A NOTE ON STABLE JAMES NUMBERS OF PROJECTIVE SPACES

Yasumasa HIRASHIMA and Hideaki OSHIMA

(Received February 10, 1975)

In [4] and [5], the second named author has evaluated the stable James numbers

$$
d_{F}(n)=\#\left[\text { cokernel of }\left\{F P^{n}, F P^{1}\right\} \xrightarrow{i^{*}}\left\{F P^{1}, F P^{1}\right\}\right]
$$

of the n-dimensional F-projective spaces $F P^{n}$ for $F=C$ (complex numbers) or H (quaternions), and especially decided $d_{C}(n)=k_{s}^{n, 2}$ for $n \leqq 4$, the odd components of $d_{C}(n)$ and $d_{H}(m)$ for $m \leqq 2$. The purpose of this note is to prove the following theorem.

We will use the notations introduced in [4] and [5] without notice.
Theorem. (i) $d_{C}(5)=2^{2} \cdot 3 \cdot 5, v_{2}\left(d_{C}(6)\right) \leqq 3$,
(ii) $\quad d_{C}(7)=d_{C}(8), d_{C}(15)=d_{C}(16)$,
(iii) $\quad v_{2}\left(d_{C}(9)\right) \leqq v_{2}\left(d_{C}(7)\right)+1 \leqq 5$,
(iv) $d_{H}(3)=2^{3} \cdot 3^{2} \cdot 5, d_{H}(4)=2^{5} \cdot 3^{2} \cdot 5 \cdot 7, d_{H}(5)=2^{5+\varepsilon} \cdot 3^{2} \cdot 5^{2} \cdot 7$ and $d_{H}(6)=$ $2^{5+\varepsilon+\tau} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11$, where $0 \leqq \varepsilon \leqq 1$ and $0 \leqq \tau \leqq 2$.

Proof. (ii) follows from [4] for the odd components and the following fact for the 2-component that

$$
\text { if } v_{2}\left(\left|G_{2 j-1}\right|\right)=0, \text { then } v_{2}\left(d_{C}(j)\right)=v_{2}\left(d_{c}(j+1)\right)
$$

where $\left|G_{2 j-1}\right|=\min \left\{k>0 ; k G_{2 j-1}=0\right\}$. Then (ii) follows, since $G_{13}=Z_{3}[6]$ and $v_{2}\left(\left|G_{29}\right|\right)=0$ [3]. We shall prove (\#). Let $f: C P^{j} \rightarrow S^{2}=C P^{1}$ be a stable map such that the degree of the composition $S^{2} \subset C P^{j} \xrightarrow{f} S^{2}$ is $d_{C}(j)$. Then $f \circ p: S^{2 j+1} \xrightarrow{p} C P^{j} \xrightarrow{f} S^{2}$ represents an element of the $(2 j-1)$-stem $G_{2_{j-1}}$ and so that $d_{C}(j+1)$ is a divisor of $\left|G_{2_{j-1}}\right| d_{C}(j)$, where p denotes a natural projection. Hence $v_{2}\left(d_{C}(j+1)\right) \leqq v_{2}\left(\left|G_{2 j-1}\right|\right)+v_{2}\left(d_{C}(j)\right)$. But $v_{2}\left(d_{C}(j)\right) \leqq v_{2}\left(d_{C}(j+1)\right)$, since $d_{c}(j+1)$ is a multiple of $d_{C}(j)$ [4]. Therefore (\#) follows.

Recall that $K\left(F P^{n}\right)=Z\left[\mu_{F}(n)\right] / \mu_{F}(n)^{n+1}$, where $\mu_{F}(n)$ indicates the stable bundle of the underlying complex vector bundle of the canonical F-line bundle over $F P^{n}$.

For $f \in\left\{F P^{n}, F P^{1}\right\}$, we consider the following commutative diagram

where ψ^{2} denotes the Adams operation. Let $f^{*}\left(\mu_{F}(1)\right)=\sum_{i=1}^{n} a_{i} \mu_{F}(n)^{i}$ and $d_{F}=$ 2 (if $F=C$) or 4 (if $F=H$). Then

$$
f^{*} \psi^{2}\left(\mu_{F}(1)\right)=f^{*}\left(d_{F} \mu_{F}(1)\right)=d_{F} \sum_{i=1}^{n} a_{i} \mu_{F}(n)^{i}
$$

and this equals

$$
\begin{aligned}
\psi^{2} f^{*}\left(\mu_{F}(1)\right) & =\sum_{i=1}^{n} a_{i}\left\{\psi^{2}\left(\mu_{F}(n)\right)\right\}^{i}=\sum_{i=1}^{n} a_{i}\left\{\mu_{F}(n)^{2}+d_{F} \mu_{F}(n)\right\}^{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}\binom{i}{j-i} d_{F}{ }^{2 i-j} \mu_{F}(n)^{j},
\end{aligned}
$$

since $\psi^{2}\left(\mu_{C}(n)\right)=\left\{1+\mu_{C}(n)\right\}^{2}-1=\mu_{C}(n)^{2}+2 \mu_{C}(n)$ and $\psi^{2}\left(\mu_{H}(n)\right)=\mu_{H}(n)^{2}+$ $4 \mu_{H}(n)$ (see e.g. [2]). Comparing the coefficients of $\mu_{F}(n)^{j}$, we have

$$
\begin{equation*}
d_{F} a_{j}=\sum_{i=1}^{n} a_{i}\binom{i}{j-i} d_{F}^{2 i-j} . \tag{1}
\end{equation*}
$$

Notice that (1) ${ }_{c}$ implies $a_{1}=(-1)^{j+1} j a_{j}$ if $F=C$ (cf. [4]).
For $f \in\left\{F P^{n}, F P^{1}\right\}$, we consider the following commutative diagram of cofibrations
where p denotes the canonical projection, $g=f \circ p$ and C_{g} the mapping cone of g. Then we have the commutative diagram of the short exact sequences

$$
\begin{gathered}
0 \longleftarrow \tilde{K}\left(F P^{n}\right) \longleftarrow \tilde{K}\left(F P^{n+1}\right) \longleftarrow \tilde{K}\left(S^{(n+1) d_{F}}\right) \longleftarrow 0 \\
\uparrow f^{*} \tilde{f}^{*} \uparrow \\
0 \longleftarrow \tilde{K}\left(F P^{1}\right) \stackrel{j^{*}}{\longleftarrow} \tilde{K}\left(C_{g}\right) \stackrel{h^{*}}{\longleftarrow} \tilde{K}\left(S^{(n+1) d}\right) \longleftarrow 0 .
\end{gathered}
$$

Let $x \in \tilde{K}\left(C_{g}\right)$ be such that $j^{*}(x)=\mu_{F}(1)=g_{C}{ }^{d_{F} / 2}$. Let $y=h^{*}\left(g_{C}{ }^{(n+1) d_{F} / 2}\right)$ and let $f^{*}(x)=\sum_{i=1}^{n+1} a_{i} \mu_{F}(n+1)^{i}$. Then

$$
f^{*}\left(\mu_{F}(1)\right)=\sum_{i=1}^{n} a_{i} \mu_{F}(n)^{i}
$$

and

$$
\psi^{2}(x)=d_{F} x+\lambda y \quad \text { for some } \lambda \in Z
$$

and

$$
e(g)=\frac{\lambda}{\left(2^{n d_{F} / 2}-1\right) 2^{d_{F} / 2}}=\frac{\lambda}{\left(d_{F}^{n}-1\right) d_{F}} \in Q / Z
$$

where e denotes the e-invariant (see e.g. [1]). Now

$$
\bar{f}^{*} \psi^{2}(x)=\bar{f}^{*}\left(d_{F} x+\lambda y\right)=d_{F} \sum_{i=1}^{n+1} a_{i} \mu_{F}(n+1)^{i}+\lambda \mu_{F}(n+1)^{n+1}
$$

and this equals

$$
\psi^{2} \bar{f}^{*}(x)=\psi^{2}\left(\sum_{i=1}^{n+1} a_{i} \mu_{F}(n+1)^{i}\right)=\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_{i}\binom{i}{j-i} d_{F}^{2 i-j} \mu_{F}(n+1)^{j}
$$

Comparing the coefficients of $\mu_{F}(n+1)^{n+1}$, we have

$$
d_{F} a_{n+1}+\lambda=\sum_{i=1}^{n+1} a_{i}\binom{i}{n+1-i} d_{F}^{2 i-n-1}
$$

and so
$(2)_{F}$

$$
e(g)=\frac{\lambda}{\left(d_{F}^{n}-1\right) d_{F}}=\frac{\sum_{i=1}^{n} a_{i}\binom{i}{n+1-i} d_{F}^{2_{i-n}-1}}{\left(d_{F}^{n}-1\right) d_{F}}
$$

Consider the case with $F=C$ and $n=4$. Suppose that the degree of the composition $S^{2} \subset C P^{4} \xrightarrow{f} S^{2}$ is $d_{C}(4)=12$ [4]. Then $(1)_{C}$ implies

$$
a_{1}=12, \quad a_{2}=-6, \quad a_{3}=4 \quad \text { and } \quad a_{4}=-3
$$

and then by $(2)_{C}$

$$
e(g)=-\frac{12}{5}
$$

and so

$$
e(5 g)=0
$$

But $e: G_{7} \rightarrow Q / Z$ is monomorphic $[1, \S 7]$, so that

$$
5 g=0
$$

Then there exists $f^{\prime}: C P^{5} \rightarrow S^{2}$ such that the composition $C P^{4} \subset C P^{5} \xrightarrow{f^{\prime}} S^{2}$ coincides with $5 f$. Clearly the degree of the composition $S^{2} \subset C P^{5} \xrightarrow{f^{\prime}} S^{2}$ is $5 d_{C}(4)=2^{2} \cdot 3 \cdot 5$ [4]. Hence $d_{C}(5)$ is a divisor of $2^{2} \cdot 3 \cdot 5$. But, by [4], $d_{C}(5)$ is a multiple of $2^{2} \cdot 3 \cdot 5$. Therefore we have that $d_{C}(5)=2^{2} \cdot 3 \cdot 5$. This implies the half of (i).

By the same method as the proof of (ii), we have that $d_{C}(6)$ is a divisor of $2 d_{C}(5)$, since $G_{9}=Z_{2}+Z_{2}+Z_{2}$ [6]. Hence we have

$$
v_{2}\left(d_{C}(6)\right) \leqq v_{2}\left(2 d_{C}(5)\right)=3 .
$$

This completes the proof of (i).
When $F=C$ and $n=8$, the same computations as the proof of (i) imply that

$$
3 e(g)=0
$$

But the kernel of $e: G_{15} \rightarrow Q / Z$ is $Z_{2}[1, \S 7]$, so that

$$
2 \cdot 3 g=0
$$

and then $d_{C}(9)$ is a divisor of $2 \cdot 3 d_{C}(8)$. Then (ii) and [4, Th. A] imply

$$
v_{2}\left(d_{c}(9)\right) \leqq v_{2}\left(2 \cdot 3 d_{c}(7)\right)=v_{2}\left(d_{c}(7)\right)+1 \leqq 5 .
$$

This implies (iii).
By the same computations as the proof of (i) using the fact $d_{H}(2)=2^{3} \cdot 3$ [4], we have

$$
d_{H}(3)=2^{3} \cdot 3^{2} \cdot 5
$$

And when $F=H$ and $n=3$, we have

$$
e(g)=\frac{3^{2}}{2 \cdot 7}
$$

But $e=2 e_{R}^{\prime}: G_{11} \rightarrow Q / Z$ and the real e-invariant e_{R}^{\prime} is monomorphic in this case $[1, \S 7]$ so that

$$
2^{2} \cdot 7 g=0
$$

and then $d_{H}(4)$ is a divisor of $2^{2} \cdot 7 d_{H}(3)=2^{5} \cdot 3^{2} \cdot 5 \cdot 7$. But, by [5], $d_{H}(4)$ is a multiple of $2^{5} \cdot 3^{2} \cdot 5 \cdot 7$. Thus

$$
d_{H}(4)=2^{5} \cdot 3^{2} \cdot 5 \cdot 7
$$

By the same methods as aboves, we can prove the remaining parts of (iv).
Q.E.D.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$-IV, Topology 5 (1966), 21-71.
[2] S. Feder and S. Gitler: Mappings of quaternionic projective spaces, Bol. Soc. Mat. Mexicana 18 (1973), 33-37.
[3] M.E. Mahowald and M.C. Tangora: Some differentials in the Adams spectral sequence, Topology 6 (1967), 349-369.
[4] H. Ōshima: On the stable James numbers of complex projective spaces, Osaka J. Math. 11 (1974), 361-366.
[5] -: On stable James numbers of quaternionic projective spaces, Osaka J. Math. 12 (1975), 209-213.
[6] H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Mathematical Studies 49, Princeton University Press, Princeton, 1962.

