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0. Introduction

The concept of Teichmϋller mapping seems to be first explicitly introduced
by Bers [4] in 1960, significance of which lies, of course, in the fact that it
describes a necessary and sufficient condition for a homeomorphism of a closed
Riemann surface to be extremal quasiconformal within individual homotopy
classes. A few years later the remarkable counter-example was presented by
Strebel [14] which showed that the Teichmϋller character is no necessary
condition for the extremal quasiconformality of mappings between disks with
prescribed boundary correspondence: his extremal quasiconformal mapping also
plays a part as an example illustrating the non-uniqueness of extremal quasi-
conformality for the non-compact problem.

Let Λ, S be a pair of topologically equivalent Riemann surfaces. It does not
matter whether they are compact or not. A quasiconformal homeomorphism
f of R onto S is customarily called Teichmϋller mapping if the Beltrami coef-
ficient μf of/satisfies an equation μf=/cΦ/\Φ\ with a positive constant /c(<l)
and with an analytic differential Φ of type (2, 0) on R at every point of R where
ΦΦO (cf. Bers [4], Strebel [14]). Or equivalently, the Teichmϋller mapping/
is defined as a diίfeomorphic solution to the Beltrami differential equation
with the coefficient μf which equals a constant /c (0</e<l) in modulus and
whose argument agrees with the trajectories Φ>0 for some analytic quadratic
differential Φ except possibly at its zeros on R.

Here our special attention will be focussed upon the analyticity associated
indirectly with Teichmϋller mappings. According to Ahlfors [1] it appears to
derive from the vanishing of the first variation of maximal dilatation as a func-
tional, so far as the algebraic Riemann surfaces are concerned. On the other
hand we know a very simple transcendental example of Teichmϋller mapping
which is not extremal quasiconformal. What does then characterize the Teich-
mϋller maps at all? The present study arose from an attempt to answer this
question, which is also written as a continuation of my previous work [13] in a
certain sense. Major part of this paper is devoted to the study on those defining
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conditions of Teichmϋller maps. The main result reads in a broad way that a

constancy of dilatation in a modified sense implies the analyticity.

Our reasoning rests on the two fundamental facts as a whole. The one
is the classical existence and uniqueness theorem on ordinary differential equations

of the first order together with the dependence of the solutions on their initial data
and the other the regularity that the solutions of Beltrami equations with ad-
equately smooth coefficients enjoy.

We recall in §1 some notions as well as conventions employed in [13], This
section also prepares the concept such as characteristic directions at non-singular

points of a quasiconformal mappings which was motivated by the eigen vectors
of linear transformations. Aiming at prolongation of the characteristic direc-

tion at every point of the domain considered, we arrive at an idea of characteristic

arcs and characteristic quadrilaterals in §2. A noteworthy relationship between

characteristic arcs and a kind of closed differentials is obtained there as a by-
product. It is well known that the local ^-quasiconformality gives rise to the

global one to the effect that an upper bound of the dilatations in a neighbourhood

of each point becomes their upper bound in the large, too. What can we say if
the upper bound K is replaced by a lower bound of dilatation-quotients for a

smooth quasiconformal mapping? §3 deals with this problem, where the
characteristic quadrilateral plays an essential role. This enables us to do with

our principal theorem under the superfluous assumption of smoothness. The

ultimate goal will be achieved in §4 in terms of maximal and minimal dilatations

at points.

1. Preliminaries

Let w= 7Ί(#) be a quasiconformal (but not conformal) mapping defined in a

domain G of C and let 3[G] the space of all the quasiconformal homeomor-

phisms of G onto G'— 7\(G) endowed with the topology of normal convergence

in G. The class of j-times continuously differentiable topological mappings

in G shall be denoted by Cj[G]. In the subsequent argument I shall refer to

the notations and terminologies below, which were employed in my former

paper [13]:

N*(z): α-neighbourhood of the point z
•

NΛ(z): the deleted ^-neighbourhood of the point %

mod Ω: modulus of the quadrilateral Ω

S= T~l (the inverse mapping of T)

pτ(z) = 9 T/dz, qτ(z) = d T/Qz

Dτ(z): the maximal dilatation of T at z

Dτ(z): the minimal dilatation of T at z
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is said to be non-singular at a point zQ^G, if T(z) is totally

differentiable at z0 and further the Jacobian \pτ(zQ)\2— |<?r(#o)l2 is positive.
The Beltrami coefficient μτ(z)= qτ(z)lpτ(z) f°r T(z) can be determined at non-
singular points. At such a point ZQ we have the differential inequalities

The extrema of [\dw\f\ dz\]z=ZQ are attained by the directions arg<fe=(argμ,Γ(#0))/2

and arg^=[(arg^Γ(<2'0))/2]+(7r/2), which one calls characteristic directions of

T(z) at z0: For geometric interpretation of this fact we observe the infinitesimal
ellipse E(zQ) centred at ZQ with the properties: (i) its minor axis points to the
direction argdz=(arg μτ(z0))/2: (ii) magnitude of the major and minor axes is

in the proportion (\pτ(z0)\ + I ?Γ(*0) | )/( | /v(*o) I ~ l?r(*o)l) τhen τ(*) takes

E(z0) to the infinitesimal circle centred at wQ= T(zQ) to within infinitesimals of
higher order. Let us agree to name the direction arg dz=(arg μτ(zQ))/2 to be

minor-axial. The major-axial direction is orthogonal to the minor-axial direc-
tion. By means of T(z) the characteristic directions of T(z) at z0 correspond to
those of the inverse mapping Γ'1^) at w09 but the major-axial and minor-axial

directions interchange with one another. Qτ(zG)=( \ pτ(z0) \ + | qτ(z0)) \ /( \pτ(
z)o I

~~ I <Iτ(zo) I ) is the so-called dilatation-quotient of T at z0.
The following familiar proposition will serve our infinitesimal consideration

afterwards:

Lemma 1 (cf. Hedrick-Ingold-Westfall [10]). Let z0^G be a non-singular
point for a Γ<Ξ3[G] Π C1 [G]. If T(z) is not conformal at z=z0, T(z) preserves,
among all angles with the vertex at zQy only the four right angles formed by a pair
of characteristic directions through ZQ.

We include also the proposition for later use which rephrases the second
part of Theorem 6 in [13] :

Lemma 2. Let T^ζ[[G]ΐ\Cl[G] be non-singular everywhere in G and let

Go an arbitrary closed subregion of the domain G. Let θ be the characteristic direc-

tion of T at a point z^G0 and let R denote the square with vertices z, z-\-reϊθ,
z+(l+i)reiθ, z-\-ireiθ with a real positive r. Given any £>0, there exists some
S=S(ε)>Oy such that r<S implies the inequality

I max {mod T(R), I/mod T(R)}-QT(z)\<8

uniformly with respect to #e Co-

in contrast with the significant counter-example due to Strebel there is an

EXAMPLE (Sasaki [12]). w=T(z)=\z ^expί^arg^-V^^Tlogl^l)} (α>l
being const.) is a Teichmϋller mapping of 0< \z\ <1 onto 0< \w\ <1 but not
extremal quasiconformal.
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2. Characteristic quadrilaterals

Roughly speaking, the dilatations of a quasiconformal mapping are the
quantities which measure the proportion between the moduli of quadrilaterals
and those of their images under the mapping, regardless of whether in the in-

finitesimal, in the small or in the large. One has been with reason interested

mainly in the estimate on such quantities from above, since the quasiconformality

itself was originally defined by means of the inequalities of those types. If

one wishes, however, to look for meaningful estimates of moduli from below,

one will necessarily be obliged to distinguish the two cases according as the

choice of permutations in which their vertices are ordered. In case of a regular

smooth mapping it amounts to take care merely of a lower bound for maximal

ratios of stretching to shrinking at all points in question. To this end we shall

have to trace the loci of characteristic directions throughout the domain.

DEFINITION 1. Suppose that a domain G consists only of non-singular

points for a T(z) belonging to 3[G] Γi Cl[G] and that T(z) is nowhere conformal

in G. Then a smooth open arc C comprised in G is called to be minor -axially

(resp. major-axially) characteristic for 7\ if the tangent vector dz to C satisfies
arg dz = (arg μτ(z))/2 (resp. argdz= [(arg μτ(z))/2]-\-(π/2)) (mod 2τr) at every
point of C. The arc subject to either of the above two requirements shall be

generically referred to as characteristic arc (or briefly characteristics).
Let T be of 2[G] (Ί C2[G]. The subset G0 of G where T(z) is non-singular

and non-conformal must be relatively open. We suppose, for a moment, that
G0 contains a point Z1 = x1+iy1 satisfying |arg μτ(z^)\ <π (mod 2π). Then
there exists an open interval /— {(x, y) : \ x—x1 \ <α, \y— yλ \ <β} C G0 such that
every point z=x-\- iy^I satisfies |argμr(s)| <0τr(0<0<l). Under these
circumstances the differential equation

(1) = tanargMx(z)

is well defined in /. One and only one solution curve for (1) passes through
any point of the closed interval I1={(xy y): \x—xl\ <min{α/2, /3/2tan(0ττ/2)},

\y— y^ </3/2}. In other words a suitable neighbourhood of zl is filled by the
family of characteristic arcs pτ(z)qτ(z)dz2>Q exactly once. The situation is all
the same for another characteristic arcs pτ(z)qτ(z)dz2<0. Even if G0 may
contain a point #/ where 1 argμ,r(#/) | =π (mod 2τr), we see the classical existence
and uniqueness theorem for the ordinary differential equations utilized above
still apply after an appropriate rotation of the coordinate axes to obtain the
similar conclusion in some neighbourhood of #/. We summarize the results in

Theorem 1. Let T(z) be of 2[G] Π C2[G]. Then the open set G0C G where
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T is non-singular and non-conformal is filled up by two families of orthogonally
inter esecting arcs, i.e., the minor-axial and major-axial characteristic arcs. They
coincide respectively with the trajectories and the orthogonal trajectories of the
quadratic differential pτ(z)qτ(z)dz2 .

DEFINITION 2. A quadrilateral ΩcG is termed to be characteristic for a
non-conformal quasiconformal mapping T(z) belonging to 2[G] Π C2[G], if Ω

consists exclusively of non-singular points of T(z) and if the families of major-
axial and minor-axial characteristic arcs cover the interior as well as the boundary
of Ω exactly once in such a fashion that each member of them is a simple arc

which connects the opposite sides of Ω on itself.

REMARK 1. The condition of twice continuous differentiability is not so
indifferent as it looks like in defining the characteristic arcs and charcateristic

quadrilaterals.

Lemma 3. Let a T^3[G] Π C2[G] be non-singular and non-conformal in G.
Then there exists a conformal metric ds2=ρ(z)\dz\2 on Gy such that any pair of
minor-axial characteristic arcs cuts off sub-arcs of the equal length measured with
this metric from all the major-axial characteristic arcs.

Proof. We fix a characteristic quadrilateral Ω0=Ω0(0, a, #0, b) of T with

the minor-axial characteristic side 0, a once and for all, so that every horizontal

line in the #-plane may intersect its major-axial characteristic cross-cuts at most

once this situation can always be realized at least locally. Let zλ e int Ω0 be

arbitrary. Then the point z1 determines the major-axial (resp. minor-axial)

cross-cut 7' (resp. 7") of Ω0 through *lβ Put Z"=Ύ" Π <M> (resp. z^=y Γi θ7#).

Take an arbitrary point z1+Δz1 on 7'. On denoting the minor-axial charac-

teristic arc through z1-\-Azl by 7", we set zl

/f-\-Δzl

/'=(γf/Γ\09 b. We want to
show that lim | Δ#/' | / 1 Δ#j | exists and is continuous in zλ.

ΛΊ+O

To this end we set z2= {z: Re z= Re arj Π 7", z2"= {%• Re z= Re */'} ΓΊ 7".
Then lim \Z2f—zl"\l\z2—zl\ exists and is continuous in z19 because the solu-

22^1

tions of the differential equation (1) depend smoothly on the initial data, while

lim I Δzj" I / 1 z^'—z^ \ =cos[(arg /^Γ(^1

//))/2] is continuous in z1 owing to their

continuous dependence on these initial data (cf. e.g., Petrovski [11], pp. 55-64).

Therefore the point-function^^)— lim | Δ-sr/7 1 / 1 Δ^ — lim(|#2"— z\'\\\^i—^\\)
Λ ?j->0 Δ«j->0

cos[(arg /^Γ(^ι//))/2]/cos[(arg μτ(z\))β] must be continuous in z^ Thus we obtain
the desired metric ds2=ρ(z)\dz\2 with p(#)=[g(#)]2

The point zl eΩ0 determines uniquely the oriented path C(ar1)=θ7ί?Γ/o^77^1,

where the symbol o denotes the addition of the two singular 1-simρlexes
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θT*ι"> *ί"Γ*ι taken along 9Ωo» 7" respectively. With the above notations in
mind we next define the mapping

u+iv = φW

C(z)

with %(#) = ρ(z)/ \pτ(z)qτ(z) I The φ is one-valued, injective and of class
[̂Ωo], so it induces a Riemannian metric Λ in regard to which the minor-axial

characteristics are geodesic. The classical transversality theorem (cf. e.g.,

Eisenhart [6], p. 174) assures that γ' cuts off the equal lengths from 7" and 7"
measured with Λ, accordingly with p(z) \ dz \ 2. Therefore every minor-axial

(resp. major-axial) characteristic cross-cut of Ω0 goes into the horizontal (resp.
vertical) line under the mapping φ. The dilatation-quotient of this C^-diffeo-
morphism equals 1, hence φ is biholomorphic.

DEFINITION 3. The new coordinate φ(#)— u-\-iv of the point #eΩ0 shall
be referred to as natural coordinate of z with respect to the characteristic

quadrilateal Ω0 of Γ<Ξ 2[G] Π C2[G\.

We have proved

Lemma 4. Let Ω be a characteristic quadrilateral of a non-singular and

non-conformal mapping T of 3[G] Π C2[G] and let φ(z)=u+iv the natural coor-
dinate of z Eϊ Ω with respect to this quadrilateral. Then φ(z) preserves the modulus

of every characteristic sub-quadrilateral of Ω.

Theorem 2. For any T of 3[G] Π C2[G] there exists a positive continuous

function X(z) which makes the quadratic differential %(z)(dT/dz)(dTldz)dz2 analytic
in the whole open sub-set of G where T is non- singular.

This theorem can be paraphrased into

Corollary 1. A sufficiently smooth quasίconformal mapping with non-vanishing
Jacobian is harmonic with respect to some conformal metric1).

As another deduction of Theorem 2 we mention among other things

Corollary 2. Let C: z=z(t) = x(i)+iy(t)
be a simple arc lying in C such that z(t) is continuously differ entiable and
Then the point-set C can be made into an analytic arc through a suitable change of
parametrization.

Proof. For a point z of C we set θ(z)=Arctzn(y(t)lx(ΐ)). Then this

1) As to the definition of harmonic mappings into Riemannian manifolds, see Eells-Sampson
[5] and Gerstenhaber-Rauch [7].
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function is prolongable continuously up to the whole Gaussian plane C. Let
κ(z) (<1) be a positive continuous function supported by a compact region
whose interior comprises C. On setting μ(z)=κ(z)e2iθ(z\ wτe can have a quasi-

conformal homeomorphism w= T(z) of C which satisfies the Beltrami equation
dzv/dz = μ(z)dw/dz. It is possible to find a positive continuous function %(#)
such that the function

is biholomorphic in a simply connected domain comprising C (the integral in the

denominator being taken along C) (Theorem 2). The inverse map φb"1 sends

the interval {t'ι 0<ί'<l} holomorphically onto C, since C constitutes a part
of the minor-axial characteristic arcs of T(z). q.e.d.

Lemma 5. Let T^3[G]ΓιC2[G] be non-singular and non-conformal in G

and let Go an arbitrary closed subregίon of G. Then, given any 6 >0, there exists
a δ>0 depending only on £ and G0 such that for any characteristic quadrilateral
Ω=Ω(3Ί, z2J #3, #4) of T which is not disjoint with GQ, diam Ω < δ implies

mod Ω

at some vertex zj (j = 1, 2, 3, 4) of Ω .

Proof. Let δ0=dίst(G0, 9G) and let GI denote an arbitrary closed region
such that Go cGj cGi cG and dist(Gι, 9G)<δ0/2. We take a characteristic
quadrilateral Ω0 = Ω0(£Ί, ζ2, ?3, ζ4)c.G1 for T and introduce the natural coordi-

nate φ(z)=ujriv with the origin at ξ1 and with the w-axis (resp. α-axis) ξl9 ζ2

(resp. ζl9 ζ4). The composite mapping T*= TΌφ-1 is C^-diffeomorphic and
non-singular in the rectangular domain RQ = φ(Ω0): its characteristics are the
horizontal and vertical lines (Lemma 1). Let R=R(wly w2y w3y w4)dR0 denote
a characteristic sub-quadrilateral for Γ*: if diam R is small, say <δi, we have

mod T*(R) modR \ n , , ,
1 A > i-TFϊTTfJ ? — yr*^,-) < ^

for some index j, where δx depends only on ε (Lemma 2). We can find a δ2>0

by definition of the metric such that diam Ω<δ2 implies diam φ(Ω) < 81

for any characteristic sub-quadrilateral ΩcΩ0 of T. It follows from (3) that

ίrnod
modΩ ' modΓ(Ω)J ^n y;ι ^ "

at z~ φ~l(Wj] (Lemma 4). Repetition of the same argument yields the existence

of some positive δ<δ0/2 such that any characteristic quadrilateral Ω of T with
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diameter smaller than δ satisfies (2). q.e.d.

3. Estimates of dilatations from below

DEFINITION 4. Let {7j}j=l,2...tm-ι (resp. {τ/}^ι,2,..,«-ι) denote any major-
axial (resp. minor-axial) characteristic arcs connecting the minor-axial (resp.

major-axial) sides of a characteristic quadrilateral Ω0. The totality of them

divides Ω0 into the union of mn characteristic sub -quadrilaterals Ω^ 0'=!, 2,...,
m\ k=ly 2, ..., n). Then we say that we have a characteristic subdivision Δ of

the characteristic quadrilateral Ω0 and that each Ωjk belongs to Δ.

Theorem 3. Let T(z) be non-singular and non-conformal twice continuously

differ entiable quasiconformal mapping of a domain G and let Ω=Ω,(zl9 #2> #3> z^^- G
a characteristic quadrilateral of T. If there exists some characteristic subdivision

Δ of Ω such that each characteristic sub-quadrilateral Ωjk belonging to Δ satisfies

maxmaX

Qy, 1

(Ωjk)} ~ °'Ω^Γ' mod T(Ωjk)}

(j= 1,2,..., m;k= 1, 2,...,π)

with some constant K0 (>1),

/mod Γ(Ω) modΩ | ^
l~modΩΓ ' mod Γ(ΩI ~ A° '

Proof. We may assume without losing the generality that the major-axial

characteristic cross-cuts {7;}^i,2,...(WJ-i connecting the sides zl9 z2 and z39 z4

divide Ω into the union of characteristic sub-quadrilaterals Ω; (j=lj 2,...,m)

and that each Ω; is divided by the minor-axial characteristics {7j/}*=ι,2,...,n-ι
into the union of n characteristic sub-quadrilaterals Ωjk(k=l, 2,..., n). For any

point z of Ω we introduce the natural coordinate φ(z)=u-\-iv with respect to Ω .
It follows from Lemma 4 that we have through a suitable choice of the moduli
of those quadrilaterals considered

mod Ω(z19 z2, z3, z4) — 2 mod Ω7 =2 ~n i
j = l j = l^ L

Ω,A

I mod T(Ω)jk

= -=- mod

q.e.d.
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Theorem 4. Let T(z) be a twice continuously dίfferentίable quasίconformal
mapping in a domain G. If T(z) has the dilatation-quotient Qτ(z) bounded below
by a constant K0(>1) everywhere in G, we have

max /mod Γ(Ω) modΩ ] „
I mod Ω ' mod Γ(Ω)J ~ °

for any characteristic quadrilateral Ω C G of T.

Proof. Given any £>0 there exists some characteristic subdivision Δ of
the Ω such that every characteristic sub-quadrilateral Ω' belonging to Δ satisfies

[mod T(Ωf) modΩ7 } κ _
I modΩ' ' mod Γ(Ω')J °

(Lemma 5). Hence we get by Theorem 3 that

/mod Γ(Ω) modΩ \ ^ ^ __p

I mod Ω ' mod

Letting £—»0, we complete the proof.

In the subsequent consideration we shall confine ourselves only to a
bounded domain G, but this will be readily seen to imply no essential restric-
tion of generality. Now given any Γe2[G], it is possible to find a complex-
valued function μ(z) subject to the requirements: (i) μ(z) is of class £2[C]; (ii)
supp μ(z) is a uniformly bounded closed region whose interior comprises G; (iii)

\μ(z)\<\μτ(z)\ (*eG); (iv) \μ(z)\< ess sup|M3.(*)| (*e=C) (cf. [13]). The
Beltrami equation dwldz—μ(z)dw/dz has a solution w= T(z) which provides a

homeomorphism of C onto itself with the property ί>r(^)Φθ (Ahlfors [2]). T
belongs to C2[G] (Ahlfors [3], pp. 85-88), hence it has well-determined char-
acteristic arcs everywhere in G (Theorem 1). The totality of such T shall be

denoted by 3=3[G\. For a δ>0 we set Jί,[T\ 3]={Te3: ||μτ-A6τl|2<S},

where || ||2 stands for the L2-norm over C; it is known that J18\T\ 2]Φφ for
any δ > 0.

Next fix a point #0G:G and a number α>0 arbitrarily besides the above
We take a point ζ in N*(zQ)Γ[G and a positive real r<dist

0) Π G)}. Whatever T we may choose out of 2, a pair of major-axial
(resp. minor-axial) characteristic arcs γy (/= 1,2) (resp. 7y

r (y= 1, 2)) is completely
determined by the requirement that the four arcs should be tangent to the circle
\z—ζ\=r. Let C, C' denote a couple of major-axial and minor-axial char-
acteristic arcs through ξ. Two cases may occur: (i) C, C' forms, together with
one of the {γ;} and one of the {γ/} (j=l, 2), at least one characteristic
quadrilateral Ω^ (\<k<l: 1=1, 2, 3 or 4) comprised in G; (ii) otherwise, the
symbol mod Ωy, mod 7χΩy) etc. do not make sense, but we set formally
mod T(Ω; )/mod Ω, = + oo (y=l, 2, 3, 4).
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DEFINITION 5. D«τ(z0) = D«τ(z0] 3) =

inf inf lim sup max max \™—JL-ll Γ^rSl > (*oeG)> where the supre-
ζ r δ-»o ι<,j<,4 l mod Ωj mod T(Ω; )J

mum shall be taken in reference to all T belonging to Jl^\T\ 3],

Lemma 6. lim D*τ(z\ 3)=DT(z) (*eG).
Λ->0 ~

Proof. We shall first show that lim DT(Z; 3)>DT(z) everywhere in G.
Λ->0 ~ ^

Suppose, contrary to the assertion, G contain a point z0 such that lim Dτ(z0',3)
Λ->0

<DT(ZO). Then there is a constant c satisfying

( 4 ) lim Z>ϊ(*0; 2)<c<.Dr(*o).
Λ->0

The first inequality requires the existence of some ζ^N*(z0) ΓlG as well as
some positive r<dist{£, d(N*(%0) ΓlG)} for every α>0, such that the character-

istic quadrilateral Ω(£, £ι, ?2, Q for all TecJδ[Γ; 2] satisfies the conditions:

(i) the sides ξl9 ζ2, ξ29 ζ3 of Ω lie on some characteristic arcs of T touching the
circle \z—ζ =r, (ii) max {mod T(Ω)/mod Ω, mod Ω/mod T(Ω)} < c if δ is
small. On the other hand we see from the second inequality of (4) that if α>0 is
small, the square R=R(ζ,ζ+reiθ, ζ+(l+i)reiθ, ξ+ireiθ) satisfies mod T(R)>c+η
(?7>0) with the above f, r and with some θ (0<^<2τr); in fact, this assertion is

trivial for ζ^N*(z0) and we can do with the other case by continuity of
modulus. If δ>0 is sufficiently small, we must have mod T(R) > c-\-(η!2)

with any T^^ΛB[T\ 3], But this contradicts the condition (ii) as α-^0 on
account of Lemmas 2 and 5.

Similar argument yields the opposite inequality lim DT(ZO)<DT(ZO) and the
Λ->0

proof is completed.

Lemma 7. Let 7ΈΞ£Z[G] be arbitrary and let G0 a subdomaίn of G. If a
finite number of neighbourhoods Nj=NΛj(zj) (Zj e G0 ctj >0 j= 1, 2,..., nί) covers

GO satisfying D%j(Zj 9 3)>K with some constant K (j= 1, 2, ...,m), «;£ /wκ#

β?(5r; 3)>K for any #eG0 and any α>0.

Proof. Let £>0 be given. Then there is a δy=δy(£)>0 such that

Jl&\T\ 3] contains at least one T, every characteristic quadrilateral ΩjβdNj of
which satisfies

max j
mod » , ^ > K-ε,

I mod Ω mod
= 1, 2,...,m,

/S belonging to some set of indices.

Take a δ>0 smaller than min δ,. Jt^\T\ 3] still contains a T' which satisfies
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the following condition: we can spread such a fine net 31 over G0 that each
mesh of Jl is some characteristic quadrilateral Ωβ' of the T1 with diameter
smaller than min α and that

) mod Ωβ'

Let α>0 be arbitrary. Taken any #0eG0, ζ^NΛ(zQ) ΓiG0 and a positive
r<dist {?, d(N°t(zQ) Π G0)}, there can be determined four characteristic arcs of
T' tangent to the circle \z—ξ\=r. We lose no generality in assuming that
these four characteristics constitute a characteristic quadrilateral Ω' for the T'
comprised completely in G0. If we denote by Ω/(/=l, 2, 3,4) the characteristic
sub-quadrilaterals of Ω' into which a couple of major-axial and minor-axial

characteristics through ξ divides, we obtain immediately

fmod T '(Ω/) mod Ω/
max { 1 ̂  / > ι ^7/I mod Ω/ mod T (Ω/

from (5) with the aid of Theorem 3. Letting δ->0, we have D*(z0 9 3)>K—8,

which was to be proved, since 8 > 0 is arbitrary.

The following statement finds itself in a situation to supplement Theorem 3
in [13] from an opposite direction:

Theorem 5. inf Dτ(z) is an upper semi-continuous functional in T of 2[G].

Proof. Let α, a! be any positive reals such that a<.a'. Taking an

arbitrary sequence {TM}n=l 2... of 3[G], we first show that lim sup Z>* (z)<D%(z).
• ' •• »->oo ~ n ~

Suppose, contrary to the assertion, that {Tn}n=1>2t... contain some subsequence,
denoted by the same symbol for convenience' sake, satisfying lim DT

«->oo "" "

at some z0£ΞG. Then some constants c, £0 > 0 exist such that

lim DT (ZH) .

Let Go denote a closed subregion of G which contains %0. The first part of (6)
persists in the existence of some ζ^N*(zQ) ΠG0 and some positive
r<dist {£, d(N"(z0) Π Go)} such that the characteristic quadrilateral of Ω all

Tec_>?s[T; 2] touching the circle \z— ζ\=r gives

fmod 7YΩ,) mod Ω, )
( 7 ) max max -- -̂ -̂  , - ̂ - < c-8 , (0<£<£0)v ' ι^ ̂ 4 I modΩy mod

for sufficiently small δ(£)>0, where Ωy (j=l, 2, 3, 4) are the characteristic sub-
quadrilaterals belonging to the characteristic subdivision of Ω with one vertex
at ζ. According to the third part of (6), however, there is an index v, such that
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Dτn(zQ)>c for all n>v. Hence a sufficiently small δM>0 assures the presence

of some Tn&<JlSιt[Tn', 2] whose characteristic quadrilateral Ωn tangent to the
above circle | z—ζ\ =r fulfills

(mod Tn(ΩHS) mod Ωn, } ^
max max < v 3), =—^— \ > c
1^4 ( modΩnj mod Tu(Cluj)l

(the relationship between Ωrt and ΩM;- being the same as the one between Ω
and Ω;). Fixing δ and letting /z->oo, δw->0, we arrive at the inclusion

c^?δJTΛ; 2]c^?δ[T; 2], which is a contradiction on account of (7).

Let z^Go be arbitrary. Putting the neighbourhood N*(z) into correspon-
dence with the point z, we can cover G0 with a finite sub-collection U N*(ZJ)

out of \J N"(z) (ZJ<=GO). Let c be any constant smaller than inf D*(z). It

follows from Lemma 7 that D^(z)>c for all z on G0 Hence inf D%(z)>c.

Thus we have inf D*(z)< inf DT'(Z), which implies inf Z)*(#)=inf DT'(Z), since

the opposite inequality is trivial.
Next we shall see inf Dτ(z)='mf D*(z). Suppose that inf DT(Z)>'IΏΪD*(z)

for some a. Then there would be a constant c satisfying inf Dτ(z)>c>'mf D%(z)

for all a. The first inequality implies that for any ^^Go there is an a satisfy-

ing D%(z)>c (Lemma 6), while the second implies the presence of some s'GΞGo
satisfying D%(z')<c for any a. This is a cintradiction. Hence inf Dτ(z) is an

upper semi-continuous functional in Γe2[G]. So is inf Dτ(z). q.e.d.

4. Necessary and sufficient condition for a quasiconformal map-
ping to be Teichmϋller

As an immediate consequence of Theorem 2 we mention

Theorem 6. Let T(z) be a twice continuously differentίable quasiconformal

mapping of a domain G. If T(z) has a constant dilatation-quotient everywhere in G,
T(s) is a TeichmUller mapping, unless conformal.

Proof. If Qτ(z) = K=ly T(z) is clearly conformal in G. So we assume
that K>1. Then T(z) is non-singular in G, since it has the dilatation-quotient
at every point. Theorem 2 assures the existence of some continuous function

%(#)>0 in G which makes T(z) into the Teichmϋller map with φτ=

'X,(z)pτ(z)qτ(z)dz2 and the given constant K.

The remainder part of this section is devoted to get rid of the smoothness
assumption in Theorem 6.

Theorem 7. A quasiconformal homeomorphίsm T0(z) of a domain G is a
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TeichmUller mapping, if and only if DTo(^) = DTQ(z) = canst, everywhere in G.

Proof. Let T0(z) be a TeichmUller mapping of the domain G defined with
a constant K (>1) and an analytic quadratic differential φΓo. At the point
where φr0Φθ it is known to hold DTQ(z) = QTQ(z) = K (cf. [13]). But we prefer
to do as follows, regardless of whether φΓo vanishes or not. Given any z^G
and α>0, Grϋtzsch-Teichmϋller quasi-invariance theorem on moduli (Grϋtzsch
[8], TeichmUller [15]) provides mod Γ(ίl)/mod Ω < K for any quadrilateral
ΩdNΛ(z)Γ\G, hence DTo(z)<DTo(z)<K. On the other hand there is an

a=a(z)>0 such that QTQ(ζ)=K at every ξ^N*(z)Γ\G: hence for an arbitrary
£>0 there is a positive a'(z\ £)<a such that the square R=R(ζ-\-reiθ, ζ+ire*9,

ζ—reiθ,ζ—ίreiθ) satisfies max {mod T(R), l/modT(R)}>K—£ for any positive

r<dist{£, Q(N*'(z)Γ[G)} and some real θ (Lemma 2). It follows that
DTQ(Z)>DTQ(Z)>K—£. Letting £->0, we conclude DTQ(z)=DTo(z)=K.

Conversely, suppose that a quasiconformal mapping w=T0(z) of 3[G]
satisfies DTo(z)=DTo(z)=K. Let G0 be an arbitrary subdomain which is com-
pact relative to G. Given any £>0, we can assign to each point z^G0 its

neighbourhood N^2\z) such that D$[z\z; 2)>K-(£/2) (Lemma 6). A finite

sub-collection \jN*j(zj) of (J_N"<z\z) covers G0 Hence £>?0(*; 3)>K—(6/2)

for any z^G0 and any α>0 (Lemma 7). Let {δw}M=1)2... be a sequence of
positive reals such that lim δw=0 and let Gx and simply connected subdomain of

G0. Then there is an index m depending on £ and Gj such that some

TMecAJT0; 2] (n — m, m-\-\y •••) possesses the following properties (i)

TW(G0)DT0(Gj) (ii) any characteristic quadrilateral ΩndG1 of Tn satisfies the

inequality max {mod TM(ΩM)/mod ΩM, mod ΩM/mod Tn(Ωn)} >K—£. We specify
the quadrilateral Ωn=Ωn(z(n\ z¥\ z^n\ z(^) so that its four sides may touch a

z

fixed circle in Gx. The path-independent integral \ \/σn(ζ)pτ (ζ)n (ζ)dζ
zι

defines a holomorphic function φn(z) in G1 with an appropriate continuous
function σn(?)>0, where the radical sign indicates either of the one-valued
branches in Gl (Theorem 2). Multiplying σn(ζ) by a suitable constant, we can
normalize φn(z) (n=my m-\-l,...) so that they may be uniformly bounded and
that φn(Ωn) may comprise the unit square Σ={Z: 0<ReZ<l, 0<ImZ<l}.

If {φn(z)}n=m,m+ι, contains a subsequence tending uniformly to a constant,
Γ0 itself must reduce to a constant map, which is absurd. Therefore
{φn(z)2}n=m, m+ι, contains a subsequence, say again {φ/(0)2}n==wί m+1>... for short-
ness' sake, which converges to a holomorphic function a(z)^0 normally in Gλ.
We may assume without losing the generality that β(#)Φθ everywhere in G1?

since we have only to restrict the domain considered if necessary. The sequence
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{φn(z)}n=m,m+ι, converges to a non-constant univalent holomorphic function
Z=φ(z) normally in Gj such that φ'(z)2 = a(z) : {φiΓ1} ,,-„,, «+!.... converges
uniformly to φ'1 on some compact region whose interior comprises the unit

square Σ. Passing to the limit we have verified the existence of the local

holomorphic injection φ"1 defined on Σ such that the quasiconformal mapping

F(Σ) = T0oφ-\Z) satisfies the inequality max {modF(Σ), I/mod F(Σ)}>K— £.

Let W=τ]r(w) map the interior of the quadrilateral F(Σ) conformally onto a

rectangular domain R so that the vertices of F(Σ) may correspond to those of R.
The last estimate together with another condition [l+|μψoF(Z)|]/[l— \μψ°F(Z)\]<

DTo(φ-l(Z))=K implies

with complex constants a, b (Grόtzsch [9], Ahlfors [1]). Although φ(#) has been
defined only in the small, the differential φTQ—a(z)dz2 is prolongable analytically

throughout the whole domain G. Restricted to the subdomain where φΓoΦθ,
TQ(z) turns out to be smooth, hence QTo(z)=K (Theorems 2, 6 in [13]).

Therefore T0(z) must be a Teichmϋller mapping of G (Theorem 6). q.e.d.

REMARK 2. It is seen without any difficulty that Theorem 7 still holds for
quasiconformal homeomorphisms of Riemann surfaces.
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