WHEN IS Z[a] THE RING OF THE INTEGERS?

Dedicated to the memory of Professor Taira Honda

Kôjı UCHIDA

(Received December 15, 1975)

Let Z be the ring of the rational integers and let Q be the field of the rational numbers. Let α be an algebraic integer. Then $Z[\alpha]$ is a subring of the ring of the integers in $Q(\alpha)$. We will show when $Z[\alpha]$ is just the ring of the integers. We deal with this problem in slightly more general situation.

Let R be a Dedekind ring. A polynomial $f(X)$ of the form

$$
f(X)=X^{m}+a_{1} X^{m-1}+\cdots+a_{m}, a_{i} \in R
$$

is called an integral polynomial over R. Let S be an integral domain containing R. A element α of S is called integral over R if it is a zero of some integral polynomial over R. Then α is a zero of the integral irreduicble polynomial $\varphi(X)$ which is called the defining polynomial of α.

Theorem. Let R be a Dedekind ring. Let α be an element of some integral domain which contains R, and let α be integral over R. Then $R[\alpha]$ is a Dedekind ring if and only if the defining polynomial $\varphi(X)$ of α is not contained in \mathfrak{m}^{2} for any maximal ideal \mathfrak{m} of the polynomial ring $R[X]$.

First we prove the following lemma.
Lamma. Let \mathfrak{m} be a maximal ideal of $R[X]$. If \mathfrak{m} contains an integral polynomial, \mathfrak{m} is of the form $\mathfrak{m}=(\mathfrak{p}, f(X))$, where \mathfrak{p} is a maximal iedal of R and $f(X)$ is an integral polynomial which is irreducible mod \mathfrak{p}.

Proof. Let $g(X)$ be an integral polynomial in \mathfrak{m}. Then the residue class ring $R[X] /(g(X))$ is integral over R. Hence its maximal ideal contains a maximal ideal \mathfrak{p} of $R[1$, Chap. $\mathrm{V}, 2]$. Then \mathfrak{m} also contains \mathfrak{p}. As any maximal ideal of $(R / \mathfrak{p})[X]$ is generated by an irreducible polynomial, \mathfrak{m} is of the form $(\mathfrak{p}, f(X))$.

Remark. This lemma holds for any commutative ring with identity. If we drop out the condition that \mathfrak{m} contains an integral polynomial, \mathfrak{m} is not necessarily of the above form. For example, let R be a semilocal Dedekind ring and let a be in the intersection of all maximal ideals. Then $\mathfrak{m}=(a X-1)$ is a
maximal ideal, because $R[X] / \mathrm{m} \cong R[1 / a]$ is a field. If a Dedekind ring R contains infinite number of maximal ideals, it can be shown that any maximal ideal is of the above form.

We now prove our theorem. Le $\varphi(X) \in \mathfrak{m}^{2}$ for some \mathfrak{m}.
As $\mathfrak{m}=(\mathfrak{p}, f(X))$ by the above lemma, it holds

$$
a \varphi(X)=p^{2} r(X)+p f(X) s(X)+f(X)^{2} t(X),
$$

where $p \in \mathfrak{p}$ such that $(p)=\mathfrak{p a},(\mathfrak{p}, \mathfrak{a})=1$ and $a \in \mathfrak{a}^{2}-\mathfrak{a}^{2} \mathfrak{p}, r(X), s(X)$ and $t(X) \in R[X]$. We can assume $\operatorname{deg} \varphi(X)=\operatorname{deg} f(X)^{2} t(X)$.
Then

$$
(f(\alpha) t(\alpha) / p)^{2}+(f(\alpha) t(\alpha) / p)^{2} s(\alpha)+r(\alpha) t(\alpha)=0
$$

i.e., $f(\alpha) t(\alpha) / p$ is integral over $R[\alpha]$. As every element of $R[\alpha]$ is uniquely written as a polynomial of α of degree at most $\operatorname{deg} \varphi(X)-1$ with coefficients in $R, f(\alpha) t(\alpha) / p$ is not an element of $R[\alpha]$ because $f(X) t(X) \equiv 0(\bmod \mathfrak{p})$. Hence $R[\alpha]$ is not integrally closed. Now let $\varphi(X) \notin \mathfrak{m}^{2}$ for any \mathfrak{m}. As $R[\alpha]$ is integral over R, every non-zero prime ideal is maximal. Then every non-zero ideal of $R[\alpha]$ contains a product of maximal ideals because $R[\alpha]$ is noetherian. If every maximal ideal is invertible, every non-zero ideal is equal to a product of maximal ideals and $R[\alpha]$ is a Dedekind ring. Let \mathfrak{n} be any maximal ideal of $R[\alpha]$. Let \mathfrak{m} be the inverse image of \mathfrak{n} by the natural homomorphism $R[X] \rightarrow R[\alpha]$. Then $\mathfrak{m}=(\mathfrak{p}, f(X))$ because \mathfrak{m} is maximal and $\varphi(X) \in \mathfrak{m}$. We can put

$$
a \varphi(X)=p h(X)+a f(X) k(X),
$$

where p is an element of \mathfrak{p} such that $(p)=\mathfrak{p a},(\mathfrak{p}, \mathfrak{a})=1, a \in \mathfrak{a}-\mathfrak{a p}, h(X)$ and $k(X) \in R[X]$. If $f(\alpha)=0, \mathfrak{n}=\mathfrak{p} R[\alpha]$ which is invertible. We now assume $f(\alpha) \neq 0$. As $a \varphi(X) \notin \mathfrak{m}^{2}$, it holds $h(X) \notin \mathfrak{m}$ or $a k(X) \notin \mathfrak{m}$, i.e., $h(\alpha) \notin \mathfrak{n}$ or $a k(\alpha) \notin \mathfrak{n}$. As $a q / p$ is in R for every element q of \mathfrak{p}, the above equation shows that $a k(\alpha) / p$ is in \mathfrak{n}^{-1}. Then $h(\alpha)=-f(\alpha) \cdot a k(\alpha) / p$ and $a k(\alpha)=p \cdot a k(\alpha) / p$ are in $\mathfrak{n} \cdot \mathfrak{n}^{-1}$. As $h(\alpha)$ or $a k(\alpha)$ is not an element of \mathfrak{n}, it holds $\mathfrak{n} \cdot \mathfrak{n}^{-1} \nsubseteq \mathfrak{n}$. This shows $\mathfrak{n} \cdot \mathfrak{n}^{-1}=R[\alpha]$, i.e., \mathfrak{n} is invertible. This completes the proof.

In the case $R=Z$, finite amount of calculations show if $\varphi(X)$ is contained in some \mathfrak{m}^{2} or not. If $\varphi(X) \in \mathfrak{m}^{2}$ for $\mathfrak{m}=(p, f(X)$), it holds

$$
\varphi(X)=p^{2} r(X)+p f(X) s(X)+f(X)^{2} t(X)
$$

for some $r(X), s(X)$ and $t(X) \in Z[X]$. This shows that $\varphi(X) \equiv 0(\bmod p)$ has multiple roots, i.e., p is a prime factor of the discriminant of $\varphi(X)$. That is, only a finite number of prime numbers are possible. If such prime p is fixed, $f(X)$ must be a multiple factor of $\varphi(X) \bmod p$.

Example. Let $F_{n}(X)$ be the defining polynomial of a primitive n-th root ζ
of unity. It is known that $Z[\zeta]$ is the ring of the integers in $Q(\zeta)$. But the proof is not easy. We can show this more easily by our method. If $n=p^{e}$ is a power of a prime, this is very easy. But in the general case we must assume some arithmetic in $Q(\zeta)$. We only need to consider maximal ideals \mathfrak{m} which contain prime factors of n. Let p be a prime factor fo n, and let $n=p^{e} m$, $(p, m)=1$. As $F_{n}(X)$ divides $F_{m}\left(X^{p^{e}}\right)$ and as $F_{m}\left(X^{p^{e}}\right) \equiv F_{m}(X)^{p^{e}}(\bmod p)$, we can assume $\mathrm{m}=(p, f(X))$, where $f(X)$ is an irreducible factor of $F_{m}(X) \bmod p$. Let η be a primitive m-th root of unity. Then there exists a prime divisor \mathfrak{p} of p in $Q(\eta)$ such that $f(\eta) \in \mathfrak{p}$. As $F_{n}(X)$ divides $F_{p^{e}}\left(X^{m}\right)$, it is enough to show that $F_{p^{e}}\left(X^{m}\right) \notin \mathfrak{m}^{2}$. If $F_{p^{e}}\left(X^{m}\right) \in \mathfrak{m}^{2}$, we can put

$$
F_{p e}\left(X^{m}\right)=p^{2} r(X)+p f(X) s(X)+f(X)^{2} t(X),
$$

where $r(X), s(X)$ and $t(X) \in Z[X]$. As

$$
F_{p e}(X)=X^{(p-1) p^{e-1}}+\cdots+X^{p^{e-1}}+1,
$$

it holds

$$
p=F_{p^{e}}(1)=F_{p^{e}}\left(\eta^{m}\right)=p^{2} r(\eta)+p f(\eta) s(\eta)+f(\eta)^{2} t(\eta) .
$$

As p is not ramified at $Q(\eta)$, it holds $p \notin \mathfrak{p}^{2}$. But the right hand side is in \mathfrak{p}^{2}. This is a contradiction. This shows $F_{p^{e}}\left(X^{m}\right) \notin \mathfrak{m}^{2}$, i.e., $F_{n}(X) \notin \mathfrak{m}^{2}$.

Tôhoku University

Reference

[1] O. Zariski and P. Samuel: Commutative algebra, van Nostrand.

