \cdots\}$ is the free abelian group generated by the set $\{a, b, c, \cdots\}$.
Besides we have (2.1) of Section 2 concerning a ring structure of $K^{*}(E I I I)$. Now, recently Steinberg [4] gave a general formula of a free basis over $R(G)$ for an $R(G)$-module $R(K)$ (by restriction).
2. Using the notation in Table V of [1] we denote by ρ_{1} and ρ_{2} the 27-dimensional representations of E_{6} with the highest weights $\frac{1}{3}\left(4 \alpha_{1}+3 \alpha_{2}+\right.$ $\left.5 \alpha_{3}+6 \alpha_{4}+4 \alpha_{5}+2 \alpha_{6}\right)$ and $\frac{1}{3}\left(2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+5 \alpha_{5}+4 \alpha_{6}\right)$ respectively and by $A d$ the adjoint representation of E_{6}.

Lemma. Let $i^{*}: R\left(E_{6}\right) \rightarrow R(S p i n(10) \cdot S O(2))$ be the restriction induced by the natural inclusion $i: \operatorname{Spin}(10) \cdot S O(2) \rightarrow E_{6}$. Then we have
(i) $i^{*}(A d)=\lambda^{2} \rho+t^{3} \Delta^{+}+t^{-3} \Delta^{-}+1$
(ii) $i^{*}\left(\rho_{1}\right)=t^{4}+t \Delta^{-}+t^{-2} \rho$
(iii) $i^{*}\left(\rho_{2}\right)=t^{-4}+t^{-1} \Delta^{+}+t^{2} \rho$
(iv) $i^{*}\left(\lambda^{2} \rho_{1}\right)=t^{5} \Delta^{-}+t^{2} \lambda^{3} \rho+t^{2} \rho+t^{-1} \Delta^{-} \rho+t^{-4} \lambda^{2} \rho$
(v) $i^{*}\left(\lambda^{2} \rho_{2}\right)=t^{-5} \Delta^{+}+t^{-2} \lambda^{3} \rho+t^{-2} \rho+t \Delta^{+} \rho+t^{4} \lambda^{2} \rho$
(vi) $i^{*}\left(\lambda^{3} \rho_{1}\right)=i^{*}\left(\lambda^{3} \rho_{2}\right)=t^{6} \lambda^{3} \rho+t^{-6} \lambda^{3} \rho+t^{3} \Delta^{+} \lambda^{2} \rho+t^{-3} \Delta^{-} \lambda^{2} \rho+\rho \lambda^{3} \rho+\lambda^{2} \rho$.

Proof. (i)-(iii) are verified by observing the restriction of all weights of ρ_{1}, ρ_{2} and $A d$ to $\operatorname{Spin}(10) \cdot S O(2)$. Here this reduction is based on the formula given in Section 1 of [5], and the weights of ρ_{1}, ρ_{2} and $A d$ are listed in Section 5.

Consider the exterior powers of the formulas (ii) and (iii) then we can aesily check (iv)-(vi) since $\lambda^{2} \Delta^{ \pm}=\lambda^{3} \rho, \lambda^{2}\left(\lambda^{2} \rho\right)+\lambda^{4} \rho=\rho \lambda^{3} \rho$ and $\lambda^{3} \Delta^{-}+\rho \Delta^{-}=\Delta^{+} \lambda^{2} \rho$. q.e.d.

By Lemma we see that
(2.1) $R(S \operatorname{pin}(10) \cdot S O(2)){ }_{R\left(E_{6}\right)}^{\otimes} Z\left(\cong K^{*}(E I I I)\right)$ is multiplicatively generated by two elements x and w with relations

$$
\begin{align*}
& \left(x^{3}+3 x^{2}+3 x\right) w^{2}+\left(x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+3 x^{6}\right) w \tag{2.2}\\
& +2\left(x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}\right)-x^{9}=0
\end{align*}
$$

and

$$
\begin{aligned}
& w^{3}-\left(2 x^{8}-2 x^{7}+2 x^{6}-x^{5}+7 x^{4}+5 x^{3}+18 x^{2}+15 x\right) w^{2} \\
& -\left\{8\left(x^{12}-x^{11}+x^{10}-x^{9}\right)+10 x^{8}-2 x^{7}+15 x^{6}\right\} w-8\left(x^{16}-x^{15}+x^{14}-x^{13}+x^{12}\right) \\
& +7 x^{11}-9 x^{10}+5 x^{9}=0 .
\end{aligned}
$$

When we calculate (2.2), note that

$$
\begin{equation*}
x^{17}=0 \tag{2.3}
\end{equation*}
$$

since $E I I I$ is a differentiable manifold of dimension 32 , and $x+1$ is invertible.
It follows from (2.2) that

$$
\begin{equation*}
\left\{x^{9}\left(x^{5}+15 x^{4}+78 x^{3}+182 x^{2}+195 x+78\right) w+13 x^{7}+53 x^{6}+84 x^{5}+45 x^{4}\right\}=0 . \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem. By (2.3) and (2.4) we have inductively

$$
\begin{equation*}
624 x^{9} w=109 x^{16}-154 x^{15}+228 x^{14}-360 x^{13} \tag{3.1}
\end{equation*}
$$

and so by this formula we have

$$
\begin{equation*}
x^{9} w^{2}=0 . \tag{3.2}
\end{equation*}
$$

Then we get

$$
\begin{gather*}
x^{9}=\left\{14\left(x^{8}+x^{7}+x^{6}+x^{5}+x^{4}\right)+13 x^{3}+9 x^{2}+3 x\right\} w^{2} \tag{3.3}\\
+\left\{5\left(x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}\right)+3 x^{6}\right\} w
\end{gather*}
$$

by (3.1), (3.2) and the first formula of (2.2), and moreover

$$
\begin{equation*}
x w^{3}=\left(12 x^{8}+16 x^{7}+12 x^{6}+15 x^{5}\right) w^{2}+\left(x^{12}+9 x^{11}+x^{10}+9 x^{9}\right) w \tag{3.4}
\end{equation*}
$$

by (3.1)-(3.3) and the secondary formula of (2.2).
It follows that $26 x^{12} w=-15 x^{16}$ and $x^{16}=3 x^{8} w^{2}$ from (3.1) and (3.3) respectively. Therefore $26 x^{12} w+45 x^{8} w^{2}=0$ and so we see that

$$
x^{8} w^{2}=26 x^{3} v \quad \text { and } \quad x^{12} w=-45 x^{3} v
$$

using the equality $x^{4} w^{3}=15 x^{8} w^{2}+9 x^{12} w$ obtained by (3.4). The analogous arguments show inductively

$$
\begin{equation*}
x^{5} w^{2}=-45 \cdot 53944550 x^{3} v+45 \cdot 104903 x^{2} v-45 \cdot 246 x v+26 v \tag{3.5}
\end{equation*}
$$

and

$$
x^{9} w=4196254501 x^{3} v-5 \cdot 1631629 x^{2} v+19131 x v-45 v
$$

Consequently we have Theorem after a slight consideration because $x^{4} v=v^{2}$ $=v w=0$ and the rank of $K^{*}(E I I I)$ is equal to 27 .
4. Denote by $j: F_{4} \rightarrow E_{6}$ the canonical imbedding of F_{4} in E_{6}. Then $j^{*}: R\left(E_{6}\right) \rightarrow R\left(F_{4}\right)$ is surjective and particularly

$$
j^{*}\left(\rho_{1}\right)=j^{*}\left(\rho_{2}\right)=\rho^{\prime}+1 \quad \text { and } \quad j^{*}(A d)=A d^{\prime}+\rho^{\prime}
$$

(See (6.7) and (6.8) of [2.I]) where ρ^{\prime} is the irreducible representation of F_{4} with the highest weight $\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}$ using the notation in Table VIII of [1] and $A d^{\prime}$ is the adjoint representation of F_{4}. Therefore Lemma implies the following

Corollary 1 (cf. [6], Theorem 15.1).

$$
\left\{\begin{array}{l}
k^{*}\left(\rho^{\prime}\right)=1+\rho+\Delta \\
k^{*}\left(\lambda^{2} \rho^{\prime}\right)=\rho+2 \lambda^{2} \rho+\lambda^{3} \rho+\Delta+\Delta \rho \\
k^{*}\left(\lambda^{3} \rho^{\prime}\right)=2 \lambda^{2} \rho+2 \lambda^{3} \rho-\Delta+\rho \lambda^{2} \rho+\rho \lambda^{3} \rho+\Delta \rho+2 \Delta \lambda^{2} \rho \\
k^{*}\left(A d^{\prime}\right)=\lambda^{2} \rho+\Delta
\end{array}\right.
$$

where $k^{*}: R\left(F_{4}\right) \rightarrow R(S p i n(9))$ is the restriction induced by the natural inclusion $k: \operatorname{Spin}(9) \rightarrow F_{4}$, and Δ is the spin representation of $\operatorname{Spin}(9)$ and ρ is the canonical non-trivial 9-dimensional representaiton of Spin(9).

Let $l: F I I \rightarrow E I I I$ be the imbedding induced by j. Then we see that $l^{*}: K^{*}(E I I I) \rightarrow K^{*}(F I I)$ is surjective and so by the secondary formula of (2.2) or by the direct computation from Corollary $1 K^{*}(F I I)$ is generated by $l^{*}(w)$ $=16-\Delta$ with relation $\left(l^{*}(w)\right)^{3}=0$. Hence we have

Corollary 2 (cf. [2], Theorem 7.1).

$$
K^{*}(F I I) \simeq Z[\Delta] /\left((\Delta-16)^{3}\right)
$$

where Δ is as in Corollary 1.
5. The following tables are obtained by acting the elements of the Weyl group of E_{6} suitably on the highest weight of each irreducible representation.

Table 1

The weights of ρ_{1} :		
435642	1 0-1 0-2-1	102312
135642	-2 0-1 0-2-1	102012
132642	-2 0-1-3-2-1	$10-1012$
132342	-2 0-4-3-2-1	-2 0-1 012
132312	-2-3-4-3-2-1	-2 0-1 0 1-1
$13231-1$	-2-3-4-6-2-1	-2-3-1-3-2-1
$10231-1$	-2-3-4-6-5-1	1 0-1 0 1-1
$10201-1$	-2-3-4-6-5-4	1 0-1-3-2-1
$1020-2-1$	102342	1-3-1-3-2-1

Table 2

The weights of ρ_{2} :		
234654	$-10-20-11$	-1 $0110-11$
234651	-1 0-2 0-1-2	-1 $0110-1-2$
234621	-1-3-2-3-1-2	-1 0-2-3-1-2
234321	-1-3-2-3-4-2	-1 0-2-3-4-2
231321	-1-3-2-6-4-2	-4-3-5-6-4-2
201321	-1-3-5-6-4-2	-131321
-1013 311	204321	-1 0-2-3-1 1
-101021	201021	-1-3-2-3-1 1
-10-2 021	$2010-11$	$2010-1-2$

Table 3

The positive roots of E_{6} :		
122321	111211	010100
112321	111111	010000
112221	101111	011111
112211	101110	010111
112210	001110	010110
111210	001100	000110
111110	001000	000100
111100	011221	001111
101100	011211	000111
101000	011210	000011
100000	011110	000010
111221	011100	000001

where the sequence $m_{1} \cdots m_{6}$ of integers indicates a weight $\frac{1}{3}\left(m_{1} \alpha_{1}+\cdots+m_{6} \alpha_{6}\right)$ in
Tables 1 and 2 and a root $m_{1} \alpha_{1}+\cdots+m_{6} \alpha_{6}$ in Table 3 using the notation in page 261 of [1].

Osaka City University

References

[1] N. Bourbaki: Groupes et algèbres de Lie IV-VI, 1968.
[2] H. Minami: K-groups of symmetric spaces I, II, Osaka J. Math. 12 (1975), 623634; 13 (1976), 271-287.
[3] Harsh V. Pittie: Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199-203.
[4] R. Steinberg: On a theorem of Pittie, Topology 14 (1975), 173-177.
[5] H.O. Singh Varma: The topology of EIII and a conjecture of Atiyah and Hirzebruch, Nederl. Akad. Wetensch. Indag. Math. 30 (1968), 67-71.
[6] I. Yokota: Exceptional Lie group F_{4} and its representation rings, J. Fac. Sci. Shinshu Univ. 3 (1968), 35-60.

