EMBEDDING MANIFOLDS IN EUCLIDEAN SPACE

Emery THOMAS*

(Received February 17, 1975)

1. Introduction. We consider here the problem of whether a smooth manifold M (compact, without boundary) embeds in Euclidean space of a given dimension. Our results are of two kinds: first we give sufficient conditions for an orientable n-manifold to embed in $R^{2 n-2}$, and we then give necessary and sufficient conditions for $R P^{n}$ ($=n$-dimensional real projective space) to embed in $R^{2 n-6}$. We obtain these results using the embedding theory of A. Haefliger [6].

Recall that by Whitney [37], every n-manifold embeds in $R^{2 n}$. Combining results of Haefliger [6], Haefliger-Hirsch [9] and Massey-Peterson [16] one knows that every orientable n-manifold embeds in $R^{2 n-1}(n>4)$, and if n is not a power of two, every n-manifold embeds in $R^{2 n-1}$. Finally, if n is a power of two ($n>4$), by [9] and [26] one has: a non-orientable n-manifold embeds in $R^{2 n-1}$ if and only if $\bar{w}_{n-1}=0$. Here $\bar{w}_{i}, i \geqslant 0$, denotes the $(\bmod 2)$ normal StiefelWhitney class of a manifold M.

We give two sets of sufficient conditions for embedding an n-manifold in $R^{2 n-2}$; in order to use the theory of Haefliger, we assume $n \geqslant 7$.

Theorem 1.1. Let M be an orientable n-manifold, with $\bar{w}_{n-3+i}=0$, for $i \geqslant 0$. If either $w_{3} \neq 0$, or $w_{2} \neq 0$ and $H_{1}(M ; Z)$ has no 2-torsion, then M embeds in $R^{2 n-2}$.

Here w_{i} denotes the $i^{\text {th }} \bmod 2$ (tangent) Stiefel-Whitney class of M. A necessary condition for M^{n} to embed in $R^{2 n-2}$ is that $\bar{w}_{n-2}=0$. Note, however, that if $n-1$ is a power of two, then $R P^{n}$ does not embed in $R^{2 n-2}$, even though $\bar{w}_{n-2}=0$. (In this case $\bar{w}_{n-3} \neq 0$ and $H_{1}\left(R P^{n} ; Z\right)=Z_{2}$).

By Massey-Peterson [16] one has that $\bar{w}_{n-3+i}=0, i \geqslant 0$, for M^{n}, provided one of the following conditions is satisfied: $n \equiv 3 \bmod 4 ; n \equiv 0,2 \bmod 4$ and $\alpha(n) \geqslant 3 ; n \equiv 1 \bmod 4$ and $\alpha(n) \geqslant 4$. Here $\alpha(n)$ denotes the number of one's in the dyadic expansion of the integer n.

Recall that an orientable manifold is called a spin manifold if $w_{2}=0$. As a complement to Theorem (1.1) we have:

Theorem 1.2. Let M be an n-dimensional spin manifold with $\bar{w}_{n-5+i}=0$,

[^0]$i \geqslant 0$. Then M^{n} embeds in $R^{2 n-2}$, provided that $H_{1}(M ; Z)$ has no 2-torsion when $n \equiv 0 \bmod 4$.

Again by [16] and [26] we have: let M^{n} be a spin manifold with $n \equiv i$ $\bmod 8,4 \leqslant j \leqslant 7$; then, $\bar{w}_{n-j}=0$. Thus by (1.2) we obtain: if M^{n} is a spin manifold with $n \equiv 5,6,7 \bmod 8, M$ embeds in $R^{2 n-2}$.

We consider now the problem of embedding $R P^{n}$. Quite good results have been obtained by geometric methods. In particular, the work of MahowaldMilgram [15], Steer [31], and Rees [25] gives a good picture for large values of $\alpha(n)$. However, we now show that for small values of $\alpha(n)$ the known results are not best possible.

Theorem 1.3. Let s be a positive integer, not a power of two. Set $n=8 s+t, 0 \leqslant t \leqslant 7$. Then $R P^{n}$ embeds in $R^{2 n-6}$, provided $\alpha(n) \geqslant 4$ when $t=1$ or 2 .

To my knowledge this is a new result in the following cases (all congruences are $\bmod 8$).

$$
\begin{array}{ll}
n \equiv 0, & 2 \leqslant \alpha(n) \leqslant 8 \\
n \equiv 1, & 4 \leqslant \alpha(n) \leqslant 6, \\
n \equiv 2, & 4 \leqslant \alpha(n) \leqslant 7, \\
n \equiv 3,5, & 4 \leqslant \alpha(n) \leqslant 5, \\
n \equiv 4, & 3 \leqslant \alpha(n) \leqslant 7 .
\end{array}
$$

Combining results of [31] and [25] one has (cf., [12, 5.3]): If $n \equiv 7 \bmod 8$, $R P^{n}$ embeds in $R^{2 n-\alpha(n)-3}$; thus, if $n \equiv 6 \bmod 8, R P^{n}$ embeds in $R^{2 n-\alpha(n)-2}$. Consequently by (1.3) we have:

Corollary 1.4. Let n be an integer such that $n \geqslant 15$ and $n \neq 2,4 \bmod 8$. Then $R P^{n}$ embeds in $R^{2 n-6}$ if, and only if,

$$
\begin{array}{lll}
\alpha(n) \geqslant 2, & \text { and } & n \equiv 0 \\
\alpha(n) \geqslant 4, & \text { and } & n \equiv 1,3,5,6,7
\end{array}
$$

Of course, by (1.3), if $n \equiv 2$ and $\alpha(n) \geqslant 4$ or $n \equiv 4$ and $\alpha(n) \geqslant 3$, then $R P^{n}$ does embed in $R^{2 n-6}$. Note [29], [1], [21], [4], that when $n \equiv 2$ and $\alpha(n)=3$ or $n \equiv 4$ and $\alpha(n)=2, R P^{n}$ immerses in $R^{2 n-6}$ but not in $R^{2 n-7}$. Thus the following conjecture seems reasonable.

Conjecture 1.5. If $n \equiv 2 \bmod 8$ and $\alpha(n)=3$, or if $n \equiv 4 \bmod 8$ and $\alpha(n)=2$, then $R P^{n}$ does not embed in $R^{2 n-6}$.

The method of proof developed in this paper also gives one new result for complex projective n-space, $C P^{n}$.

Theorem 1.6. Let n be a positive integer with $n \equiv 3 \bmod 4$ and $\alpha(n) \geqslant 4$. Then $C P^{n}$ embeds in $R^{4 n-6}$.

For $\alpha(n) \geqslant 5$ this follows by work of Steer [31].
The specific result of Haefliger that we use is the following. For a topological space X let X^{2} denote the product $X \times X$ and let Δ denote the diagonal in X^{2}. The group of order $2, Z_{2}$, acts freely on $X^{2}-\Delta$ by interchanging factors; we set $X^{*}=\left(X^{2}-\Delta\right) / Z_{2}$. The projection $p: X^{2}-\Delta \rightarrow X^{*}$ is a 2 -fold covering map; denote by ξ the associated line bundle and by $S_{q}(\xi)$ the ($q-1$) sphere bundle associated to the q-plane bundle $q \xi$. Haefliger proves (see [5] and [$6, \S 1.7]$):

Theorem 1.7 (Haefliger). Let M be a smooth n-manifold and let q be a positive integer such that $2 q \geqslant 3(n+1)$. Then M embeds in R^{q} if, and only if, the bundle $S_{q}(\xi)$ has a section.

Remark. A similar theorem has been proved by Weber [36] for PLmanifolds (and semi-linear embeddings) and by J.A. Lees [41] for topological manifolds with locally flat embeddings (assuming $2 q>3(n+1)$). Thus Theorems (1.1) and (1.2) can be stated for these categories of manifolds. In connection with Theorems (1.3) and (1.6), note the work of Rigdon [27].

Our method of proof is to use various techniques of obstruction theory to show that the bundle $S_{q}(\xi)$ has a section. Briefly, the following techniques will occur: (i) indeterminancy, (ii) relations, (iii) naturality, (iv) generating class, (v) Whitney product formulae.

The remainder of the paper is organized as follows: in section 2 we develop some facts about the space M^{*}. Section 3 is a brief survey of obstruction theory, while in section 4 we give the proofs of Theorems (1.1) and (1.2). In section 5 we prove Theorem (1.3) and in section 6, Theorem (1.6). Finally, sections 7 and 8 contain proofs omitted in previous sections.

2. Properties of M^{*}

In order to use Theorem 1.7, we need to know the cohomology of M^{*}, especially mod 2 . For the rest of the paper all cohomology will be with mod 2 coefficients unless otherwise indicated.

To compute $H^{*}\left(M^{*}\right)(\bmod 2$ coefficients!) we use another result of Haefliger [7], as reworded by Rigdon [26]. We set (cf., [19]).

$$
\Gamma M=S^{\infty} \times_{z_{2}}\left(M^{2}\right)
$$

where S^{∞} is the unit sphere in R^{∞}, and where Z_{2} acts by the diagonal action. Also, let P^{∞} denote the infinite dimensional real projective space, and for a
manifold M let $P(M)$ denote the projective line bunlde associated to the tangent bundle.

Theorem 2.1 (Haefliger). Given an n-manifold M, there is a commutative diagram of mod 2 cohomology, as shown below, in which each row is an exact sequence ($i \geqslant 0$):

All the morphisms in the diagram, except the φ 's, are induced by mappings between spaces. φ_{1} and φ_{2} can be thought of as Gysin maps. Specifically, given $x \in H^{i-n}(M)$, then

$$
\begin{equation*}
\varphi_{1}(x)=U \cdot(1 \otimes x), \quad \text { where } \quad U \in H^{n}\left(M^{2}\right) \tag{2.2}
\end{equation*}
$$

is the $\bmod 2$ "Thom class" of M, as given, e.g., by Milnor [20]. φ_{2} is computed as follows. Let $u \in H^{1}\left(P^{\infty}\right)$ denote the generater. Then, for $x \in H^{*}(M)$, and $j \geqslant 0$,

$$
\begin{equation*}
\varphi_{2}\left(u^{j} \otimes x\right)=\sum_{0}^{n} u^{i+j} \otimes w_{n-i}(M) \cdot x \tag{2.3}
\end{equation*}
$$

The key space in 2.1 is ΓM; Steenrod [30] has computed the cohomology of this as follows.

Let t be the involution of $M \times M$ which transposes the factors, and set $\sigma=1+t^{*}: H^{*}\left(M^{2}\right) \rightarrow H^{*}\left(M^{2}\right)$. Let K^{*} and I^{*} denote, respectively, the kernel and image of σ. Thus K^{*} and I^{*} are graded groups with $I^{*} \subset K^{*}$; set $\bar{K}^{*}=K / I$.

Using the obvious projection $\Gamma M \rightarrow P^{\infty}$, we regard $H^{*}(\Gamma M)$ as an $H\left(P^{*}\right)$ module.

Theorem 2.4 (Steenrod). There is an isomorphism of $H^{\infty}\left(P^{*}\right)$-modules,

$$
H^{*}(\Gamma M) \approx\left(H^{*}\left(P^{\infty}\right) \otimes \bar{K}^{*}\right) \oplus I^{*}
$$

where $H^{*}\left(P^{\infty}\right)$ acts trivially on I^{*}.
Note that \bar{K}^{*} is zero in odd dimensions. For each $n \geqslant 0$ we have an isomorphism

$$
H^{n}(M) \approx \bar{K}^{2 n}, \quad x \rightarrow(x)^{2}
$$

where $(x)^{2}$ denotes the coset of I containing $x \otimes x$.
We now describe the morphisms q^{*} and k^{*} in (2.1).

Proposition 2.5.

(i) $q^{*} \mid\left(\bar{K}^{*} \oplus I^{*}\right)=$ identity.
(ii) $q^{*}\left(u^{m} \otimes(x)^{2}\right)=0$, if $m>0$
(iii) $k^{*}\left(I^{*}\right)=0$,
(iv) $k^{*}\left(u^{m} \otimes(x)^{2}\right)=\sum_{0}^{\mathrm{g}} u^{m+q-i} \otimes \mathrm{Sq}^{i}(x)$, if $\quad \operatorname{deg} x=q$.

For the proof, see Haefliger [7] and Steenrod [30].
Note that by 2.5 (iv), $k^{*} \mid\left(H^{*}\left(P^{\infty}\right) \otimes \bar{K}^{*}\right)$ is injective. Thus, for $y \in H^{*}(\Gamma M)$,
(v) $y=0$ if and only if $q^{*}(y)=0$ and $k^{*}(y)=0$.

Returning to diagram (2.1), the map $r: M \rightarrow P^{\infty} \times M$ is simply the inclusion; the morphism ρ_{2} is computed as follows. As before, let ξ denote the canonical line bundle over M^{*}; set $\eta=j^{*} \xi, v=w_{1} \eta \in H^{1}(P(M))$. Recall (e.g. [11]) that $H^{*}(P(M))$ is a free $H^{*}(M)$-module on $1, v \cdots v^{n-1}$, with the relation

$$
\begin{equation*}
v^{n}=\sum_{i=1}^{n} v^{n-i} \cdot w_{i}(M) \tag{2.6}
\end{equation*}
$$

Given $x \in H^{*}(M)$, we have

$$
\begin{equation*}
\rho_{2}\left(u^{m} \otimes x\right)=v^{m} \cdot x, \quad m \geqslant 0 . \tag{2.7}
\end{equation*}
$$

Our goal is to find ways of showing that the obstructions vanish for a section of the bundle $S_{q}(\xi)$ over M^{*}. For this we need ways of showing that a class in $H^{*}\left(M^{*}\right)$ is zero. The following result is useful for this.

Define B^{*} to be the subspace of $H^{*}(\Gamma M)$ generated by all classes of the form

$$
\begin{equation*}
u^{j} \otimes(x)^{2}, \quad \text { with } \quad j+\operatorname{deg} x<\operatorname{dim} M . \tag{2.8}
\end{equation*}
$$

We set $\lambda=\rho_{2} k^{*}=j^{*} \rho$, in (2.1), and write $\Lambda^{*}=\lambda\left(B^{*}\right) \subset H^{*}(P(M))$. Note that $B^{*} \cap I^{*}=0$.

Proposition 2.9.

(a) Kernel $j^{*}=\rho\left(I^{*}\right)$,
(b) $\rho \mid I^{*}$ is injective,
(c) Image $j^{*}=\lambda\left(B^{*}\right) \quad\left(=\Lambda^{*}\right)$,
(d) ρ maps $B^{*} \oplus I^{*}$ isomorphically onto $H^{*}\left(M^{*}\right)$.

The proof is given in $\S 7$.
Set $w=w_{1} \xi \in H^{1}\left(M^{*}\right) . \quad$ Since $\rho(u)=w$ and $j^{*} w=v$, we have (by 2.4),

Corollary 2.10. $\quad w \cdot\left(\right.$ kernel $\left.j^{*}\right)=0$.

3. Obstruction theory for sphere bundles

We discuss here the general problem of finding a section to a sphere bundle. At the end of the section we consider the special case posed by Theorem 1.7the sphere bundle is one associated to a multiple of a line bundle.

Let X be a complex and ω an oriented q-plane bundle over $X, q \geqslant 8$. We assume that $\operatorname{dim} X \leqslant q+5$. Then the $(\bmod 2)$ obstructions to a section in the associated sphere bundle are the following (see [14], [34]), using the fact that the 4 and 5 -stems are zero [35].

$$
\begin{aligned}
x(\omega) & \in H^{q}(X ; Z) \\
\left(\alpha_{1}, \alpha_{3}\right)(\omega) & \in H^{q+1}(X) \oplus H^{q+3}(X), \\
\left(\beta_{2}, \beta_{3}\right)(\omega) & \in H^{q+2}(X) \oplus H^{q+3}(X), \\
\gamma_{3}(\omega) & \in H^{q+3}(X)
\end{aligned}
$$

In our applications, ω comes from a double cover and so the mod 3 obstruction in $\operatorname{dim} q+3$ is zero ([3], [28]). Also, for such a bundle, $w_{2 i+1}(\omega)=0, i \geqslant 0$.

These obstructions have the following indeterminacies: for $j \geqslant 1$, define $\theta_{j}: H^{*}(X) \rightarrow H^{*}(X)$ by

$$
x \rightarrow \mathrm{Sq}^{j}(x)+w_{j}(\omega) \cdot x
$$

Then, assuming that $w_{1}(\omega)=w_{3}(\omega)=0$,

$$
\begin{align*}
& \text { Indet }\left(\alpha_{1}, \alpha_{3}\right)=\left(\theta_{2}, \theta_{4}\right) H^{q-1}(X ; Z) \tag{3.1}\\
& \text { Indet }\left(\beta_{2}, \beta_{3}\right)=\left(\theta_{2}, \operatorname{Sq}^{2} \mathrm{Sq}^{1}\right) H^{q}(X)+\operatorname{Sq}^{1} H^{q+2}(X), \\
& \text { Indet }\left(\gamma_{3}\right)=\theta_{2} H^{q+1}(X)+\operatorname{Sq}^{1} H^{q+2}(X)
\end{align*}
$$

In the case of the β 's and γ, this is just the indeterminancy obtained by passing from one stage of the Postnikov resolution to the next-not the "full" indeterminancy in the sense of [18]. At one point we will need the full indeterminancy for $\left(\beta_{2}, \beta_{3}\right)$. Specifically, one can show (see [17], [18]):

$$
\text { Indet }\left(\beta_{2}, \beta_{3}\right)(\omega)=\Psi_{\omega} H^{q-1}(X ; Z)
$$

where Ψ_{ω} is a "twisted" secondary cohomology operation [17], [32] defined on Kernel $\theta_{2} \cap$ Kernel $\theta_{4} \cap H^{q-1}(X ; Z)$, taking values in $H^{q+2}(X) \oplus H^{q+3}(X)$, and with Indet $\Psi_{\omega}=\left(\theta_{2}, \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) H^{q}(X)+\mathrm{Sq}^{1} H^{q+2}(X)$. Note the simple, but important, fact:
if Kernel $\theta_{2} \cap$ Kernel $\theta_{4} \cap H^{q-1}(X ; Z)=0$,
then

$$
\text { Indet }\left(\beta_{2}, \beta_{3}\right)=\operatorname{Indet} \Psi_{\omega}=\left(\theta_{2}, \operatorname{Sq}^{2} \mathrm{Sq}^{1}\right) H^{q}(X)+\operatorname{Sq}^{1} H^{q+2}(X)
$$

A second useful fact about these obstructions is that they satisfy certain universal relations, see [14], [33], [34, 4.2]. Namely

$$
\begin{align*}
& \theta_{2} \alpha_{1}(\omega)=0 \\
& \mathrm{Sq}^{2} \mathrm{Sq}^{1} \alpha_{1}(\omega)+\mathrm{Sq}^{1} \alpha_{3}(\omega)=0 \tag{3.2}\\
& \theta_{2} \beta_{2}(\omega)+\mathrm{Sq}^{1} \beta_{3}(\omega)=0,
\end{align*}
$$

assuming, as above, that $w_{1}(\omega)=w_{3}(\omega)=0$. Moreover, if $w_{i}(\omega)=0$ for $1 \leqslant i \leqslant 7$, we then have

$$
\begin{equation*}
\mathrm{Sq}^{6} \alpha_{1}(\omega)+\mathrm{Sq}^{4} \alpha_{3}(\omega)=0 \tag{3.3}
\end{equation*}
$$

Suppose now that Y is a second complex and $f: Y \rightarrow X$ a map. One then has naturality relations for the obstructions: e.g.,
(i) If $\chi(\omega)=0$, then $\left(\alpha_{1}, \alpha_{3}\right) f^{*} \omega$ is defined and $f^{*}\left(\alpha_{1}, \alpha_{3}\right)(\omega) \subset\left(\alpha_{1}, \alpha_{3}\right) f^{*} \omega$.
(ii) If $\chi(\omega)=0$ and $\left(\alpha_{1}, \alpha_{3}\right)(\omega) \equiv 0$, then $\left(\beta_{2}, \beta_{3}\right)\left(f^{*} \omega\right)$ is defined and $f^{*}\left(\beta_{2}, \beta_{3}\right) \omega \subset\left(\beta_{2}, \beta_{3}\right) f^{*} \omega$.

We consider now the special case $\omega=q \xi, \xi$ a line bundle over X. We take q even, say $q=2 s$, so that ω is orientable. Let $v=w_{1} \xi \in H^{1}(X)$. Also, denote by δ_{2} the Bockstein coboundary associated with the exact sequence $Z \xrightarrow{\times 2} Z \rightarrow Z_{2}$. Since $\chi(2 \xi)=\delta_{2} v$, one has

$$
\begin{equation*}
\chi(q \xi)=\delta_{2}\left(v^{q-1}\right) \tag{3.5}
\end{equation*}
$$

To compute $\alpha_{1}(q \xi)$ (assuming $\chi(q \xi)=0$), we use the theory of "twisted" cohomology operations, as developed in [17] and [32]. Write θ_{2} for $\theta_{2}(q \xi)$. One then has a secondary operation Φ_{3}, of degree 3 , asociated with the following relation (see p. 206 in [32]):

$$
\begin{equation*}
\Phi_{3}: \theta_{2} \circ \theta_{2}=0, \quad \text { on integral classes. } \tag{3.6}
\end{equation*}
$$

Our result is:
Proposition 3.7. Let ξ be a line bundle over X, with $v=w_{1} \xi$. Suppose that $\chi(q \xi)=0$, for some $q=2 s, s \geqslant 2$. If $\theta_{2} H^{q-1}(X ; Z)=\theta_{2} H^{q-1}(X)$, then $\alpha_{1}(q \xi) \equiv$ $\Phi_{3}\left(\delta_{2}\left(v^{q-3}\right) . s v^{2}\right)$.

This is proved at the end of the section, using the "generating class" theorem of [32].

One final technique we will need is the Whitney product formula for higher order obstructions: see [22] and [34, 4.3]. We keep the notation of 3.7.

Proposition 3.8.

(i) Suppose that $\chi(q \xi)=0$. Then
$\alpha_{1}(q+2) \xi \equiv \alpha_{1}(q \xi) \cdot v^{2}$, $\alpha_{3}(q+2) \xi \equiv \alpha_{3}(q \xi) \cdot v^{2}+\alpha_{1}(q \xi) \cdot v^{4}$.
(ii) Suppose that $\chi(q \xi)=0$ and that $\left(\alpha_{1}, \alpha_{3}\right)(q \xi) \equiv 0$.

Then,

$$
\beta_{j}(q+2) \xi \equiv \beta_{j}(q \xi) \cdot v^{2}, \quad j=2,3 .
$$

Proof of 3.7. Let η denote the canonical oriented 2-plane bundle over $C P^{\infty}$. The sphere bundle associated to $s \eta$ is

$$
S^{2 s-1} \xrightarrow{i} C P^{s-1} \xrightarrow{\pi} C P^{\infty},
$$

where π is homotopic to the inclusion. Let $x=\chi(\eta) \in H^{2}\left(C P^{\infty} ; Z\right)$ denote the Euler class of η. Thus, $\chi(s \eta)=x^{s} \in H^{2 s}\left(C P^{\infty} ; Z\right)$. Consider now the first stage in a Postnikov resolution of π.

Let $\alpha \in H^{2 s+1}(E)$ denote the second obstruction. Then α arises because of the relation

$$
\theta_{2}\left(x^{s}\right)=0
$$

(Note §§3-5 of [32]). But

$$
x^{s} \bmod 2=\theta_{2}\left(x^{s-1}\right)
$$

Thus, in the language of $\S 5$ of [32], x^{s-1} is a "generating class" for α; and hence, by Theorem 5.9 of [32].,
(*) $\quad \alpha \in \Phi_{3}\left(p^{*} x^{s-1}, s x \bmod 2\right)$.
To prove 4.4, let $f: X \rightarrow C P^{\infty}$ be a map such that $f^{*}(x)=\delta_{2} v$. Then, $q \xi=f^{*}(s \eta)$ -since $q=2 s$. By hypothesis, $\chi(q \xi)=0$ and so f lifts to a map $g: X \rightarrow E$. Moreover, $g^{*} \alpha \in \alpha_{1}(q \xi)$. But by ($\left.{ }^{*}\right), g^{*} \alpha \in \Phi_{3}\left(\left(\delta_{2} v\right)^{s-1}, s v^{2}\right)$. By the hypotheses of $4.4, \alpha_{1}$ and Φ_{3} have the same indeterminacy, and so the theorem is proved.

Remark. A similar result has been obtained independently by Rigdon [26].

4. Embedding n-manifolds in $\boldsymbol{R}^{2 n-2}$

If M is an n-manifold, then M^{*} has the homotopy type of a $(2 n-1)$ complex, and so to see whether $(2 n-2) \xi$ has a section (i.e., by 1.7 , whether M embeds in $R^{2 n-2}$) we need only consider $\chi(2 n-2) \xi$ and $\alpha_{1}(2 n-2) \xi$. To compute χ we use the following important result of Haefliger [7].

Theorem 4.1 (Haefliger). If M is an n-manifold, then $v^{n+k}=0$ if, and only if, $\bar{w}_{k+i}=0, i \geqslant 0$.

The following result implies Theorem (1.1).
Proposition 4.2. Let M be an orientable n-manifold. If $S^{2} H^{n-2}(M ; Z)=$ $H^{n}(M)$, then $\theta_{2} H^{2 n-3}\left(M^{*} ; Z\right)=H^{2 n-1}\left(M^{*}\right)$.

We give the proof at the end of the section.
Proof of Theorem 1.1. Since $\bar{w}_{n-3+i}=0$, for $i \geqslant 0$, it follows from (4.1) and (3.5) that $\chi(q \xi)=0$, where $q=2 n-2$. We will show that $\alpha_{1}(q \xi) \equiv 0$ by showing that $\mathrm{Sq}^{2} H^{n-2}(M ; Z)=H^{n}(M)$. For then by (4.2), $H^{2 n-1}\left(M^{*}\right)=\operatorname{Indet} \alpha_{1}(q \xi)$ and hence $\alpha_{1}(q \xi) \equiv 0$.

Let $\mu \in H^{n}(M)$ denote the generator. Suppose first that $w_{3} \neq 0$. Then there is a class $y \in H^{n-3}(M)$ such that $y \cdot w_{3}=\mu$. But by $W u$ [38], $\mu=y \cdot w_{3}=$ $\mathrm{Sq}^{2} \mathrm{Sq}^{1} y$, and so $\mu \in \mathrm{Sq}^{2} H^{n-2}(M ; Z)$. On the other hand, suppose that $H_{1}(M ; Z)$ has no 2-torsion. Then by Poincare duality, $H^{n-1}(M ; Z)$ has no 2-torsion and so $H^{n-2}(M)=H^{n-2}(M ; Z) \bmod 2$. Assume that $w_{2} \neq 0$, and let $z \in H^{n-2}(M)$ be a class such that $\mu=z \cdot w_{2}=\mathrm{Sq}^{2} z$. But $z=\hat{z} \bmod 2$. for some $\hat{z} \in H^{n-2}(M ; Z)$, and so again $\mu \in \mathrm{Sq}^{2} H^{n-2}(M ; Z)$, which completes the proof of the Theorem.

We turn now to the proof of Theorem (1.2). Since M is a spin manifold, $\mathrm{Sq}^{2} H^{n-2}(M)=0$, and so we cannot use Proposition (4.2); instead we have the following:

Proposition 4.3. Let M be an n-dimensional spin manifold. If $n \neq 0 \bmod 4$ or if $H_{1}(M ; Z)$ has no 2-torsion, then $\theta_{2} H^{2 n-3}\left(M^{*} ; Z\right)=\theta_{2} H^{2 n-3}\left(M^{*}\right)$.

Here $\theta_{2}=\theta_{2}(2 n-2) \xi$. We give the proof at the end of the section.
Proof of Theorem 1.2. Since $\bar{w}_{n-5+i}=0(i \geqslant 0), \chi(2 n-2) \xi=0$, using (3.5) and (4.1), and so $\alpha_{1}(2 n-2) \xi$ is defined. By (4.3) and (3.7), $\alpha_{1}(q \xi) \equiv$ $\Phi_{3}\left(\delta_{2}\left(v^{q-3}\right), s v^{2}\right)$, where $q=2 n-2, s=n-1$. Since $\bar{w}_{n-5+i}=0(i \geqslant 0)$, then by 4.1 $v^{2 n-5}=v^{q-3}=0$, and so $\alpha_{1}(q \xi) \equiv 0$, which gives an embedding of M^{n} in $R^{2 n-2}$, by Theorem (1.7).

Proof of Proposition 4.2. Note that by (2.8), $B^{2 n-1}=0$, and hence by (2.9), $H^{2 n-1}\left(M^{*}\right)=\rho I^{2 n-1}$.

Let $\hat{\xi}$ denote the line bundle over ΓM with $w_{1} \hat{\xi}=u$, and let $\hat{\theta}_{2}=\theta_{2}(q \hat{\xi})$. Then,

$$
\rho \hat{\theta}_{2}=\theta_{2} \rho, \hat{\theta}_{2}\left(I^{*}\right)=\operatorname{Sq}^{2}\left(I^{*}\right) .
$$

To prove (4.2), let $y \in H^{2 n-1}\left(M^{*}\right)$ and let $z \in I^{2 n-1}$ with $\rho(z)=y$. Then, $q^{*} z=\sigma(\mu \otimes b)$, for some $b \in H^{n-1}(M)$. By hypothesis, there is a class $\hat{a} \in H^{n-2}(M ; Z)$ with $\mathrm{Sq}^{2} \hat{a}=\mu$. Also, since M is orientable, $b=\hat{b} \bmod 2$ for some $\hat{b} \in H^{n-1}(M ; Z)$. By analyzing $H^{*}(\Gamma M ; Z)$ (e.g. [2]), one sees that there is a class $\hat{x} \in H^{2 n-3}(\Gamma M ; Z)$ such that $q^{*}(\hat{x})=\hat{a} \otimes \hat{b}+\hat{b} \otimes \hat{a} \in H^{2 n-3}\left(M^{2} ; Z\right)$, and $\hat{x} \bmod 2 \in I^{2 n-3}$. Thus,

$$
q^{*}\left(\mathrm{Sq}^{2} \hat{x}\right)=\mathrm{Sq}^{2}(\hat{a} \otimes \hat{b}+\hat{b} \otimes \hat{a})=\sigma(\mu \otimes b)=q^{*}(z)
$$

Since $z, \mathrm{Sq}^{2} \hat{x} \in I^{*}$ this means that $z=\mathrm{Sq}^{2} \hat{x}$ and so

$$
y=\rho(z)=\rho \mathrm{Sq}^{2} \hat{x}=\rho \hat{\theta}_{2} \hat{x}=\theta_{2} \rho(\hat{x})
$$

as desired.
Proof of Proposition 4.3. Let $\theta_{2}=\theta_{2}(2 n-2) \xi, \hat{\theta}_{2}=\theta_{2}(2 n-2) \xi$, as above. Let $x \in H^{2 n-3}\left(M^{*}\right)$. Then (see (2.9)), one may choose $b \in H^{2 n-3}(\Gamma M)$ so that $\rho(b)=x$ and

$$
k^{*}(b)=u^{n-1} \otimes h+u^{n-2} \otimes \mathrm{Sq}^{1} h
$$

for some $h \in H^{n-2}(M)$. Since M is spin, $\mathrm{Sq}^{2} h=0$ and $q^{*} \hat{\theta}_{2}(b)=0$. Moreover,

$$
k^{*} \hat{\theta}_{2}(b)=\hat{\theta}_{2} k^{*}(b)=\binom{n}{2} u^{n+1} \otimes h+\binom{n-2}{2} u^{n} \otimes \mathrm{Sq}^{1} h .
$$

Note that

$$
u^{n+1} \otimes h=\varphi_{2}(u \otimes h)=k^{*} \varphi(u \otimes h)
$$

and $q^{*}(u \otimes h)=0 . \quad$ Set

$$
\beta=\hat{\theta}_{2}(b)-\varphi\left(\binom{n}{2}(u \otimes h)\right) .
$$

Then,
(*) $\quad \rho(\beta)=\theta_{2}(x), q^{*}(\beta)=0, k^{*}(\beta)=\binom{n-2}{2} u^{n} \otimes \mathrm{Sq}^{1} h$.
Case $I, n \neq 0 \bmod 4$. If $n \equiv 2,3 \bmod 4$, then $\binom{n-2}{2}=0 \bmod 2$ and so $\beta=0$, which means that $\theta_{2}(x)=0$. If $n \equiv 1 \bmod 4$, then $u^{n} \otimes \mathrm{Sq}^{1} h=\hat{\theta}_{2} \mathrm{Sq}^{1}\left(u^{n-2} \otimes h\right)$, and $k^{*} \mathrm{Sq}^{1}\left(1 \otimes(h)^{2}\right)=\mathrm{Sq}^{1}\left(u^{n-2} \otimes h\right)$. Set

$$
\beta^{\prime}=\beta-\hat{\theta}_{2} \delta_{2}\left(1 \otimes(h)^{2}\right)
$$

Then, $q^{*} \beta^{\prime}=q^{*} \beta=0, k^{*} \beta^{\prime}=0$, so $\beta^{\prime}=0$. Thus,

$$
\theta_{2}(x)=\rho(\beta)=\theta \delta_{2} \rho\left(1 \otimes(h)^{2}\right) \in \theta_{2} H^{2 n-3}\left(M^{*} ; Z\right) ;
$$

this completes the proof in this case.
Case II, $H_{1}(M ; Z)$ has no 2-torsion. By Poincare duality, $H^{n-1}(M ; Z)$ has no 2-torsion and so $\mathrm{Sq}^{1} H^{n-2}(M)=0$. Thus, in equation (${ }^{*}$), $\mathrm{Sq}^{1} h=0$ and so $\beta=0$. This means that $\theta_{2}(x)=0$, which completes the proof.

One can deduce other embedding results from (4.2), such as:
Theorem 4.4. Let M be an n-dimensional, non-orientable manifold, such that $\bar{w}_{n-3+i}=0, i \geqslant 0$. If $S q^{2} H^{n-3}(M)=H^{n-1}(M)$ and if $w_{3}=w_{1}^{3}$, then M embeds in $R^{2 n-2}$.

Note that this gives as a special case the result of Handel [10]: if $n=4 k+2$, $k \geqslant 2$ then $R P^{n}$ embeds in $\left.R^{2 n-2} . *\right)$

5. Embedding real projective space

Before proving Theorem (1.3) we develop some preliminary material. For convenience we write P^{n} for $R P^{n}, n \geqslant 1$. In order to use Theorem (1.7), we need some rather detailed information about $H^{*}\left(P^{n *}\right)$. We obtain this mainly by studying Λ^{*} and I^{*}-see (2.4) and (2.8).

We begin with some notation. In $H^{*}\left(P^{\infty} \times P^{n}\right)$, we set

$$
\begin{equation*}
[d, e]=\sum_{i=0}^{e} u^{d-i} \otimes \mathrm{Sq}^{i} x^{e} \tag{5.1}
\end{equation*}
$$

where d, e are positive integers and x generates $H^{1}\left(P^{n}\right)$. By an abuse of notation, we use the same symbol to denote the image of $[d, e]$ by ρ_{2} : thus, in $H^{*}\left(P\left(P^{n}\right)\right)$,

$$
[d, e]=\sum_{i=0}^{e} v^{d-i} \cdot \mathrm{Sq}^{i} x^{e} .
$$

Note that by (2.5) (iv),

$$
\begin{equation*}
k^{*}\left(u^{d} \otimes\left(x^{e}\right)^{2}\right)=[d+e, e] . \tag{5.2}
\end{equation*}
$$

Also, from (2.8), (2.9) we have
(5.3) In $H^{*}\left(P\left(P^{n}\right)\right), \Lambda^{*}$ is spanned by the classes [d, e], where $e \leqslant d<n$.

In §8 we prove:
Proposition 5.4. In $H^{*}\left(P^{\infty} \times P^{n}\right)$ and $H^{*}\left(P\left(P^{n}\right)\right)$,

$$
\begin{aligned}
& \mathrm{Sq}^{1}[d, e]=d[d+1, e] \\
& \mathrm{Sq}^{2}[d, e]=\binom{d}{2}[d+2, e]+e[d+1, e+1]
\end{aligned}
$$

[^1]Similarly, in $I^{*} \subset H^{*}(\Gamma M)$, we write $\sigma(d, e)$ for $\sigma\left(x^{d} \otimes x^{e}\right)$. By the Cartan formula we have:

Proposition 5.5. $\quad \mathrm{Sq}^{1} \sigma(d, e)=d \sigma(d+1, e)+e \sigma(d, e+1)$,

$$
\mathrm{Sq}^{2} \sigma(d, e)=\binom{d}{2} \sigma(d+2, e)+\operatorname{de\sigma }(d+1, e+1)+\binom{e}{2} \sigma(d, e+2)
$$

Combining (5.4) and (5.5) we prove in $\S 8:$

Proposition 5.6.

$$
\mathrm{Sq}^{2} H^{4 k-1}\left(P^{n *}\right)=\mathrm{Sq}^{2} \mathrm{Sq}^{1} H^{4 k^{-2}}\left(P^{n *}\right)
$$

At one point we will need to know something about the integral cohomology of $P\left(P^{n}\right)$. The following result (proved in §8) suffices.

Proposition 5.7. If n is even and $k \equiv 1 \bmod 4$, then

$$
H^{k}\left(P^{n *} ; Z\right)=\delta_{2} H^{k-1}\left(P^{n *}\right)
$$

We now can give the proof of Theorem 1.3. We do this by a series of lemmas that fit together to prove all parts of the Theorem.

Lemma 5.8. Let q be a power of two, $q \geqslant 8$. Then,

$$
\alpha_{1}(q+4) \xi \equiv 0 \quad \text { in } \quad H^{q+5}\left(M^{*}\right), M=P^{q-1} .
$$

Proof. Since q is a power of two, $\bar{w}_{i}\left(P^{q-1}\right)=0, i>0$, and so by $4.1, v^{q}=0$ in $H^{q}\left(M^{*}\right), M=P^{q-1}$. Thus by (3.5) $\chi(q+4) \xi=0$, and so $\alpha_{1}(q+4) \xi$ is defined. But by (3.7) and (5.6),

$$
\alpha_{1}(q+4) \xi \equiv \Phi_{3}\left(\delta_{2} v^{q+1}, 0\right) \equiv 0,
$$

since $v^{q+1}=0$. This completes the proof.
Now let s be an integer that is not a power of two, as in (1.3), and set $k=s-1$, so that

$$
8 s+t=8 k+8+t, \quad 0 \leqslant t \leqslant 7
$$

Let q be the largest power of two such that $q / 2<8 s$. Then, $q+4 \leqslant 16 k+4$, and so using the embedding $P^{8_{k+1}} \subset P^{q-1}$, together with (3.8), we have:

Corollary 5.9.

$$
\alpha_{2}(16 k+4) \xi \equiv 0 \quad \text { in } \quad H^{16 k+5}\left(M^{*}\right), M=P^{8_{k+1}} .
$$

Recall the map $j: P(M) \rightarrow M^{*}$, given in diagram (2.1).
Lemma 5.10. Taking $M=P^{8 k+15}$, we have : There is a class a_{3} such that
$\left(0, a_{3}\right) \in\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi$ and $j^{*} a_{3}=r[8 k+10,8 k+1]$, in $H^{16 k+11}(P(M)), r \in Z_{2}$.
Proof. By (5.9), $\alpha_{1}(16 k+8) \xi \equiv 0$; let $a_{3} \in H^{16 k+11}\left(M^{*}\right)$ be such that $\left(0, a_{3}\right) \in$ $\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi$. To prove (5.10) we show that a_{3} can be chosen so that $j^{*} a_{3}=r[8 k+10,8 k+1], r \in Z_{2}$.

Note that $w_{i}(16 k+8) \xi=0,1 \leqslant i \leqslant 7$, and so by (3.2), and (3.3),

$$
\mathrm{Sq}^{1} a_{3}=0, \quad \mathrm{Sq}^{4} a_{3}=0 .
$$

Using (5.3) and (5.4), we have (since $\mathrm{Sq}^{1} j^{*} a_{3}=0$), $j^{*} a_{3}=\sum_{i=0}^{4} c_{i}[8 k+6+2 i$, $8 k+5-2 i]$, where $c_{i} \in Z_{2}$. Now $\mathrm{Sq}^{4}\left(j^{*} a_{3}\right)=0$, and so the proof of (5.10) is complete when we show:
A) $\mathrm{Sq}^{4}[8 k+10,8 k+1]=0$
B) Sq^{4} is injective on the subspace spanned by $[8 k+14,8 k-3]$, $[8 k+12,8 k-1],[8 k+8,8 k+3],[8 k+6,8 k+5]$.

We will use one more piece of notation: we set $(i, j)=v^{i} \cdot x^{j}$ in $H^{i+j}\left(P\left(P^{n}\right)\right)$. Thus,

$$
\begin{aligned}
{[8 k+10,8 k+1]=} & (8 k+10,8 k+1)+(8 k+9,8 k+2)+ \\
& k(8 k+2,8 k+9)+k(8 k+1,8 k+10),
\end{aligned}
$$

and so $\mathrm{Sq}^{4}[8 k+10,8 k+1]=0$, as claimed.
To prove (B), note that

$$
\begin{aligned}
& \mathrm{Sq}^{4}[8 k+14,8 k-3]=[8 k+14,8 k+1]+\cdots \\
& \mathrm{Sq}^{4}[8 k+12,8 k-1]=[8 k+12,8 k+3]+\cdots \\
& \mathrm{Sq}^{4}[8 k+8,8 k+3]=[8 k+11,8 k+4]+\cdots \\
& \mathrm{Sq}^{4}[8 k+6,8 k+5]=[8 k+10,8 k+5]+\cdots
\end{aligned}
$$

where in each case the terms omitted have a left-hand coordinate smaller than that of the term shown. Thus Sq^{4} is injective as claimed, which completes the proof of (5.10).

Remark. In doing calculations such as above, we continually use the fact that, by (2.6),

$$
\begin{equation*}
(\mathrm{n}, 0)=\sum_{i=1}^{n}\binom{n+1}{i}(n-i, i), \quad \text { in } \quad P\left(P^{n}\right) \tag{5.11}
\end{equation*}
$$

Also, note that $(\mathrm{i}, 0) \cdot[d, e]=[d+i, e]$.
Lemma (5.10) will suffice to calculate the obstructions (α_{1}, α_{3}) in all the cases of Theorem (1.3).

We now jump ahead to compute the obstruction $\boldsymbol{\gamma}_{3}$.

Lemma 5.12. For $n \geqslant 15$, if $\gamma_{3}(2 n-6) \xi$ is defined on $P^{n *}$, then $\gamma_{3}(2 n-6) \xi \equiv 0$.

This follows at once from (3.1), using the following fact, which we prove in §8.

$$
\begin{equation*}
H^{2 n-3}\left(P^{n *}\right)=\theta_{2} H^{2 n-5}\left(P^{n *}\right)+\mathrm{Sq}^{1} H^{2 n-4}\left(P^{n *}\right), \quad \text { where } \quad \theta_{2}=\theta_{2}(2 n-6) \xi . \tag{5.13}
\end{equation*}
$$

We now come to the proof of Theorem (1.3): we divide the proof into three cases. As before, set $n=8 s+t=8 k+8+t, 0 \leqslant t \leqslant 7$, s not a power of two.

Case I. $n \equiv 3,4,5 \bmod 8$.
Let $q=8 k+15$, we do all our calculation on $P^{q^{*}}$.
(5.14) On $P^{q *},\left(\alpha_{1}, \alpha_{3}\right)(16 k+16) \xi \equiv 0$.

By (5.10) and the Whitney formula, (3.8), there is a class $a_{3} \in H^{16 k+17}\left(P^{q^{*}}\right)$ such that $\left(0, a_{3}\right) \in\left(\alpha_{1}, \alpha_{3}\right)(16 k+14) \xi$ and $j^{*}\left(0, a_{3}\right)=(0, r[8 k+16,8 k+1])$. But by (5.11),

$$
\begin{aligned}
& {[8 k+16,8 k+1]=(8 k+16,8 k+1)+(8 k+15,8 k+2)+} \\
& k(8 k+8,8 k+9)+k(8 k+7,8 k+10)=0,
\end{aligned}
$$

and so $j^{*} a_{3}=0$. Thus, by (3.8) and (2.10), $\left(\alpha_{1}, \alpha_{3}\right)(16 k+16) \xi \equiv 0$, as desired.
We now show

$$
\begin{equation*}
\left(\beta_{2}, \beta_{3}\right)(16 k+16) \xi \equiv 0, \quad \text { on } \quad P^{q^{*}}, q=8 k+15 . \tag{5.15}
\end{equation*}
$$

Note first that
(C) On $P\left(P^{q}\right), q=8 k+15$,

$$
\Lambda^{16 \boldsymbol{k}+19}=\mathrm{Sq}^{1} \Lambda^{16 \boldsymbol{k}+18}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} \Lambda^{16 \boldsymbol{k}+16}
$$

This is a simple calculation using (5.4) and (5.3)-e.g., $[8 k+14,8 k+5]=$ $\mathrm{Sq}^{1}[8 k+13,8 k+5],[8 k+13,8 k+6]=\mathrm{Sq}^{2} \mathrm{Sq}^{1}[8 k+11,8 k+5]$. Thus, by (3.1), $j^{*} \beta_{3}(16 k+16) \xi \equiv 0$, on $P\left(P^{q}\right)$. Choose classes $\left(b_{2}, b_{3}\right) \in\left(\beta_{2}, \beta_{3}\right)(16 k+16) \xi$ such that $j^{*} b_{3}=0$. Since $\theta_{2}(16 k+16) \xi=\mathrm{Sq}^{2}$, we have by (3.2), $j^{*} \mathrm{Sq}^{2} b_{2}=0$. By (5.3), $j^{*} b_{2}=\sum_{i=0}^{5} c_{i}[8 k+9+i, 8 k+9-i], c_{i} \in Z_{2}$. Using (5.4), one finds that Kernel Sq^{2} on $\Lambda^{16 k+18}$ is generated by [$\left.8 k+12,8 k+6\right]$. Since,

$$
\begin{aligned}
& \mathrm{Sq}^{2}[8 k+10,8 k+6]=[8 k+12,8 k+6] \\
& \mathrm{Sq}^{2} \mathrm{Sq}^{1}[8 k+10,8 k+6]=0,
\end{aligned}
$$

this means that one can alter b_{2} to a class $b_{2}{ }^{\prime}$ (without changing b_{3}), so that $\left(b_{2}{ }^{\prime}, b_{3}\right) \in\left(\beta_{2}, \beta_{3}\right)(16 k+16) \xi$ and $j^{*} b_{2}{ }^{\prime}=j^{*} b_{3}=0$. Hence, by (2.9) there are classes $\left(c_{2}, c_{3}\right) \in I^{*}$ with $\rho\left(c_{2}\right)=b_{2}{ }^{\prime}, \rho\left(c_{3}\right)=b_{3}$. Using (5.5) one easily shows:

$$
\begin{equation*}
\text { On } \Gamma P^{q}, I^{16 k+19}=\mathrm{Sq}^{1} I^{16 k+18}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} I^{16 k+16} \tag{5.16}
\end{equation*}
$$

This shows that $\rho\left(c_{3}\right) \in \operatorname{Indet} \beta_{3}$, and so we may choose c_{3} to be zero-i.e., $\rho\left(c_{2}, 0\right) \in\left(\beta_{2}, \beta_{3}\right)(16 k+16) \xi$. By (3.2), $\rho\left(\mathrm{Sq}^{2} c_{2}\right)=0$, and so by $(2.9), \mathrm{Sq}^{2} c_{2}=0$. Using (5.5) one finds that on $I^{16 k+18}$, Kernel Sq^{2} is generated by $\sigma(8 k+14,8 k+4)$ and $\sigma(8 k+12,8 k+6)+\sigma(8 k+10,8 k+8)$. Since $\mathrm{Sq}^{2} \sigma(8 k+14,8 k+2)=$ $\sigma(8 k+14, \quad 8 k+4)$ and $\mathrm{Sq}^{2} \sigma(8 k+10, \quad 8 k+6)=\sigma(8 k+12, \quad 8 k+6)+\sigma(8 k+10$, $8 k+8)$, we see that $\left(b_{2}, b_{3}\right) \in \operatorname{Indet}\left(\beta_{2}, \beta_{3}\right)$, and so $\left(\beta_{2}, \beta_{3}\right)(16 k+16) \xi \equiv 0$, as claimed.

Combining (5.14), (5.15) and (5.12), we see (cf. §2) that on ($\left.P^{8 k+11}\right)^{*}$ the sphere bundle associated to $(16 k+16) \xi$ has a section and hence, by (1.7), $P^{8 k+11}$ embeds in $R^{1 k_{k+16}}$. Similarly, using (3.8), we see that $P^{8 k+12}$ embeds in $R^{6 k+18}$ and $P^{8 k+13}$ in $R^{16 k+20}$, thus proving Theorem (1.3) in Case I.

Case II. $n \equiv 0 \bmod 8$.
We first prove:

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi \equiv 0, \quad \text { on } \quad P^{8 k+8 *} \tag{5.17}
\end{equation*}
$$

By (5.10) there is a class a_{3} such that $\left(0, a_{3}\right) \in\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi$ (on $P^{8 k+8^{*}}$) and $j^{*} a_{3}=r[8 k+10,8 k+1], r \in Z_{2}$. But by (5.11),

$$
[8 k+10,8 k+1]=(8 k+10,8 k+1)+(8 k+9,8 k+2)=0
$$

which shows that $j^{*} a_{3}=0$.
We now use the fact [15], [25] that $P^{8_{k+7}}$ embeds in $R^{16 k+8}$; thus, if $i: P^{8_{k+7}} \rightarrow$ $P^{8 k^{+8 *}}$ is induced by the inclusion $P^{8_{k+7}} \subset P^{8_{k+8}}$, we have (by (1.7)), $i^{*}\left(\alpha_{1}, \alpha_{3}\right)$ $(16 k+8) \xi \equiv 0$ and hence, by (3.1), there is a class $y \in H^{16 k+7}\left(P^{8 k+7 *} ; Z\right)$ such that

$$
\left(0, i^{*} a_{3}\right) \in\left(\mathrm{Sq}^{2}, \mathrm{Sq}^{4}\right)(y)
$$

Let z be a $(\bmod 2)$ class in $B^{*} \oplus I^{*}$ such that $\rho(z)=y \bmod 2$, and let

$$
z=b+e, b \in B^{*}, e \in I^{*}
$$

We have

$$
b=s\left(u^{5} \otimes\left(x^{8 k+1}\right)^{2}\right)+t\left(u^{3} \otimes\left(x^{8 k+2}\right)^{2}\right)+q\left(u \otimes\left(x^{8 k+3}\right)^{2}\right)
$$

and so $k^{*}(b)=\sum_{i=1}^{6} r_{i}(8 k+7-i, 8 k+i), r_{i} \in Z_{2}$. Consequently,

$$
\begin{aligned}
k^{*}\left(\mathrm{Sq}^{4} b\right)= & s_{1}(8 k+10,8 k+1)+s_{2}(8 k+9,8 k+2)+ \\
& s_{3}(8 k+8,8 k+3), s_{i} \in Z_{2} \\
= & k^{*} \varphi\left(s_{1}\left(u^{3} \otimes x^{8 k+1}\right)+s_{2}\left(u^{2} \otimes x^{8 k+2}\right)+s_{3}\left(u \otimes x^{8 k+3}\right)\right) .
\end{aligned}
$$

Thus, by (2.5) (ii) and (iv),
$\mathrm{Sq}^{4} b=0, \bmod$ Image φ.
Since $I^{*}=$ kernel k^{*}, we have $\mathrm{Sq}^{4} I^{*} \subset I^{*}$. A simple calculation shows that $\mathrm{Sq}^{4} I^{16_{k+7}}=0$, in $H^{*}\left(\Gamma P^{8_{k+7}}\right)$. Consequently, $\mathrm{Sq}^{4} z=0$, mod image, φ and so

$$
i^{*} a_{3}=\mathrm{Sq}^{4} y=\rho\left(\mathrm{Sq}^{4} z\right)=0
$$

Recall that back on $P^{8 k+8^{*}}, j^{*} a_{3}=0$. Hence there is a class $d \in I^{16 k+7}$ (on $\Gamma P^{8 k+8}$), with $\rho(d)=a_{3}$; since $i^{*} d$ also is in I^{*}, and since $\rho\left(i^{*} d\right)=i^{*} a_{3}=0$, it follows that $i^{*} d=0$. Thus, $d=r \sigma(8 k+8,8 k+3), r \in Z_{2} . \quad$ But by (3.2), since $\alpha_{1} \equiv 0$,

$$
\rho\left(\mathrm{Sq}^{1} d\right)=\mathrm{Sq}^{1} a_{3}=0
$$

and hence, $\mathrm{Sq}^{1} d=0$. Since $\mathrm{Sq}^{1} \sigma(8 k+8,8 k+3)=\sigma(8 k+8,8 k+4) \neq 0$, this shows that $r=0$, and so $a_{3}=0$, completing the proof of (5.17).

By (5.17), $\left(\beta_{2}, \beta_{3}\right)(16 k+8) \xi$ is defined, on $P^{8 k^{+8 *}}$. We now show:

$$
\begin{equation*}
j^{*}\left(\beta_{2}, \beta_{3}\right)(16 k+8) \xi \equiv 0 . \tag{5.18}
\end{equation*}
$$

This follows easily from (3.1), (3.2) and (5.3). We leave the details to the reader.

Finally, by (2.10) and (3.8), (5.18) implies that $\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi \equiv 0$, and so, by (5.12) and (1.7), $P^{8_{k+8}}$ embeds in $R^{16_{k+1}}$, as desired. This completes the proof for Case II.

Case III. $\quad n \equiv 1,2 \bmod 8, \alpha(n) \geqslant 4$.
We do all the argument on $P^{8 k+10}$; set $m=8 k+10$. The firstr result is:

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{3}\right)(16 k+10) \xi \equiv 0, \text { on } P^{m *} \tag{5.19}
\end{equation*}
$$

As before, by (5.10), there is a class a_{3} such that $\left(0, a_{3}\right) \in\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi$ (on $P^{m *}$) and $j^{*} a_{3}=r[8 k+10,8 k+1]$ in $H^{16 k+11}\left(P\left(P^{m}\right)\right.$), $r \in Z_{2}$. Thus by (3.8), $j^{*}\left(\alpha_{1}, \alpha_{3}\right)(16 k+10) \xi \equiv(0, r[8 k+12,8 k+1]) . \quad$ Let $\quad l: P^{m-1^{*}} \rightarrow P^{m *}, \hat{l}: P\left(P^{m-1}\right) \rightarrow$ $P\left(P^{m}\right)$ denote the maps induced by the inclusion $P^{m-1} \subset P^{m}$. We now use the fact that $P^{8 k^{+9}}$ immerses in $R^{16 k+10}$, see [23]. (It is at this point that we require $\alpha(n) \geqslant 4$.) Thus the bundle $\hat{l}^{*} i^{*}(16 k+10) \xi$ has a (nowhere zero) section on $P\left(P^{m-1}\right)$, by Haefliger-Hirsch [8]. Consequently, by (3.1),

$$
\begin{equation*}
(0, r[8 k+12,8 k+1]) \in\left(\theta_{2}, \mathrm{Sq}^{4}\right) H^{1 k^{++9}}\left(P\left(P^{8_{k+9}}\right) ; Z\right) \tag{}
\end{equation*}
$$

Using (5.11) one sees that $[8 k+12,8 k+1]=[8 k+8,8 k+5]$ on $P\left(P^{8 k+9}\right)$. Moreover, by (5.4), θ_{2} is an injection on Kernel $\mathrm{Sq}^{1} \cap H^{16 k+9}\left(P\left(P^{8 k+9}\right)\right), \theta_{2}=\theta_{2}(16 k+$ 10) ξ. Since $[8 k+12,8 k+1] \neq 0$, it follows from (${ }^{*}$) that $r=0$. Thus, $j^{*} a_{3}=0$ and so $j^{*}\left(\alpha_{1}, \alpha_{3}\right)(16 k+8) \xi \equiv 0$; consequently, by (3.8) and (2.10), $\left(\alpha_{1}, \alpha_{3}\right)(16 k+$ $10) \xi \equiv 0$, on $P^{m *}$, which proves (5.19).

The obstruction $\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi$ is consequently defined, and we now show:

$$
\begin{equation*}
j^{*}\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi \equiv 0, \quad \text { on } \quad P^{m *}, m=8 k+10 . \tag{5.20}
\end{equation*}
$$

The first step is to show:
A) We may choose classes $\left(b_{2}, b_{3}\right) \in\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi$ so that

$$
j^{*}\left(b_{2}, b_{3}\right)=(r[8 k+6,8 k+6], 0), r \in Z_{2} .
$$

Note that

$$
\begin{aligned}
j^{*} b_{2}= & r[8 k+6,8 k+6]+s[8 k+7,8 k+5]+ \\
& t[8 k+8,8 k+4]+q[8 k+9,8 k+3] \\
j^{*} b_{3}= & c[8 k+7,8 k+6]+d[8 k+8,8 k+5]+e[8 k+9,8 k+4],
\end{aligned}
$$

where the coefficients all lie in Z_{2}. Since

$$
\begin{aligned}
& \mathrm{Sq}^{1}[8 k+7,8 k+5]=[8 k+8,8 k+5], \\
& \mathrm{Sq}^{2} \mathrm{Sq}^{1}[8 k+7,8 k+3]=[8 k+9,8 k+4], \quad \text { and } \\
& \mathrm{Sq}^{2} \mathrm{Sq}^{1}[8 k+5,8 k+5]=[8 k+8,8 k+5]+[8 k+7,8 k+6],
\end{aligned}
$$

we see that b_{3} can be chosen so that $j^{*} b_{3}=0$. Thus, by (3.2), $j^{*}\left(\theta_{2} b_{2}\right)=0$, where $\theta_{2}=\theta_{2}(16 k+10) \xi$. Using (5.4) and (5.11) one finds that this implies: $s=0, t=q$. But $\theta_{2}[8 k+8,8 k+2]=[8 k+9,8 k+3]+[8 k+8,8 k+4]+[8 k+6$, $8 k+6]$. Hence, b_{2} can be altered (without changing b_{3}) so that $j^{*} b_{2}=r[8 k+6$, $8 k+6]$, as claimed.

To complete the proof of (5.20), we use the map $i: P^{m-2^{*}} \rightarrow P^{m *}$. In Case II we proved that $i^{*}\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi \equiv 0$ on $P^{m-2^{*}}$, and so $i^{*}\left(b_{2}, b_{3}\right) \in \Psi_{\omega} H^{16 k^{+9}}$ ($P^{m-2^{*}} ; Z$), (see discussion following (3.1)), where $\omega=(16 k+10) \xi$. Now by (5.7), a class in $H^{16 k^{+9}}\left(P^{m-2^{*}} ; Z\right)$ is determined by its mod 2 reduction. Suppose then that y is in domain Ψ_{ω}, and let $\bar{y}=y \bmod 2$. Then (see $\S 3$), $\mathrm{Sq}^{1} \bar{y}=0$, $\theta_{2} \bar{y}=0, \mathrm{Sq}^{4} \bar{y}=0$. But a calculation shows that

$$
H^{16 k+9}\left(P^{m-2^{*}}\right) \cap \text { Kernel } \mathrm{Sq}^{1} \cap \operatorname{Ker} \theta_{2} \cap \operatorname{Ker~} \mathrm{Sq}^{4}=0
$$

and so $\bar{y} \bmod 2=0$. Thus, $y=0$, and so by $\S 3$,

$$
i^{*}\left(b_{2}, b_{3}\right) \in \operatorname{indet} \Psi_{\omega}=\left(\theta_{2}, \mathrm{Sq}^{1} \mathrm{Sq}^{1}\right) H^{16 k+10}\left(P^{m-2^{*}}\right)+\mathrm{Sq}^{1} H^{6 k+12}\left(P^{m-2^{*}}\right)
$$

Also, by what we have already proved, $j^{*} i^{*}\left(b_{2}, b_{3}\right)=(r[8 k+6,8 k+6], 0)$, in $P\left(P^{m-2}\right)$. Thus, there is a class $y \in H^{16 k+10}\left(P^{m-2^{*}}\right)$ with $\theta_{2}\left(j^{*} y\right)=r[8 k+6$, $8 k+6]$. A simple calculation using (5.4) shows that this is possible only if $j^{*} y=0$ and $r=0$. Hence, back on $P^{m *}, j^{*}\left(\beta_{2}, \beta_{3}\right)(16 k+10) \xi \equiv 0$, as claimed.

Therefore, by (3.8) and (5.11), $\left(\beta_{2}, \beta_{3}\right)(16 k+12) \xi \equiv 0$ on $P^{m *}$, and hence on $P^{m-1^{*}}$. Thus by (5.12) and (1.7), P^{n} embeds in $R^{2 n-6}$, for $n=8 k+9$ and $8 k+10$, completing the proof of Theorem (1.3).

6. Embedding complex projective space

Our goal is to show that if $n=4 s+3, s$ not a power of two, then $C P^{n}$ embeds in $R^{4 n-6}$. We do this by showing that the sphere bundle over $C P^{n *}$, associated to $(4 n-6) \xi$, has a section. Since the methods here are very similar to those used in $\S 5$, we only sketch the proof.

We use the following notation: $y \in H^{2}\left(C P^{n}\right)$ denotes the generator, and in $H^{*}\left(P\left(C P^{n}\right)\right)$ we set

$$
[d, 2 j]=\sum_{i=0}^{j} v^{d-2 i} \cdot \mathrm{Sq}^{2 i}\left(y^{j}\right) .
$$

As before, $\Lambda^{*} \subset H^{*}\left(P\left(C P^{n}\right)\right)$ denotes $j^{*} H^{*}\left(C P^{n *}\right)$, and as in (5.3) we have:

$$
\begin{equation*}
\text { The classes }[d, 2 i] \text { generate } \Lambda^{*} \text {, where } 2 i \leqslant d \leqslant 2 n-1 \text {. } \tag{6.1}
\end{equation*}
$$

Finally, we set $s=k+1$, so that $n=4 k+7$. The first step in the proof of (1.5) is to show:
(6.2) the obstruction $\left(\alpha_{1}, \alpha_{3}\right)(16 k+12) \xi$ is defined and there are classes $\left(a_{1}, a_{3}\right) \in\left(\alpha_{1}, \alpha_{3}\right)(16 k+12) \xi$ such that

$$
\begin{aligned}
& j^{*} a_{1}=r[8 k+13,8 k]+s[8 k+9,8 k+4] \\
& j^{*} a_{3}=s[8 k+11,8 k+4], r, s \in Z .
\end{aligned}
$$

This is proved using (3.1) and (3.2). Now $w_{4}(16 k+12) \xi \neq 0$, while $w_{i}(16 k+12) \xi=0$, for $1 \leqslant i \leqslant 7, i \neq 4$. Thus, one has a relation analogous to (3.3):

$$
\mathrm{Sq}^{6} a_{1}+\theta_{4} a_{3}=0 .
$$

Using this on (6.2) one finds that $s=0$ (in (6.2)). But by a formula analogus to (5.11), $[8 k+15,8 k]=0$, and hence $j^{*}\left(\alpha_{1}, \alpha_{3}\right)(16 k+14) \xi \equiv 0$, using (3.8). Therefore, by (2.10) and (3.8), $\left(\alpha_{1}, \alpha_{3}\right)(16 k+16) \xi \equiv 0$.

The next step is to show:

$$
\begin{equation*}
\left(\beta_{2}, \beta_{3}\right)(16 k+22) \xi \equiv 0 \tag{6.3}
\end{equation*}
$$

Starting with classes $\left(b_{2}, b_{3}\right) \in\left(\beta_{2}, \beta_{3}\right)(16 k+18) \xi$, one finds that by using the indeterminancy of β_{2} (i.e., θ_{2}), b_{2} can be chosen so that $j^{*} b_{2}=r[8 k+12,8 k+8]$. And by (3.2), one has $j^{*} b_{3}=s[8 k+13,8 k+8]$. But

$$
[8 k+14,8 k+8]=[8 k+15,8 k+8]=0
$$

and so $j^{*}\left(\beta_{2}, \beta_{3}\right)(16 k+20) \xi \equiv 0$. Consequently, by (2.10) and $(3.8),\left(\beta_{2}, \beta_{3}\right)$
$(16 k+22) \xi \equiv 0$, as desired.
By an indeterminancy argument (use θ_{2}) one shows that $j^{*} \gamma_{3}(16 k+22) \xi \equiv 0$. But $I^{16 k+25}=0$, and so by $2.9, \gamma_{3}(16 k+22) \xi \equiv 0$, which means by (1.7) that $C P^{n}$ embeds in $R^{2 n-6}$.

7. The cohomology of M^{*}

This section contains the proofs that were omitted in sections 2 and 4. We begin with the proof of Proposition (2.9.)
(a) Kernel $j^{*}=\rho\left(I^{*}\right)$.

This follows at once from the exactness of (2.1), given that kernel $k^{*}=I^{*}$ (see (2.5)).
(b) $\rho \mid I^{*}$ is injective.

Set $D^{*}=H^{*}\left(P^{\infty}\right) \otimes \bar{K}^{*}$, see (2.4). Note that $D^{*} \cap I^{*}=0$ and that $\varphi\left(u^{i} \otimes x\right) \in$ D^{*}, if $i>0$ and $x \in H^{*}(M)$. Suppose that $e \in I^{*}$ with $\rho(e)=0$. Then, by (2.1) and the above remarks, $e=\varphi(1 \otimes y)$, for some $y \in H^{*}(M) . \quad$ By (2.5) and (2.1), since $e \in I^{*}$,

$$
0=k^{*}(e)=k^{*} \varphi(1 \otimes y)=\varphi_{2}(1 \otimes y)
$$

But φ_{2} is injective, and so $y=0$, which proves $e=0$, as claimed.
(c) Image $j^{*}=\lambda\left(B^{*}\right)=\Lambda^{*}$.

Note that by (2.3), Image $\varphi_{2}=u^{n} \otimes H^{*}(M) \oplus u^{n+1} \otimes H^{*}(M) \oplus \cdots$, where $n=\operatorname{dim} M$. Thus, if we set $C=\sum_{i=0}^{n-1} u^{i} \otimes H^{*}(M)$, we have that ρ_{2} maps C isomorphically onto $H^{*}(P(M))$. Set $\tilde{C}=C \cap \rho_{2}{ }^{-1}$ (Image $\left.j^{*}\right)$. Note that $k^{*}\left(B^{*}\right) \subset C$ and hence $k^{*}\left(B^{*}\right) \subset C$, we show:

$\left({ }^{*}\right) \quad k *\left(B^{*}\right)=\widetilde{C}$,

which proves (c). Moreover, by (${ }^{*}$), λ maps B^{*} isomorphically onto Image j^{*} and hence $\rho \mid B^{*}$ is an inverse to j^{*}, which proves (d), in (2.9).

To prove $\left(^{*}\right)$ all we need show is that k^{*} maps B^{*} onto \tilde{C}. This is a consequence of the following:

Proposition 7.1. Given $y \in H^{*}(\Gamma M)$, there is a class $b \in B^{*}$ such that $\lambda(b)=\lambda(y)$.

Before proving this we develop some preliminary material. Given a class y in $H^{*}(\Gamma M)$ we associate with it a unique class in $H^{*}\left(P^{\infty}\right) \otimes \bar{K}$, called the leading term of y. Suppose that degree $y=d$, and set $s=[d / 2]$. Then we can write $y=\sum_{0}^{s} u^{d-2 i} \otimes\left(x_{i}\right)^{2}+l$, where $l \in I$ and where degree $x_{i}=i, 0 \leqslant i \leqslant s$. Let j be
the integer such that $x_{j} \neq 0$ and $x_{i}=0$ for $i<i . \quad$ We define leading term $y=u^{d-2 j} \otimes$ $\left(x_{j}\right)^{2}$. If $y=l$, we set leading term $y=0$.

We will need the following key fact.
(7.2) Let $x \in \bar{H}^{q}(M), x \neq 0$, and let j be a non-negative integer. Then, leading term $\phi\left(u^{j} \otimes x\right)=u^{n-q+j} \otimes(x)^{2}$.

Proof. Write $d=n+q+j$, and set $s=[d / 2]$. There are classes $l \in I$ and $y_{i} \in \bar{K}^{2 i}$ such that

$$
\phi\left(u^{j} \otimes x\right)=\sum_{0}^{s} u^{d-2 i} \otimes y_{i}+l .
$$

Also, by 2.3,

$$
\phi_{2}\left(u^{j} \otimes x\right)=\sum_{0}^{n} u^{n+j-i} \otimes w_{i} M \cdot x=\sum_{0}^{n} u^{d-q-i} \otimes w_{i} M \cdot x
$$

Thus the term in $\phi_{2}\left(u^{j} \otimes x\right)$ with highest power of u is $u^{d-q} \otimes x$. But $\phi_{2}=k^{*} \phi$, and so $y_{i}=0$ for $i<q$ and

$$
k^{*}\left(u^{d-2 q} \otimes y_{q}\right)=u^{d-q} \otimes x+\text { terms with lower degree in } u .
$$

Using 2.5 (iv), and recalling that $\mathrm{Sq}^{0}(x)=x$, we have $y_{q}=(x)^{2}(\bmod I)$, which implies that

$$
\text { leading term } \begin{aligned}
\phi\left(u^{j} \otimes x\right) & =u^{d-2 q} \otimes(x)^{2} \\
& =u^{n-q+j} \otimes(x)^{2}
\end{aligned}
$$

as claimed. This completes the proof of (7.2).
Proof of 7.1. Let $y \in H^{*}(\Gamma M)$. Since $\lambda(I)=0$, we may suppose that $y \in H^{*}\left(P^{\infty}\right) \otimes \bar{K}$. Let leading term $y=u^{k} \otimes(x)^{2}$, where $k \geqslant 0$ and degree $x=q$, say. If $k+q<n$, then $y \in B^{*}$ and there is nothing to prove, so suppose that $k+q \geqslant n$. Let $y_{1}=\phi\left(u^{k+q-n} \otimes x\right)$. Then, by (2.1)

$$
\lambda(y)=\lambda\left(y-y_{1}\right) .
$$

But by (7.2), y and y_{1} have the same leading term, and so

$$
\text { leading term }\left(y-y_{1}\right)=u^{k_{1}} \otimes\left(x^{(1)}\right)^{2},
$$

where $k_{1} \leqslant k-2$ and $k_{1}+2 \operatorname{deg} x^{(1)}=\operatorname{deg} y$. Thus,

$$
k_{1}+\operatorname{deg} x^{(1)}<k+\operatorname{deg} x .
$$

Continuing in this way we obtain classes $y_{1}, y_{2}, \cdots, y_{r}$, say, such that

$$
\lambda(y)=\lambda\left(y-\left(y_{1}+\cdots+y_{r}\right)\right), \quad \text { and } \quad y-\left(y_{1}+\cdots+y_{r}\right) \in B^{*}
$$

thus completing the proof of (7.1) and hence of (2.9).

8. The cohomology of $P^{n *}$

This section contains the proofs that were omitted in §5. We begin with the following useful fact.

Lemma 8.1. Let $d \in H^{q}\left(\Gamma P^{n}\right), q>0$, and let $k^{*}(d)=\sum_{i=0}^{i} a_{i}\left(u^{q-i} \otimes x^{i}\right)$, where $a_{i} \in Z_{2}$. If $a_{i}=0$ for $2 i \leqslant q$, then $k^{*}(d)=0$.

This is an immediate consequence of (5.2). Using this we have:
Proof of 5.4. We do the proof in $H^{*}\left(P^{\infty} \times P^{n}\right)$, giving the details only for Sq^{2}. Suppose then that d and e are positive integers with $d \geqslant e$. Note that

$$
\mathrm{Sq}^{2}[d+4, e]=\mathrm{Sq}^{2}\left(u^{4} \cdot[d, e]\right)=u^{4} \cdot \mathrm{Sq}^{2}[d, e],
$$

and so to prove (5.4) we may assume $e \leqslant d \leqslant e+3$, since $\binom{d}{2} \equiv\binom{d+4}{2} \bmod 2$. Now for $j \geqslant 0,[e+j, e] \in$ Image k^{*}, by (5.2). Also, if $d \leqslant e+3$, we find that

$$
\mathrm{Sq}^{2}[d, e]+\binom{d}{2}[d+2, e]+e[d+1, e+1]=\sum a_{i}\left(u^{i} \otimes x^{j}\right)
$$

where the sum is over all, $i+j=d+e+2$ and where $a_{i}=0$ for $i \geqslant i$. Thus by (8.1), $\mathrm{Sq}^{2}[d, e]+\binom{d}{2}[d+2, e]+e[d+1, e+1]=0$ as claimed.

The proof for Sq^{1} is similar, using the fact that

$$
\mathrm{Sq}^{1}[d+2, e]=\mathrm{Sq}^{1}\left(u^{2} \cdot[d, e]\right)=u^{2} \cdot \mathrm{Sq}^{1}[d, e]
$$

Hence, we need only take $d=e, e+1$.
Remark. A proof for Sq^{1} is given in [40], and [2, section 7]; note also [13].

Proof of 5.6. Since $H^{*}\left(P^{n *}\right)=\rho H^{*}\left(\Gamma P^{n}\right)$, and since $H^{*}\left(\Gamma P^{n}\right)$ is determined by k^{*} and $q^{*},(5.6)$ will follow when we show:
(i) $\mathrm{Sq}^{2} k^{*} H^{4 k-1}\left(\Gamma P^{n}\right)=\mathrm{Sq}^{2} \mathrm{Sq}^{1} k^{*} H^{4 k-2}\left(\Gamma P^{n}\right)$
(ii) $\mathrm{Sq}^{2} q^{*} I^{4 k-1}=\mathrm{Sq}^{2} \mathrm{Sq}^{1} q^{*} I^{4 k-2}$.

Now (i) follows at once from (5.4), while (ii) may be proved by an inductive argument using (5.5). We omit the details.

To prove (5.6), let $y \in H^{4 k-1}\left(\Gamma P^{n}\right)$. By (8.2) (i), we may choose $d \in H^{4 k-2}\left(\Gamma P^{n}\right)$ so that $k^{*}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1} d\right)=k^{*}\left(\mathrm{Sq}^{2} y\right)$. Set $\hat{y}=y-\mathrm{Sq}^{1} d$. By (8.2)(ii), there is a class $e \in I^{*}$ such that $q^{*}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1} e\right)=q^{*} \mathrm{Sq}^{2} \hat{y}$. Since $\mathrm{Sq}^{2} \mathrm{Sq}^{1} I^{*} \subset I^{*}$ and $k^{*} I^{*}=0$, we see that $k^{*} \mathrm{Sq}^{2} \mathrm{Sq}^{1}(d+e)=k^{*} \mathrm{Sq}^{2} y, q^{*} \mathrm{Sq}^{2} \mathrm{Sq}^{1}(d+e)=q^{*} \mathrm{Sq}^{2} y$, and hence $\mathrm{Sq}^{2} y=\mathrm{Sq}^{2} \mathrm{Sq}^{1}(d+e)$, completing the proof of (5.6).

We will need the following well-known fact in the proof of (5.7).
Lemma 8.3. Let X be a space and k a positive integer such that $H^{k}(X ; Z)$ is finitely generated and has no odd torsion. Then, $H^{k}(X ; Z)=\delta_{2} H^{k-1}\left(X ; Z_{2}\right)$ if, and only if,

$$
\text { Kernel } \mathrm{Sq}^{1}=\text { Image } \mathrm{Sq}^{1} \quad \text { on } \quad H^{k}\left(X ; Z_{2}\right) .
$$

Proof of 5.7. Note that $\mathrm{Sq}^{1} I^{*} \subset I^{*}$, and since k is odd, $\mathrm{Sq}^{1} B^{k} \subset B^{k+1}$. Thus by (8.3), (5.7) is proved when we show:

$$
\mathrm{Sq}^{1} B^{k-1}=\operatorname{ker} \mathrm{Sq}^{1} \cap B^{k}, \quad \mathrm{Sq}^{1} I^{k-1}=\operatorname{Ker} \mathrm{Sq}^{1} \cap I^{k}
$$

Since $\lambda: B^{*} \approx \Lambda^{*}$ (see 2.9), we do the argument for B^{*} in Λ^{*}. Define $V \subset \Lambda^{*}$ to be the subspace spanned by generators $[d, e]$, with $e \leqslant d \leqslant n-2$. Since n is even (in 5.7), $\mathrm{Sq}^{1} V \subset V$, by (5.4). Let k (in 5.7) be written, $k=4 s+1$. We assume $k>n$, since this is the only case of interest to us. Then,

$$
\begin{aligned}
& \Lambda^{k}=\{[n-1, k-n+1]\} \oplus V . \quad \text { But } \\
& \mathrm{Sq}^{1}[n-1, k-n+1]=[n, k-n+1]= \\
& {[n-1, k-n+2]+v, \quad \text { where } \quad v \in V .}
\end{aligned}
$$

(We use here 5.11 and the fact that $k-n+1$ is even.) Thus $\operatorname{Sq}^{1}[n-1, k-n+1] \notin$ V and so $\operatorname{Ker} \mathrm{Sq}^{1} \cap \Lambda^{k}=\operatorname{KerSq}^{1} \cap V$. An easy calculation shows that $\operatorname{Ker}^{\operatorname{Sq}}{ }^{1} \cap$ $V \subset \mathrm{Sq}^{1} \Lambda^{k-1}$. Finally, since

$$
k^{*} \operatorname{Sq}^{1}\left(1 \otimes\left(x^{r}\right)^{2}\right)=q^{*} \mathrm{Sq}^{1}\left(1 \otimes\left(x^{r}\right)^{2}\right)=0
$$

where $r=(k-1) / 2$, we see that $\mathrm{Sq}^{1} B^{k-1} \subset B^{k}$ and hence Ker $\mathrm{Sq}^{1} \cap B^{k}=\mathrm{Sq}^{1} B^{k-1}$, as claimed. Similarly, one shows that $\mathrm{Sq}^{1} I^{k-1}=\operatorname{Ker~}_{\mathrm{Sq}}{ }^{1} \cap I^{k}$, thus proving (5.7).

Proof of (5.13). For this it suffices to show:

$$
\begin{aligned}
& \mathrm{Sq}^{2} I^{2 n-5}+\mathrm{Sq}^{1} I^{2 n-4}=I^{2 n-3}, \\
& \theta_{2} \Lambda^{2 n-5}+\mathrm{Sq}^{1} \Lambda^{2 n-4}=\Lambda^{2 n-3}
\end{aligned}
$$

recalling that $\theta_{2}=\mathrm{Sq}^{2}$ on I^{*}. Now the first equation follows by a straightforward calculation (consider the cases, n odd and n even); for the second equation, note that $\Lambda^{2 n-3}$ is generated by $[n-1, n-2]$. But if n is odd, then $\mathrm{Sq}^{1}[n-2, n-2]=[n-1, n-2]$, while if n is even, one shows that $\theta_{2}[n-2, n-3]=$ $[n-1, n-2]$. This completes the proof of (5.13).

University of California, Berkeley

References

[1] J. Adem and S. Gitler: Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana 9 (1964), 37-50.
[2] D. Bausum: Embeddings and immersions of manifolds in Euclidean space, thesis, Yale Univ., 1974.
[3] A. Copeland and M. Mahowald: The odd primary obstructions..., Proc. Amer. Math. Soc. 19 (1968), 1270-1272.
[4] S. Gitler: The projective Stiefel manifolds, II, Topology 7 (1968), 47-53.
[5] A. Haefliger: Differentiable embeddings, Bull. Amer. Math. Soc. 67 (1961), 109112.
[6] A. Haefliger: Plongements differentiable dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
[7] A. Haefliger: Points multiples d'une application et produit cyclique reduit, Amer. J. Math. 83 (1961), 57-70.
[8] A. Haefliger and M. Hirsch: Immersions in the stable range, Ann. of Math. 74 (1962), 231-241.
[9] A. Haefliger and M. Hirsch: On the existence and classification on differentiable embeddings, Topology 2 (1963), 125-130.
[10] D. Handel: An embedding theorem for real projective spaces, ibid. 7 (1968), 125130.
[11] D. Husemoller: Fiber Bundles, McGraw-Hill, New York, 1966.
[12] I. James: Two problems studied by H. Hopf, Lecture Notes in Mathematics, No. 279, Springer-Verlag, Berlin, 1972, 134-174.
[13] L.L. Larmore: The cohomology of $\left(\Lambda^{2} X, \Delta X\right)$, Canad. J. Math. 5 (1973), 908921.
[14] M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
[15] M. Mahowald and J. Milgram: Embedding real projective spaces, Ann. of Math. 87 (1968), 411-422.
[16] W. Massey and F. Peterson: On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mexicana 8 (1963), 1-13.
[17] J.F. McClendon: Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183-214.
[18] J.F. McClendon: Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17.
[19] J. Milgram: Unstable Homotopy from the Stable Point of View, Lecture Notes in Math., No. 368, Springer-Verlag, Berlin, 1974.
[20] J. Milnor and J. Stasheff: Characteristic Classes, Annals of Math. Studies, No. 76, Princeton Univ., Press, Princeton, 1974.
[21] F. Nussbaum: Non-orientable obstruction theory, thesis, Northwestern Univ., 1970.
[22] F. Peterson and N. Stein: Secondary characteristic classes, Ann. of Math. 76 (1962), 510-523.
[23] D. Randall: Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147 (1970), 135-151.
[24] D. Randall: Some immersion theorems for manifolds, ibid. 156 (1971), 45-58.
[25] E. Rees: Embeddings of real projective spaces, Topology 10 (1971), 309-312.
[26] R. Rigdon: Immersions and embeddings of manifolds in Euclidean space, thesis, Univ. of Calif., Berkeley, 1970.
[27] R. Rigdon: p-equivalences and embeddings of manifolds, Proc. London Math. Soc. to appear.
[28] R. Rigdon: to appear.
[29] B. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137-153.
[30] N. Steenrod and D. Epstein: Cohomology Operations, Annals of Math. Studies, No. 50, Princeton Univ, Press, Princeton, 1962.
[31] B. Steer: On the embeddings of projective spaces in euclidean space, Proc. London Math. Soc. 21 (1970), 489-501.
[32] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.
[33] E. Thomas: Seminar on Fiber Spaces, Lecture Notes in Math., No. 13, SpringerVerlag, Berlin, 1966.
[34] E. Thomas: Whitney-Cartan product formulae, Math. Z. 118 (1970), 115-138.
[35] H. Toda: Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, No. 49, Princeton Univ. Press, Princeton, 1962.
[36] C. Weber: Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27.
[37] H. Whitney: The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. 45 (1944), 220-246.
[38] W. Wu: Classes caracteristique et i-carres d'une variete, C.R. Acad. Sci. Paris 230 (1950), 508-511.
[39] G. Yo: Cohomology operations and duality in a manifold, Sci. Sinica 12 (1963), 1469-1487.
[40] G. Yo: Cohomology mod p of deleted cyclic product of a manifold, ibid. 12 (1963), 1779-1794.
[41] J.A. Lees: A classification of locally flat imbeddings of topological manifolds (preprint).

[^0]: *) Research supported by the National Science Foundation

[^1]: *) Remark (added in proof). These results overlap some with recent work of D. Bausam (Trans. A.M.S. 213 (1975), 263-303).

