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Introduction

In the paper [2] S. D. Eidelman has constructed the fundamental solution of
a system of partial differential operators which is parabolic in the sense of Pet-
rowski with sufficiently smooth coefficients. A few years later, the assumptions
on the smoothness of the coefficients have been weakened to uniform Holder
continuity. The bibliography and bibliographical remarks concerning this
topics are found in A. Friedman’s book [4]. The applications of the fundamen-
tal solution to the study of the Cauchy problem and other related problems are
found in the above book and S. D. Eidelman’s book [3]. On the other hand, if
the coefficients are sufficiently smooth, the recent results of the theory of pseudo-
differential operators, especially that of H. Kumano-go [8] and [9], have enabled
us to construct a symbol of the fundamental solution of a parabolic operator
which may be of degenerate type through only the symbol calculus. (See the
paper C. Tsutsumi [18].)

In the present paper we shall, using a method similar to that of [18], construct
the fundamental solution of a degenerate parabolic system L=0,+p(t; X, D,)
which has the property (F) (See the Definition 2.2). A system of partial
differential operators which is parabolic in the sense of Petrowski with C~-coef-
ficients has this property, and so do the operators treated in T. Matsuzawa [11],
B. Helffer [6], C. Tsutsumi [18] and M. Miyake [12]. In the papers [11], [6]
and [12], a family of parametrices K,+K,+-:-4K; of the operator L is con-
structed so that they satisfy the equation L, ,(3Y_K(x, ¥, ¢, t'))=38(x—y, t—1')
+Fi(x,y,t,t,), and K,,---,K; and F; are very regular. In [18] and the present
paper, however, the fundamental solution is constructed in the class of pseudo-
differential operators.

In section 1 we shall give some lemmas on the symbol calculus. In section
2 the matrix e(t, s; x, £) of symbols of fundamental solution will be constructed
and its asymptotic expansion will be given in a very natural form (See the
formula (2.23)). In section 3 the general result of section 2 is applied to a
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degenerate parabolic operator of higher order of the form
L= 6),‘4+2;’,=0tka1,k(t; X, Dx)aiw—x_*_ "'+2%jotkaM,k(t; X,D,),

where / is a positive integer and a;,€ B)(SIH™ ), j=1, 2, -+, M, k=1,
2, -++, jl, to obtain a result including that of M. Miyake [12]. In section 4 using
the symbol of the fundamental solution and following the idea of Y. Kannai [7],
we shall give sufficient conditions for the operator L to be hypoelliptic. This
gives an example of a hypoelliptic operator with multiple characteristics (See
Theorem II.1.1 in F. Treves [17]). It will also be shown that the operator
treated by B. Helffer [6] satisfies our hypothesis under some additional restriction.

The results of the present paper have been announced partly in [15] and [16].

The author would like to express his gratitude to Professor H. Kumano-go
and Miss C. Tsutsumi for their kind suggestions and a number of stimulating
conversations. The author should also express his gratitude to Professor
H. Tanabe for his invaluable criticism which greatly improved this paper.

1. Definitions and lemmas

Let xR}, EER" and let a=(ay, a, ***, a,) be a multi-index of non-
negative integers. We use the following notation:

|| = (af+ad+ )2, <> = (14 |x[2)"2,

‘al=a1+a2+"'+a”, a! == 0(1!0(2! "'0{,,!,
xm = x‘ltlx‘;z T x:" ) x'§=x1§1+x2§2+ '"—l_xngn ’
00 =030% 0%  where 8y, = /o

D? = DuD%--D%  where D, = —id[d;.

According to L. Schwartz [14] we use the notation 9(Q), D= D(R"),
D'(9D), D=9'(R"), S, & and B=B(R") to denote the spaces of M-dimen-
sional vector valued functions and distributions. For an interval J of R} we
denote by £4(J; B) the space of k times continuously differentiable functions of
t€ J with values in 3. We set E(J; B)=NEV(J; D).

DrrFiNITION 1.1 ([10]). We say that an M XM matrix p(x, &) with com-
ponents p; ,(x, £)EC=(R; X Rf) belongs to SJ';, —co<m<< oo, 0<6<p<1,
when for any «, B there exists a constant C, , such that

(1.1) | pB(x, §) <CpeEOmrme,

where p(g)(x, £)=0;Dip(x, £) and |p| denotes the norm of the matrix p defined
by
|p1=sup{ipyl/lyl; yEC", y=*0}.
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We define the corresponding operator p(X, D,) by

(12) P, Du(x) = [ extp(n, Da@)EE,  ues,

where ﬁ(E)zS “ixty(x)dx and dE=(2x)~"dE. We call a linear map P of § into

S a pseudodifferential operator with symbol p(x, £)eS}; if P=p(X, D,) and
we also write PES";. Weset S;s=US;sand S—>=NS7

N. B. Throughout this paper we assume that p and § satisfy the condition
0<8<p<Ll.

DeriniTION 1.2 ([10]). For a p(x, £)€S[s we define semi-norms | p| ™,
1=0,1, 2, .-+, by
(1.3) |pli™ = max sup{|p§‘;;(x, I

l@+gI<I (@,

Then S'; makes a Fréchet space with these semi-norms. For a symbol p(¢; «, £)
with a parameter ¢ we write

p(t; X, E)ng(S;nS) in (Sr T) ’
when p(t; x, £) is a k times continuously differentiable S’;-valued function

in s<t<<T. A subset B of S)'; is said to be a bounded set in .S}; when
sup {| p|{™; pEB}<oo for I=0, 1,2,--. We write

w-lim p(¢; x, £) = p(s; x, £) in S7,
tys

when there exists a constant ¢ such that {p(¢; x, £); tE(s, s+¢)} is a bounded
set in S'; and for any and «, @ for any compact set K C R}, p{E(¢; %, £) con-
verges to p{)(s; x, &) uniformly in R} X K as ¢ tends to s.

In order to treat a product of pseudodifferential operators, we introduce
the oscillatory integral and multiple symbols.

DeriniTION 1.3 ([10]). We say that an M X M matrix a(z, y) with compo-
nents a; (7, y)€C=(R,"X R}") belong to a class Af,, —co<m<<co, 0<§<1,
0< 7 when for any multi-index «a, 3, we have

(1.4) 19505a(n, y)| <C, gl +*PICy )T

for a constant C,,. For an a(7, y)E ;.. we define semi-norms |a|,, /=0, 1,
2, ey by
(1.5) la|, = max sup {|0705a(n, y)|<n>~"-*PI(y>-"} .

la+BI<I (1,3)

Then Ay, makes a Fréchet space. Weset A= U U U Ay,.. Wesay
0<E<1 ~ ML 0gT

that a subset B of A is bounded when BC A, for some §, m and 7, and
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sup{|a|,; a€B}<oo for any l. For an a(n, y)E . we define the oscillatory
integral Os[e~"""a] by

(1.6) Osfe™7"a] = OS—SS e""a(n, y)dy dn

— lim “ e~ X (&n, Ey)a(n, y)dydn

>0
where X(7, y) € S(R2"}) such that X(0, 0)=1.
The following lemma proves the well-definedness of (1.6).

Lemma 1.4 ([8]). For an a(n, y),E A5, let | and I’ be positive integers such
that

(1.7) —2[(1-8)4+m<—vn, —2I'4+-<T—wn.

Then we have

(1L8)  Osferna] = | eirny>m2D 2 {<ny =D, an, y)hdydn
and

(1.9) | Os[e™*"a]| <Clal

for a constant C which is independent of a(n, y).

Lemma 1.5 ([9]). Let {a(t; 7, ¥)}o<i<1 be a bounded set of A. Suppose
that there exists an a(0; n, y)E A such that a(t; n, y)—a(0; 1, y) as t—0 uni-
formly on any compact set of R;'5. Then we have

(1.10) ,lff Os[e™"a(t)] = Os[e"**""a(0)] .

DerIntTION 1.6 ([9]). 1) We say that an M X M matrix p(x°, &, &', -+-, £”, %)
whose components are C=-functions defined in R@+)" is a multiple symbol of
class Stvm2>m) when for any o, -+, a*, 8% B, -++, 3", there exists a constant
c=C(d, -+, a’, B° B, +++, B*) such that

(111) |ag’:.-6g:8§gagi.agzp(x0’ El, x‘, e, gv, x\:)l

§C<§1>8I30| f[ <Ef>mj—leil(<§i>_'_<§j+1>)s|31‘| ,
where £*'=0. For a p(x°, £, &', -+, £, ") ESv"z"»™) we define semi-norms
IPI l,(;'il’mz’m’mwy ly l/:0) 1) 27 R by

(1.12) |plGrmem) =  max inf {C of (1.11)} .
el <1, 1871t/

Then S{%r™ ™) makes a Fréchet space.
ii) 'The associated psudodifferential operator P=p(X°, D1, X*,++-, D v, X")
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with multiple symbol p(x°, £, %!, -+, &%, x*) is defined by

(L13)  Pu(x) = Os— ([ 70" p(a, o, oyt o, ooy
3y by Wy by )y dy d
for us 3.

Remark 1.7. i) The pseudodifferential operator P defined by (1.2) is
extended to a continuous operator P: B— B by setting v=1 in (1.13).

ii) When p;(x, E)ES:g', j=1, 2, -+, v, we have that p,(x° E")py(x?, £%)---

.....

Lemma 1.8 ([10]). Let p(t; x, ) BYSrs) in (s, T) Then we have
(1.14)  if w-lim p(¢; x, &) = p(s; x, §) in S5, then lim P(t)u = P(s)u
tys tys
for any uc 8.

(Mmysmoseee,m

Lemma 1.9 ([9]). For a p(x", £, &', -+, E)ES, 3 v set

(1.15)  g(x, &) = Os—“ P e

XPp(®, E+1, x4, oo, E477 7L ety 430 E)
X dyld'ﬂl'“d_’y"‘ld-q”‘l .

Then we have, for m=m,+m,+---+m.,,
(1.16) q(x, £)eS™ and ¢(X, D,) = p(X°, D,s, -+, X*, D,v).
Furthermore, for any [l there exists a constant C such that

m v (mlwu.mv)
(1.17) g1 <C pI ™,
where
(1.18) Iy =142[n/24-1], [t= l+2[(n+§|mj| +pl+80)/(2(1—38))+1] .

Lemma 1.10 ([10]). For a p(x, £)ES™s, set

(1.19) PH(x, &) = OS—SS e p(x+y, E+n)Pdydn,
where p® is the conjugate transpose of the matrix p. Then P*=p*(X, D,) is the
formal adjoint of P=p(X, D,) in the sense that (Pu, v)=(u, P*v) for any u,vES.
Let L=0,+p(X, D,). Then the formal adjoint 'L of L in R} X R is given by
(1.20) ‘L=—0"+p*(X, D,).
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For p(x, E)ES:{;, j=1,2, -+, », we denote by p,op,o---0p,(x, &) the symbol
of the product P,P,--- P, of pseudodifferential operators P,=p; (X, D,). By
Lemma 1.9 we have

(1.21) propsosopy(x, E) = OS_SS e“”""’*"'”""""’"’pl(x, E+7Y)
pox+y E+nP) pla+y' -y, E)dy dnte--dy¥-rdnt .
For k=1, 2, ---, we set

(1.22) [propror+op i, £) = Lt ad, gy

lay+ai+ - +ay-t =k azlasla
24+ 3 x-;
Xpéf?a%) * )(x’ E)P,S(il, ()a3-1+---+0131?) (x, E)pu, (a,‘,+---+a¥"1)(x: &),
and for k=0 we set

(123) [P1°P2°"‘°Pv]o(x» E) :Pl(x’ E)Pz(xr ‘E)Pv(xr ‘E) .

Lemma 1.11 ([13]). Let p;(x, £)ES,4,j=0, 1, -, v. Thrn we have:
i) For any positive integer N,

(1.24) Propao---opy(x, E) =W [propror--oplu(x, E)ESIFC-ON

where m=m,+m,+---+m,,.
ii) For k=0, 1, 2, ---,

(1.25) [POOPIOPZO “'op'v]k(x, E) = EEZOZM»I:M C%"P(()u)(x) g)
X [pIOPZO'" opv]k—ﬂ,(m)(xa E) .

Note. A proof of (1.24) by using Taylor’s expansion has been given in [9].

Lemma 1.12. Let p be an M XM matrix and let N\, Ny, -+, Ay be the
eigenvalues of the matrix p, and

A = min Re);,
) i
where Re \; means the real part of \;. Then the inequality
(1.26) lexp [—2p] | <321 pl) exp [—A]

holds for t>0.
For the proof, see Gelfand and Shilov [5] Chap. II, §6.

Lemma 1.13. Let a>1. Then for any €>0 we have the following inequality
(1.27) v—u < E(v*—u)4-& V@D '

for any u and v such that 0<u<wv.
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Proof. Let f(t)=#%,.t>0. Since df(t)/dt is an increasing function of 2,
we have

Jfo—u)—A0) < flv)—f(u) -

Thus we have (v—u)*<v*—u?, ie., v—u<(v—u) *(v*—u’). If (v—u)*<¢,
we have v—u<&@v*—wu®). If (v—u)'"*>§, we have v—u<LEVED

Lemma 1.14. Let f(2; x, £) be a non-negative continuous function if there
exist constants C>0 and ¢ such that 1/(I4+1)<c <1 and

(1.28) 1f(t; x, E)SC(HHEY  for >0,

then for any €>0 there exists a constant C’ such that

(129)  [fosnpdo<e| serdorc  for 0<sst.
Proof. Since f(o; x, £)<Co**D D™ we have
: Stf(a_; x’ E)do.g Cc—l(l+1)*1{tc(l+l)<g>cm_sc(l+l)<g>cm} .

If we set v=£*DED™ y=s5"*DEX™ and a=1/c, then we have by Lemma 1.13
that

[ ftos % ey <Cgr 1) (@ —s1Em) +CT
This proves the Lemma.

2. Fundamental solution and Cauchy problem

In this section we first consider the fundamental solution of the Cauchy
problem
(2.1) Lu(t, x) = f(¢, x) in (0,7),
(2.2) %0, x) = uy(x),

where L=0,4-p(¢; X, D,) and p(t; x, £)€ BYSy;) in [0, T'] and then apply it to
the solution of (2.1)—(2.2).

DeFiniTION 2.1. i) By an M X M matrix e(t, s; x, £) € BI(S3.5) N Bi(Srs)
with parameters ¢ and s, we denote, the fundamental solution of the Cauchy
problem (2.1) and (2.2), that is, e(t, s; x, £) is the solution of the system of
symbol equations

(2.3) O.e(t, s; x, £)+p(t)oe(t, s)(x, £) =0, 0<s<t<T,

and satisfies the initial condition
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(24) w-lim e(t, s; x, £) = 1 in S,
tys

where I is the identity matrix. We call e(#, s; x, £) the Green’s matrix of the
operator L.

ii) We say that an M Xx M matrix 2(, s; x, £)E BI(Srs) N Bi(S2%) is the
resolvent matrix of the operator L, when 2(¢, s; x, £) satisfies

(2.5) 0.2(t, 55 x, E)+p(t; x, E)2(t, 53 x, ) =0, 0<s<t<T
and
(2.6) w-lim 2(¢, s; x, ) =1 in S);.

tys

DEFINITION 2.2.  We say that the operator L has the property (F), when for
some non-negative continuous function A(#; x, £) the following two conditions
are satisfied:

i) For any «, @B there exists a constant C, g such that

@n (198 5 lde<c, e ([ Ao x, dot1)
for 0<s<t<T.

ii) There exist constants d>0 and C>0 such that the resolvent matrix
2(t, s; x, £) of L satisfies

(2.8) (z(t,s;x,E)lgCexp[-dgt)\(o-;x,e‘j)do-] for 0<s<t<T.

When L is a system of partial differential operators, it is said to be parabolic
in the sense of Petrowski if the real part of each eigenvalue of the matrix p(¢; x, &)
is not less than d<£>". In this case, if the coefficients of L are C~, the property
(F) is satisfied with A(z; x, £)=<&>™ and stable under the small perturbation of
the principal part and any lower order terms. The property (F) is also stable
in the following sense.

Lemma 2.3. Let L=0,+p(t; X, D,) have the property (F) with \(t; x, ),
d and C, and let for q(t; x, £)E BUS;s) there exist constants €, C’ and C,p such
that 0<e<d/C,
t t
(2.9) g lg(o; x, E)|do <& S Mo %, E)do+C

and

210) (1o 5 ldo<Cance o [ Ao 2 B)dot+1] -

Then the operator L'=0,+p(¢; X, D,)+q(¢; X, D,) has the property (F) with
Me; x, £), d’ and C”, where d’=d—&EC and C"'=C exp [CC’].
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Proof. Let 2'(¢, s; %, £) be the resolvent matrix of L’. Since it follows
from (2.9) and (2.10) that i) of the property (F) is satisfied, we have only to
prove ii). Since we can write

(t, 55 %, &) = 22, 55 %, E)—St (2, o3 %, £)g(a; %, £)¥ (o, §; %, E)do,

using (2.8) we have
|2/ (8, s; x, E)| <C exp[—d SI Mo X, ’g‘)do-]

+C S:exp [—dS: Mo’ x, E)dd']IQ(O'; %, £)|

X |2(a, $5 %, E)|do .
Setting @ (t)=|2/(¢, s; x, E)Iexp[dsl Ao x, E)da], we have

2.11) P(t)<C+C S' o(0) | ¢(a; x, E)do .
Multiplying both sides by |g(¢; %, g)1/{1+§'<p(g)}q(a; , E)Ido-} and integra-

ting them, we have

tog[ 14 plo)la(a3 5 Bldo < C | 1a(os 5 )l do.
Thus we have

t t

c+ CS 2(0)|q(c; %, £)|do<C exp [Cgs[q(a-; %, E)Ido-] .

Hence by (2.11) and (2.9) we have
t t
(2, 5; %, £)| <Cexp [Cs [ Mos 5, Yot cO—a [ Aas E)do-] :

Thus the proof is complete.

When the coefficients of the operator L=29,+p(X, D,) are independent of ¢,
its resolvent matrix is given by exp[—(t—s)p(x, £)]. When the coefficients
depend on ¢, we have the following

Lemma 2.4. The resolvent matrix = of the operator L=0,+p(t; X, D,),
p(t; x, £)E BYS,s), can be written
(¢ 5 Si-1
(2‘12) 2([, $5 X, g) = I"I_Z;;l(_l)] Ssdsl Ssdsz "'Ss P(sl; Sy E)P(Sz; X, E)
p(s;; %, E)ds; .

Moreover we have
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(2.13) 2(t, o, %, E)2(o, §; %, £) = 2(2, 53 %, ),
(2.14) |2(2, §; %, £)| <C exp[C’ |t—s|<ED],
and

(2.15) 92(2, s; %, E)—2(t, s; x, E)p(s; x, £) = 0.

Proof is omitted.
Now we shall give two propositions which give examples of sufficient con-
ditions under which the operator L has the property (F).

Proposition 2.5. Let p(t; x, £)E BYS™s) and let \(t; x, ) be one of the
Sollowing functions:

(2.16) inf(Re p; (¢; , §)~k§i|pj,k(t; x, 610,
(217) inf(Re pu.(ts %, H— 311 9,83 % B)1),

(2.18) smallest eigenvalue of (p(t; x, E)®+p(t; x, £))/2.

If \(t; x, £) is non-negative in [0, T, and if i) of Definition 2.2 holds, then
the operator L=0,+p(t; X, D,) has the property (F).

Proof. By Theorem 3 of Chapter III in W. A. Coppel’s book [1], we have
that there exists a constant C>0 such that

2.19) |t 5; % E)| <Cexp [~ S' Mo , E)da-], 0<s<t<T.

Thus ii) of Definition 2.2 is satisfied with d=1.

Proposition 2.6. Let f(f) be a monm-negative continuous function and
b(t; x, )€ BYSTs) in [0, T). If the real part of each eigenvalue of the matrix
D(t; x, E) is not less than d<&>™ for a constant d>>0, then the operator L=
0,4+f(t)D(t; X, D,) has the property (F) with \(t; x, £)=f()<E>".

Proof. Set p(t; t'; x, E)=f()B(t'; x, £) and q(¢; ¥'; x, E)=f(&){ D(¢; », E)—
D(t'; x, £)}. Then for any £>0 there exists § >0 such that

g'|q(a; #; x, )| do <ECE™ S' flo)ds  if 0<t—s<8and #'[s, 1] .
Thus by Lemma 2.3 the operator L has the property (F) with \(¢; x, £)=f(£)<E>™,
if |#—s| is sufficiently small. For arbitrary s and ¢, 0<s<t<T, deviding [s, ]
into sufficiently small intervals, and using (2.13), we can prove that L has the
property (F) in [s, ¢].

From the expansion formula (2.12) of the resolvent matrix (¢, s; x, £), we
have formally
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(2.20) eft, 55 3 =T+ Sms(—=1)" [ dsy sy {77 5)0p(00 - pls, ), s
Thus, if we set

(2.21) eft, s; %, §) = 2(t, 5; %, £)
and for k>1

(2:22) ft, 5 3, &)= Sma(— 1) | ds, "oy {7 (o050 006 i £,

then we can infer from (1.24) and (2.20) that the Green’s matrix e(Z, s; x, £) has
the following asymptotic expansion:

(2'23) e(ts §5 X, £)~eo(t: $5 X, §)+e1(t) §5 X, §)+ .

Now we shall prove the main theorem which ensures us the existence of the
Green’s matrix and its asymptotic expansion (2.23).

Theorem 2.7. Let L have the property (F). Then for any o, B and
k=0, 1, 2, ---, there exist constants C, , g and C} , g such that

@24) et 53 % 8) <Crap<® 0 mewm (N o) 3, £)dot1
XCXP[—dS‘X(U; x, E)dcr], 0<s<t<T.
(2.24)  |eB(2, 53 x, E)| K C} , s(t—s)EDm PO -P1#1 318

X {ﬂw; , E)da--}—l}kﬂalﬂm_lexp[—-dS:X(a; , E)do-],
Rt lal+18]+0, 0<s<t<T.

}Hlﬂlﬂﬁl

Moreover we can construct the Green’s matrix e(t, s; x, £) of L such that

(2.25) { e(t,.s; X, E)E.‘B?(Sﬂ,s)ﬂ.@i(.S:fs) in (s, T]for 0<s<t<T,
W-ltl{'l"fl et, s;x, =1 in S;.
If we set
(2.26) ra(t, s; %, E) = e(t, s; %, E)—D-0(t, $; X, E),

then we have
(2.27) |ryB)(2, 55 %, E)] < Cy p(t—s)CEDm C-OWNID =PI +5IPI for 0<s<t<T.
Proof. For convenience’ sake we omit to descirbe the variables x and £.
Since we have
| t s s,
oppe s, s, [ Tatse plso-ropls s
< (J) (t—5) Cy iEDIm=P-0rk-Pi01+8181
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the sum in the right hand side of (2.22) converges to a matrix with C*~ com-
ponents. By Lemma 1.11 we have

o, S:ds, S:’dsz---gz’ [£(5.)0 D(52)0++0 p(5, 4] ;41
= 2o Sen 520 [ o [ [ () e 0 i -
Thus we have for k=1, 2, ---
(228) Bt Pty ) = T Dhutos ] PBes-miolts )

First we estimate e{g)(?, 5). Since 9y e((?, 5) satisfies the equation
0,0¢,eq(2, 5)+p(t)0r €2, 5) = — (3¢, p(2))e(t, 5) »
and 9y, e,(s, s)=0, we have
t
Oy, oty ) = —Sseo(t, &)(0¢, p(0))ea> s)do .
Thus by (2.7) and (2.8) we obtain
184 et 5)| <CCEY™ {S'x(a)da+1} exp [—dj'x(a)da]gcl@gyv .
After this manner we have for every a, 8
|0z DEe(t, 5)| < Ca,gED— IR,

Next we estimate e,{g by the induction on k. If (2.24) is valid for e(2, s),
eft, ), -+, 42, §), then with (2.28) we obtain (2.24) for ez, s). We also have
(2.24) in the same way.

We set
(2.29) It s) = 20exlt, 5)
and
(2.30) an(s 8) = —0,fu(2, 8)—p(2)ofu(?, 9) -
Since

{pOats 9~ Darcw-s P Oenca(t, ))& S0,

by using (2.28) we obtain

|0t )] < CaCEOP =N D-ris018

Taking N so large as m—(p—8)(IN+1)<0, we have



DEGENERATE PARABOLIC SYSTEM WITH APPLICATIONS 67

qN(t, S5 X%, El)qN(sh 525 xlr Ez)"'qN(sj—l» s xj—la E)ES;ﬁ_(p_S)(N-*'l),o""'o) .

Hence by Lemma 1.9 we have that for any «, B there exists a constant A,
which is independent of j such that

lang{qN(t, sl)oqN(sl’ 52)0'"°qN(sj’l, s)(x, E)} |
< (A p) EOm - HWHD-PIOI+BIB1
We set
@i(t, 5) = qu(t, 5)

and

wilt, )= |

s

ds, S:dsz”‘ S:_ZQN(t» §1)°q (81, sz)°“'°‘1N(s;’—1: s)dsj—l ’
j=2,3,.
Then we have

lo;@ (2 5)] S(Aa’ﬂ)j(——(tj__sij)_'l<E>’”_(P"8)(N+l)"p1“|+5lﬂ| .

Thus we can define ¢(¢, 5) by
(2.31) P(t, 5) = 23719,(, 5)

and we have
|¢2‘;§(t, s)‘ SC,. 3<E>m—(P—S)(N+1)—p|m|+81ﬁl .
We set

(2.32) ralt, 5) = g' Falt, o)ogl(o, )do .

Then by (2.24) and above estimates we have (2.27). Since @(2, s) satisfies the
following integral equation

(2.33) #(t,5) = g0, 9+ aults 9)op(a, o,
if we set e(t, s)=fu(r, 5)+7x(t, 5), we have
e(t, ) = Bufalt, 49, | fults #)oplor $)do
= Ofult, 1+t )+ 3ufult, 7)ol o
By using (2.33) and (2.30) we have
0.t 5) = —p()fult, )= | POt 0ol Yo
= —p(t)oelt, 5) .
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We also have
W-liin et, s) = w-lim {fy(t, s)+ry(t, )} =1 in Sp;.
tys tys

Thus (2, s) is the Green’s matrix of L. The restriction that N is sufficiently

large is removed as follows. For any N, we set ry=ey ,+eyiot - +ey+7yr,
where N’ is sufficiently large, then we have (2.27) by (2.24)'. The first half of
(2.25) follows from 8, e(t, s)=—p(t)oe(t, s). Thus the proof is complete.

As an application we shall give a representation of the solution for the
Cauchy problem Lu=f, u(0, x)=u,(x) which provides the existence and uni-
queness of the solution for the problem.

Lemma 2.8. Let L=0,+p(¢t; X, D,), p(t; x, ) BUS);) has the property
(F). Then the Green’s matrix e(t, s; x, £) of L that is constructed in Theorem 2.7
satisfies the following equations
(2.34)  Be(t, s; %, E)—e(t, )op(s)(x, £) =0,  0<s<t<T,
and
(2.35) e(t, o)oe(a, s)(x, £) = e(t, s; x, £), 0<s<o<i<T,
here we define e(a, o; x, £)=1.

The symbol e*(t, s; x, £) of the formal adjoint of e(t, s; X, D,) satisfies
(2.36) 0,e*(2, 55 x, £)—p*(s)oe*(t, s)(x, £) =0, 0<s<t<T.

Proof. We omit to describe the variables x and £. Let e(2, s), ey(t, $), -+,
ex(2, ), fu(t, s) be the symbols defined by (2.21), (2.22) and (2.29) respectively.
Then we have as in the proof of Theorem 2.7

0,eq(, s)—et, s)p(s) =0,
asek(t» s)'—ek(t’ S)P(s) = 2;=12|wl=n C%‘e&a?“(t, s)P(a)(s) ’ k=1,2,--

Thus we can construct a symbol é&(¢, s) € B3(S} ;) such that

(2.37) 8,8(t, s)—e(t, s)op(s) =0  0<s<t<T,
(2.38) wlime(t,) =1 in S3,.

We define é(¢, t)=1. For f, g= S(R}) we set
h(c) = (e(o, s; X, D,)f(x), é*(t, o3 X, D,)g(x)) .
Then we have by (2.37)

‘%h(a) = —(p(o)oe(a, YX, D,)f(x), ¢*(¢, o; X, D,)g(x)

+(e(a 53 X, D,)f(x), p*(o)o€*(t, o)(X, D,)g(x))
=0.
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Thus k(o) is independent of . Letting ¢ | s and o 1 ¢, we have &(t, s)=e(t, ).
By (2.37) we have (2.34). Now using (2.34) we have

9,{e(t, a)oe(a, 5)} = e(t, o)op(a)oe(a, s)—e(t, a)op(a)oe(a, s)
=0.
Thus e(t, o)oe(a, s)=1lim e(t, o)oe(ca, s)=e(t, s). We obtain (2.36) taking the
Ty
symbol of the formal adjoint of operators defined by both sides of (2.34).

Theorem 2.9. Let p(t; x, £)€ BY(Sys) in [0, T] and let L=0,+p(t; X, D,)
have the property (F). Then the Cauchy problem

{ Lu(t, x) = f(t, x) 0<t<T,

ltlgl u(t, x) = uy(x)

(2.39)

has a unique solution u(t, x) in ([0, T]; B) for any f(t, x)=EX[0, T]; B) and
any uy(x)=B. This solution u(t, x) is given by

2.40)  u(t, x) = g;e(t, o3 X, D)f(o, x)dote(t, 0; X, D Yu(x) .

Proof. If f(¢, x)€E N[0, T]; B) and uy(x)E B, then by using Lemma 1.8
and (2.25) we have that u(t, x) of (2.40) belongs to £1([0, T']; ) and

0,u(t, x) = f{t, x)—S:P(t)Oe(t, a)(X, D,)f(a, x)da—p(t)oe(t, 0)(X, D,)uy(x)
= f(t, x)—p(t; X, D, )u(t, x) .

We have also that lim u(z, x)=uy(x). Thus u(t, x) of (2.40) is the solution of the
tyo

Cauchy problem (2.39).
Conversely if we let u(t, x) €€1([0, T']; B) be a solution of (2.39), then by (2.34)

we have

e(t, o; X, D )f(o, x) = e(t, o; X, D,){0,u(c, x)+p(c; X, D,)u(c, x)}
= 6a-{e(t) o, X) Dz)u(o-’ x)} .

Hence we have by Lemma 1.8
S'e(t, o3 X, D)f(o, ®)do = u(t, x)—e(t, 0; X, D Ju(x) .
0
Thus u(¢, x) coincides with the one given by (2.40). Thus the proof is completed.

3. A degenerate praabolic operator of higher order

In this section we shall construct the fundamental solution of the Cauchy
problem for a single operator
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3.1 L =0Y+a\(t; X, D)oY '+---+ay(t; X, D,),
where for a positive integer /
aj(t; X, E) = Zil-otkaj,k(t; X, ‘E) ’ ]= 11 2) "ty M’

when the following two conditions are satisfied:
a) Forj=1,2, .-, M; k=0, 1, -+, j,

(3.2) a; (t; x, £)e BYS Gybm/d+D) in [0, T].

b) There exists a positive constant d such that the roots 7,(z; x, £) of the
equation .

(33)  ™a(t; % ETV - apu(t; %, E)TM M ay it %, £) = 0
satisfy

(3.4) Re 7,(¢; x, &)< —d<E>", Jj=1,2,-  M; 0<:<T.

In doing so, we shall use a function k(t; £) defined by

(3.5) h(t; &) = tiKEDPmH-CEDM D,

and reduce the operator L to a system which has the property (F).

Lemma 3.1. The function h(t; £) defined by (3.5) satisfies

(3.6) |0 {h(t; £)"C*DOTA(t; E)} | <CLE>™™, r=0,1,.,

(3.7) |0 {th(t; £)7707h(2; E)} | SCGKE>™1 2hay (#EDMMED
r=1,2,.,1.

and

(3.8) h(t; £)'e BYSTR+D)Y N BYUS? )N BAUST)N -+ .

Proof. First we note that 9}h(t; £)=C,t'""(E>™ for 0<r<I, and 07A(¢t; £)=0
for r>1. Since we have t"™+1h(¢; E)+'= {# T KE (¢TI EIM/EADY L we have

tl—r<£>m/h(t; zg—)y+1S(t1+1<£>m)1—(r+1)/(1+1)

and
eI CEDm [h(E; EY T <2/ {14-(£ D)}
for r=0, 1, ..., . Thus we have (3.6). The estimate (3.7) follows from

th(t; £) 01 h(t; £) = C, M IEM {HHIEI - t(EYM/I+D}
< Cr(tl+1<‘g>m)l_’/(l+l) fOl' 1’=1, 2’ ooy l

The proof of (3.8) follows from (3.6) and
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1
3.9 0% = h(t; E)F! C,...r
(3.9 HEE) (t; ) (,1;?,#) -
< (BHE DY (EHE D) (ARG
h(t; £/ \ h(; &) h(t; £)'
Here and in what follows by the notation 3> we mean to take the summa-

SEULTASY
tion for all the sets (7, 7, -+, 7;) of non-negative integers r, which satisfy
r+2r,+ -+ kry=k.

Theorem 3.2. Let the operator L which is defined by (3.1) satisfy the con-
ditions a) and b). Then there exist pseudodifferential symbols g(t, s; x, £),
=0, 1, -, M—1, such that h(t; £)g;(t, s; x, £)E BUS.s) in (s, T), and for any
(%) € B(RY}) if we set
(3.10) o(t, x) = Os—SS eI gi(t, 05 x, n)ri(x+y)dy dn,

then v(t, x) satisfies

(3.11) Lo(t, v) =0

and

(3.12) lim 8} o(¢, x) = (), j=0,1,-.-, M—1.
tyo

Proof. We set

p(t; %, £) = tB(t; %, £)
th= 0 ’ _<E>M

0 ’ _<£>m
aM,MI(t; X, E)<E>_(M—l)m) A az.zl(t; X, E)<E>—m’ al,l(t; X, E) )
and

q(t; %, §) = 0 , —Ema

A
au(t; %, £), = @t %, £), qu(t; %, §)
where ¢,(¢; x, £), -, qu(t; x, &) will be determined later.
We define symbols b; ,(¢; £), j=1, -+, M; k=1, ---, M by
bia(t; &) = h(t; Y,
(3.13) by j(t; E) = h(t; £)7'b;_, pi(t; E)+-h(t; £)710,b;_14(t; £),
j=2,M;k=1,.- M,
b;(t; €)=0  whenj>kork=0,
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and set
(3.14) b(z: &) = (b;.(2; £)) -

Since b(; £) is a triangular matrix with diagonal elements b; (t; £)=h(t; £)* 7
=*0, b(t;£) is non-singular. We set

(3.15) r(t; €)= b(t; E)7.

By 7,.4(t; £) we denote the component of 7(¢; £) in the j-th raw and the k-th
column. Then we have 7, ,(t; £)=h(t; E)™™ and r, ,(t; £)=0 for j<<k. We set

w(t, x) = Y(v(¢, %), 0,u(t; x), ++-, 0, '0(¢, x)).
If u(t, x)="(u,(t, x), uy(t, x), -+, up(t, x))=>b(t; D,)w(t, x), then by (3.13) we have
u(t, x) = h(t; D,)" 'o(t, x)
(3.16) h(t; D, )uy(t, x) = 0,u,(t, x)
h(t; D,)'z.t;w(t, x) = 0,up (2, x) .

Conversely if u(t, x) satisfies (3.16), then because of (3.15) we have
(3.17) w(t, x) = r(t; D )u(t, x).
Hence we have

it E)=he &Y, j=1,2, M,

7t &) = 0,714 (8; E)Fh(t; E)riora-(t; §)

j=2,3,M; k=1,2,---, M,
74t £)=0 when j<k or k=0.

(3.18)

From (3.13) we have
(3.19) bij-t; &) = h(t; )" B Chppory
TR

(i) G ) Glep)”

From (3.18) we have
(3.20) Tt E) = b YT B Ch e,
TR

Gy G ) ey

By Lemma 3.1 and (3.20) we have that there exists for any « a constant C,>0
such that




DEGENERATE PARABOLIC SYSTEM WITH APPLICATIONS 73

(3.21) |6g{th(t; E)M—H—lrj,j_k(t; E)} l SCm<£>_m12’l::1(tl+l<E>m)k/(1+l)

and

(3.22) 18510, {h(t; )M 77y -t )} S CukEDT™ hos(H MY
We also have

(3.23) h(t; €Y, ;-i(; )€ BY(S10) »
and by (3.19) we have
(3.24) h(t; £ 7FMb;, ;- i(t; E)E BUST,0) -

Now we shall determine ¢,(¢; x, £), -+, qu(t; x, &) so that if u(¢, x) is a solution of
{0, 4+p(t; X, D,)+q(t; X, D)}u(t, x) =0,

then o(t, x)="h(t; D,)' Mu,(t, x) satisfies Lo(t, x)=0. By (3.16) and (3.17) we
have

O o(t, %) = SWrra it X Jug(ts %)
Thus we have
0 o(t, x) = Zs{@urae.d(t; DJus(t, ©)+7304(t; DD, ui(t, %)}
= SW{0,7a0.4(t; D) 74 4-1(t; DYR(E; D )Y}uylt, £)40,uy(t, x) .
Hence we have
(3.25) q,(t; %, E) = —t'a; ;(t; x, E)KEH"UDm
+Z£:1ak(l'; %, EVYyr-parm-jra(ts €)

0,7y, m-j+1(t5 %, E)+h(E; EYarope-i(t5 %, E),
j=12,-, M.

We shall show that the operator 9,4-p(¢; X, D,)+q(¢; X, D,) has the property
(F) with

(3.26) AE; x, £) = 1ED™.
We write

q,'(t; X, E) = {'_tlaj.jl(t; X, E)<E>—U—l)m+tﬂa,’,ﬂ(t; X, ‘E)rM—j+l.M-j+l(t; E)}
~+the rest =1,+1,.

By (3.2) and (3.18) we have
L] = lats %, EKE>Im{—tEm - CEhi(t; )7} |
< Ch(t; E)l—itl<§>m2£:g<£_ 1)tkl<£>km<g>(i—l—k)m/(1+1)
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= Ch(t; §)EPmEI™ D h(t; B
x 3z (1~ ecgmncepu-z-omisen
< CUI(E; )M < T gymirran
here we used the inequality ab/(a+b)<+/ab for a>0, 6>0. Thus we have
(3.27) |t],| < Cti+andgym+n/@ite — C {fHHigym} ararere)

Next we estimate [,. Since A(t; £)/ > Ct*(g>U+hm/U+)) for 0<k< jl, we have by
(3.2) that |t*a; (; x, E)h(t; £)~/| is bounded. Thus by (3.21) and (3.22) we have

(3.28) [tL,] < C S_ (£ gD |

In view of Lemma 1.14 with (3.27) and (3.28), we have that q(¢; x, £) satisfies
(2.9) of Lemma 2.3. It can be proved similarly that ¢(t; x, £) also satisfies
(2.10). Since the characteristic polynomial of the matrix —p(¢; x, £) coincides
with the left hand side of (3.3), we have that the real part of each eigenvalue of
the matrix p(¢; x, £) is not less than d{¢>”. Thus by Proposition 2.6. it follows
that 0,4-p(¢; X, D,) has the property (F). Hence by Lemma 2.3 it follows that
the operator 0,+p(¢t; X, D,)+4q(¢; X, D,) also has the property (F).

Let e(t, s; x, £) be the Green’s matrix of 9,4p(¢; X, D,)+ q(t; X, D,).
Then by (3.23), (3.24) and (2.25) we have

r(t)oe(t, s)ob(s)(x, E)E BYS},s)
and

W-lifrsl r(t)oe(t, s)ob(s)(x, Ey=1 in Sy;.
Hence we have
(3°29) gj(t’ §5 X, g) = h(t)l—M°Zz{=1e1.k(t’ s)obk,j+1(s)(x) E) ,

where e; (¢, s; x, £) is the component of e(t, s; x, £) in the j-th raw and the k-th
column. By (3.24) we have A(t; £)g,(t, s; x, £)€ BN(Sh ). Hence the proof is
complete.

4. Hypoellipticity

DEFINITION 4.1.  We say that a linear operator T: C7(Q)— C=(Q) is pro-
perly supported in an open set ) when for any compact set K CQ there exists
another compact set K’ Q such that

supp Tuc K’ if suppucK

and

Tu=0onKif u=0 on K’.
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Lemma 4.2 ([10]). If PSS} is properly supported in Q, then so is its
formal adjoint P*.

DerinITION 4.3. i) For PE S5 we define P: & — &', (u—Pu) by
(4.1) (Pu, v) = (u, P*v) for ve S,

where (4, v)=<u, 7, and <{u, v) means the value of u at v.
ii) If PeS); is properly supported in Q, we define P: 9'(Q)— 9'(Q),
(u— Pu) by

(4.2) (Pu, v) = (u, P*v) for vEeP(Q) .

DEFINITION 4.4.  An operator P€.S’; which is properly supported in Q is
said to be hypoelliptic in Q, if

(4.3) sing supp # = sing supp Pu, ue9dP'(Q),

where the singular support of a distribution #(sing supp #) is the smallest closed
set outside which it is a C~-function.

Now we shall study the hypoellipticity of a system of operators which
degenerates at t=0. When the function \(t; x, £) which fills the role of the
scale of degeneration does not change the sign at =0, L=0,4-p(¢; X, D,) and
its formal adjoint ‘L=—20,+p*(¢; X, D,) are hypoelliptic at the origin under
appropriate conditions. When \y(¢; x, £)=0 for =0, only ‘L is proved to be
hypoelliptic.

ExampLE 4.5. i) Let L=0,+#D% Then \(¢; x, £)=1*£% and e(t, s; %, £)
=exp [—(1/3)(£—s%)&2]. Thus e(t, s; x, £)&S™= for any s, ¢ such that s<z.

i) (Y. Kannai [7]) Let L=0,+tD;. Then \y(t; x, £)=1£* and e(t, s; , E)
=exp[—(1/2)(#*—s?)&?%]. Thus the Cauchy problem with a data on =0 has a
solution not only towards the future but also towards the past. This means
that L is not hypoelliptic at the origin. The solution, if there exist, of the
Cauchy problem ‘Lu=f, u(— T, x)=u,(x), T>0, has an explicit representation
in (0, T), and so does that of ‘Lu=f, u(—T, x)=u,(x) in (—T, 0). These two
solutions match up smoothly at z=0.

Theorem 4.6. Let p(t; x, £)= B(Sys) in [—T, T] be properly supported in
(—T, TYX R}, and let C(t) be an integrable function such that C(t)>0 when t=0.

1) If there exists a continuous function Nt; x, £) such that \,(t; x, &) =
C@XEg>¥ in [—T, T] for a constant ¢>0 and L=0,+p(t; X, D,) has the property
(F) with \(t; %, E)=N(t; x, ), then L is hypoelliptic in (—T, T)X R;.

ii) If there exists a continuous function \(t; x, £) such that

{ A(t; %, E) = C(EKE* in [0, T]

(+) Nt x, E)<S—C(tEY  in [T, 0]
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and the resolvent matrix (t, s; x, £) of L=0,+p(t; X, D,) satisfies
(4.6) \5(t, 5; %, £)| <C exp[—d S:xo(a; %, g)da]
for 0<s<t<T or for —T <t<s<0, and p(t; x, £) satisfies for any a, B
@7 198 % Blde<Cupey e m [ 'ros 5, E)do+1)

for —T<s<t<T, then 'L=—0,+4p*(t; X, D,) is hypoelliptic in (—T, T) X R}.

Before the proof we note that the properly supportedness of operator
p(t; X, D,) permits us to extend

p(t; X, D,): EX((—T, T); §) = EW(—T, T); )
uniquely to
p(t; X, D,): D(—T, T)XRY) - D(—T, T)XRY).

Let Hy(oo— <p<oo) be the usual Sobolev space and let H, u(co <,
u <o) be the Sobolev space defined by
(+8)  Ho.— foc @ ®xRY; {[la(, oo @marag<eo).
For an open set Q such that 0 is a compact subset of R, H,%(Q) denotes the
Frechet space
4.9) {reD'(Q); pusH,  for any p=C5(Q)},

and for a rectangular domain W=(a, b)x Q of (—T, T)x R%, H [?°(W) denotes
the Fréchet space

(4.10) {fwed'(W); yucsH, for any = C7 (W)} .

Lemma 4.7. Let p(t; x, E)EB(Sys) in [—T, T] and let uc D' (—7T, T)
X R}) be a solution of the equation

(4.11) o,ut+p(t; X,Dyu=f, fed(—T, T)XR:).
If f is infinitely differentiable in W, then there exists a real number v, such that
(4.12) ue N EH(a, b); H () -
Proof. We write
0,u = —p(t; X, DYu+f

and differentiate both sides / times with respect to . Then we have
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! - )
(4.13) Ay — —3 ( ! )E‘l—’ p(t; X, D,)(3iu)+0.f.
o \j/dei

Now, since W is compact, there exists a real number », such that u€ H i;’f\,l_,,,( w).
Then from (4.11) and f € C=(W) we see that

dueHL:, (W),
and using (4.13) inductively for /=1, 2, ---, we see that
dlucH,”, (W), 1=0,1,2,--.
Then, using Sobolev’s lemma with respect to ¢ we have
(4.14) ue&ntY(a, b); Hy'2, (W), I>—v+1.

Hence setting vy=v,—(1—v,)m, we set (4.12) and the lemma is proved.

Lemma 4.8. If ve 0 &((a, b); Hypw)N Hy oo N E((a, b) X RY), then
k=0
vEC7((a, b) X R}).

Proof. We shall show that there exists a constant M; such that

(#.15)  (KDHLE)Y K2 (g dtmp (M) forj=0,1,2, .
Then by hypothesis on v we have

[ficor@yte rarde<e forj=0,1,2,.

Hence we have v Cg((a, b) X R}).
We divide the proof of (4.15) into two cases: I) <7)>><§&>¥i and II)
{TO>LLEDN ), where N ;=max {(j+1)m—u,, 1}.
When I) holds, we have
((TOHLEDY K2y )™
<2
$2i<.,->j+1<g>vo-(j+1)m .
When II) holds, we have

(LY <2KEH™s
S 2CES-NMICESIN N jivl
S2KTMCEY MM

Thus setting M;=(j+ |v,|)N; we have (4.15).

If L satisfies the hypothesis of i) of Theorem 4.6, then it is shown as in the
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proof of Theorem 2.7 that there exists the Green’s matrix e(t, s; x, £) of L such
that

(4.16) e(t, s; %, E)EB(S™™) in [s+&, T] for any &>0,
and

(4.17) w-lim 0fe(t, s; x, £) exists in §i%  forj=0,1,2, .
Moreover we have the following

Lemma 4.9. Let g,(t)eE((a, b); H,) and let supp g;C(a, b) for j=1, 2.
i) If there exists a constant €>0 such that g, C=((—2€, 2€) X RY), then

(4.18) 9 — g' ot, o3 X, D)g(o)doeC=((—¢, E)XRY).

i) Letyv,CcCv,in Q. Then
t
(419 o=7@ | db o X, DNI—7(X oMo sC(W).

Here and in what follows by ‘“y,C Cvy, in Q) we mean that ;€ C5(Q) for j=1, 2
and v,=1 in a neighborhood of supp v,.

Proof. i) By (4.16), (4.17) and hypothesis on g, we have that o, is infini-
tely differentiable with respect to x when [#| >&. Differentiatin v, with respect
to ¢t we have by (2.3) and (2.4)

0,v,(t) = gi(t)+p(t; X, D,)v(?)

This shows that 9,2,(¢) is also infinitely differentiable with respect to x. Intera-
tion of this procedure proves (4.18).

ii) Since v,(X)e(?, o; X, D,)(1—7(X’)EB(S-) in (a, T], we have that
v, is infinitely differen tiable wih respectt to x. By (2.3) and (2.4) we have

t
9040) = [ 7X0p(ts X, D.Ytt, 73 X, DY1—0(X Nelod
and 8,v,(¢) is infinitely differentiable with respect to x. Iteration of this

procedure proves (4.19) and the lemma is proved.

Proof of i) of Theorem 4.6. Let O be an open bounded set of R and let
W=(a, b)xQ>3(0, 0). LetucD'((—T, T)XR?%) be a solution of
(4.20) Lu=f, fe9(—T, T)XRYNC=(W).

We shall prove that # is infinitely differentiable in a neighborhood of the origin.
Take (¢, ®)=X(t)v(x) €C5(W) such that yr=1 in a neighborhood of the origin.
Then by Lemma 4.7 we have
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(4.21) Yu€ N EH(@, 8); Hopomm)
and setting g=L(+u) we have
(4.22) gENEN(@, ); Hypotm-n) -

Now we write as in the proof of Theorem 2.9

e(t, o3 X, D,)g(o) = e(t, o3 X, D,){0,(yu)+p(c; X', D) (vu)}
= 0,{e(t, o; X, D,)(yu)(o)} ,

then we have
(Va)(®) = elt, 53 X, D) () (s)+{ elt, o3 X, D.)glo)ior

for a<s<<t<<b. Noting Yyu=0 in (—T, a+¢,) for a fixed positive constant &
we have

(4.23) (Va)(t) — S'_Te(t, o3 X, D)g(e)do  for a<t<b.

Now take v, such that v,C Cv in Q and 7v,=1 in a neighborhood of the origin,
and set

& = (X0 Y-+ VX, 7y,

& = X)L, v(*)]u .

Then we have

(424)  go= L)X (@uE N EH(@ b); Higorm-n)
and
(4.25) g=ga+(1—m")g.

We claim that there exists a constant £€>0 such that ¥, X[P, v]u is infinitely
differentiable with respect to ¢ and x for |#|<<2€. Set (2, x) = X,(2)7:(x)
where X,C CX in (a, b) and X,=1 for |t|<<26. Then we have {nX[P, v]u=
—nP{(1—+)u}. Since P(t; X, D,)(1—+(¢, X’)) is properly supported, there
exists Y,€C5((— 7T, T)X R}) such that r,—=1 in a neighborhood of the origin
and Pyr {(1—+)(1—+r)u} =0. Hence we have ynX[P, v]u= —ynP{(1—y)ru}.
Since n(t, X)P(t; X, D,)(1—y(t, X'))e B(S™=) in (a, b) and there exists a
constant », such that yu€H, , ((a,b)x R}), we have ¥ X[P, vjue H, ..N E'(W).
So by Lemma 4.8 we have v,X[P, y]lusC=((—2¢, 2§) X R;). Thus we can
apply i) of Lemma 4.9 to g, and we have

(4.26) S; et, o; X, D,)g\(oc)do € C=((—E, &)X RY) .
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If we choose 7, such that v,C Cv, in Q and v,=1 in a neighborhood of Q, the
origin, then by (4.24) we can apply ii) of Lemma 4.9 and we have

#2) )| et o5 X, DYI-N(X)eoMoeC(W).

By (4.23) and (4.25)~(4.27) we have that JyueC>((—¢&, §)XQ,) and i) of
Theorem 4.6 is proved.

Proof of ii) of Theorem 4.6. Let uc 9((—T, T)x R;) be a solution of the
equation

(4.28) Yu=f fed(—T, T)XR)NC(W).

As in the proof of Theorem 2.7 we can construct the Green’s matrix e(q, ¢; %, £)
of L, , for —T <o <t<0 which belongs to F(S~) in [c+&,, 0] for any &>0.
Since 0,e*(a, t; x, £)+e*(a, t)o p*(c)(x, £)=0, we have as in the proof of i)

(V) (8, x) = —S' (o, t; X, D)g(c)ds  for a<t<0,
-T

where g ='L(pu) = f+['L, ¥]u eﬁoé’f((a, B); Hyo_jm-m). Let gy=—X'vu+
7, X[P*, ylu++f and g,=X[P*, v]u, where {r=Xy and v,C Cv in Q are the
fuctions given in the proof of i). Then we have g, € C((—2¢, 2¢) X R}),
g,eﬁoé’i((a, b); H,,_4p-n) and supp g, (a, b) for j=1,2. Since e*(s, t; x, £)E
B(S™") in [c+&,, 0], 8,e¥(a, t; x, E)=p*(t)oe*(a, t)(x, £) and w-ldintl die*(a, t;
%, E) exists in Sj% for —T<t<0, we have as in the proof of Lemfma 4.9 that
both ‘vl(t)=—st e*(c, £; X, D,)gy(c)do and vy(f)—=— () j' *(o, 13 X, D)%
(I—y(X’ ))gz(o-)t_ifr belong to C=((—¢&, 0) X Q,) and every deri\—r;tive of v;, j=1, 2
is uniformly bounded in Q, as £ 1 0. In a similar fashion we have that

(V) (2, x) = STe*(o-, t; X, D)g(c)ds  for 0<t<b.
t

We also have that u is infinitely differentiable in (0, €)X Q, and its every
derivative is uniformly bounded in Q,as ¢ | 0. Thus u(¢, x) is infinitely differen-
tiable in (—¢&, —0] X Q,U[+0, €)X Q,.

Now we shall show according to Y. Kannani [7] that the boundary values
of u(t, x) and its derivatives as ¢ tends to zero from the right and from the left
actually match up and that u has no singular part with support on the line t=0.
That is, we shall prove

(4.29)  1im [(8) DZu(t, x)—(0i Diu)(—t, )] = 0  for all j and a,
t>0
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and that the distribution v€ 9’(w,) defined by
430 <o, 9> =<w p>—lim[ [+ [ |[wo)t wavar,  peciws,

is the zero distribution. The functional {v, > is well defined because of
the existence of boundary values for u(¢, x) as ¢10 and ¢ 0, and obviously
supp vC {(¢, x); t=0} .From (4.30) we have

Lo, 9> = <f p>—tim| | + {7 | (g as

—lim | [wp)(—&, )—(up)(e, M]ds
Since f € C~(w), we have
(Lo, > = lim | [(wp)E, 9)—(up)(—¢, D)ds,
that is
(4.31) ‘Lo = 8, {u(+0, x)—u(—0, x)} .
According to L. Schwartz [14], we may write locally
v =2V Ev;0},

where v; € 9'(R:Nw,) and E is the natural inclusion map E: 9'(R;Nw,)—
9D'(wy). Thus we find by (4.31) that Ev,0Y*! have to vanish, and therefore all
the v; have to vanish, so that v=0. Hence we have by (4.31)

uw(+0, x)—u(—0, x) = 0.

Differentiating the equation ‘Lu=f and iterating the same argument we have

(4.29).

Corollary 4.9. Let L be the operator which satisfies the condition of Theorem
3.1, and let a; (t; x, EYE B(Ssm/+D) in [—T, T be properly supported. Then
we have 1) if | is even, then both L and 'L are hypoelliptic, and ii) if 1 is odd, then
‘L is hypoelliptic.

ExampLE 4.10. B. Helffer [6] proved the hypoellipticity of the operator
L = at'—aZm(t; X’ Dx)+2?z(—)‘laj(t; X: Dz) 1)

where a;(t; x, £) j=0, 1,-++, 2m is a polynomial of homogeneous order j in £ with
C=-coefficients, under the following three conditions:

[H.1] Re S'am(a; %, E)do>C |t—s|¥1|E| |
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[H.2] There exist real constants ¢ and 7 such that for any «, @ and j
which satisfy

lal+181+>0, (lal+)0+(181+H)7<1,
we have with some constant C; , ¢
| Gy (1t %y E)] <C; o8] Re @y, | 1-(1#1+70-(BILIT | £ | mLASI+0+(BI+TI- 1817

[H.3] 2mk(t+0)/(k+1)<1.

If we assume that 2mk7/(k+1)<<1 when 6 <0, then the above L satisfies the
condition ii) of Theorem 4.6 with A\ (t; ¥, £)=Re a,,(t; , ), p=min {1, 1 —v6}
and d=max{0, v7}, where v=2mk/(k+1).

Proof. Set u=(|a|+j)0+(|B|+j)r. When p<0, since |Rea,,| *|&|*™*
is bounded, we have by [H.2]

|G- 8t %, E)| <C; uplRe ay, | 7F| £ |21
SCj,w,ise Ay | |E] 7170

Thus we have

430 law B % 1de<Crunce> ™ {[ (o5 3, Bdo+1}.

When 0< <1, we have by sth(o-)“"‘dag {Sth(o‘)dd’}l_”‘(t—S)" and [H.2]
that
‘ ¢ 1-p )
Xs | @om-;(8) (5 %, §)|do-§Cj,¢,,B{S Mo; %, g)da-} (t—s)*|E|mm1m1-i
By [H.1] we have
(2—s)*| E |2t = {(2—s)F+1|E |2} H/CD) | £ | BY=i
¢ w/(k+1) .
< {S AMo; %, E)da'} |E|mviiol

Thus we have

1— k) (k+1) .
} |g|Pyimien,

t t
Ss |a2,,,_,.§‘;§(a; x, £)|da<C; up {Ssh(a'; x, E)do
By [H.3] we have

pwr—j = v{lal0+|B8|7}+j{v(0+7)—1}
<v{lalf0+18I7}.

Hence we have
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(4'33) St Iaz,,,—,-gg(a'; X, g) | do-sCi.w,3<g>—(l_v0)]“l+v-r|p|

X {S'x(a; %, E)do+1 } :
When p>1, by [H.3] we have

2m—j—la| =—1—v0)|a|+vr|B|+2m—j—v(@|a|+T7|B])
= 2m|(k+1)—(1—v0) || +v7| B| +o(1—p)
+j{p(0+7)—1}
< 2m|(k+1)—(1—v6) || +v7|B] .

Thus we have

| Gom- ;B (E; %, E)| <C 0 pEDm i1
< Cj.a’,B<E>—(l_”9)l¢|+v'r|ﬂ|<£>2m/(k+l) .

Hence by using Lemma 1.13 we have

(+:34) [[ 1aom83(a3 %, B)|dr < C 0 pcEp-a- 0101070
X {Stk(o'; X, E)do'—}—l} .

By (4.32), (4.33) and (4.34) we have that L satisfies (2.7). Since L is a single
equation, (2.8) is easily verified. Thus the proof is complete.
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