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In [4] and [5], the second named author has evaluated the stable James

numbers

dF(n) = #[cokernel of {FPn, FP1} ^—^{FP\ FP1}]

of the ^-dimensional jF-projective spaces FPn for F=C (complex numbers) or

H (quaternions), and especially decided dc(n)=kn

s

t2 for n^4, the odd components

of dc(n) and dH(m) for m^,2. The purpose of this note is to prove the following

theorem.

We will use the notations introduced in [4] and [5] without notice.

Theorem, (i) </c(5)=22 3 5, υ2

(ii) dc(7)=dc(8), dc(l5)=dc(l6),

(iii) v2(dc(9))^v2(dc(7))+l^5,

(iv) ^(3)=23 32 5, ^(4)=25-32-5-7, ^(5)-25+ε 32 52 7 and dH(6)=
25+8+τ.33 52 7.11, where O^S^

Proof, (ii) follows from [4] for the odd components and the following

fact for the 2-component that

( # ) if v2( I G2y_, I) = 0 , then v2(dc(j)) = v2(dc(j+l)) ,

where \G2J.1\ = mm {Λ>0; ΛG2 y_1 = 0}. Then (ii) follows, since G13=Z3 [6]

and ι;2(|G29|)=0 [3]. We shall prove (#). Let/: CPj-*S2=CPl be a stable

map such that the degree of the composition S2c:CPJ - >S2 is dc(j). Then
P f

fop: S2j+l-ί-+CP*-^-> S2 represents an element of the (2/-l)-stem G2J_, and

so that dc(j+l) is a divisor of \G2j.l\dc(j\ where/) denotes a natural pro-

jection. Hence v2(dc(j+\))^v2(\G2J^\)+v2(dc(j)). But v2(dc(j))^v2(dc(j+\)\

since dc(j+l) is a multiple of dc(j) [4]. Therefore (jj:) follows.

Recall that K(FPn)= Z[μF(n)]lμF(n)"+\ where μF(n) indicates the stable

bundle of the underlying complex vector bundle of the canonical inline bundle

over FP".
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For /e {FPn, FP1}, we consider the following commutative diagram

/*
+ — K(FPl)

,* k
i — K(FPl)

where -ψ 2 denotes the Adams operation. Let/*(μ,F(l))=Σ β<μX»)' and dF=

2 (if F=C) or 4 (if F=#). Then

= ̂  Σ W»
and this equals

= Σ a{{^(μF(n))}f = Σ«. {/^F(
i = 1 ι=l

= Σ ί3flί

 ί , I ' - V X » X ,

since ψ2(/ic(«))={l+Mc(«)}2-l = Mc(»)2+2M«) and ψ2(μH(n))= μH(n)2+
(ri) (see e.g. [2]). Comparing the coefficients of μF(ri)>, we have

Notice that (l)c implies a^-iy^ja^ if F=C (cf. [4]).
For /e {FPΛ, FP1}, we consider the following commutative diagram of

cofibrations

l=

 s if V
+Drfp-1 6

 > ^ 1 y >

where/) denotes the canonical projection, g=fop and Cg the mapping cone of g.
Then we have the commutative diagram of the short exact sequences

0 < - g(FP") < - K(FP"^) < - £(S(Λ+1)rf* ) •< - 0

V* /./•! *. -ί
0 < - J? (FP1) vi— /t(Cg) -e - K(Sίn+™') < - 0 .

Let x^K(Cg) be such that j*(x)= μF(\)=gc**'\ Let y=h*(gc^"d'!*) and let

/*(*)=§ α, ̂ (w+ 1)1'- Then
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and

ψ2(x) — dFx+\y for some

and

where e denotes the ^-invariant (see e.g. [1]). Now

/*Ψ2(*)

and this equals

*•/*(*)

Comparing the coefficients of μF(n+l)n+\ we have

and so

= Σ Σ «,-
ί=ι y=ι

(dpn—l)dF

Consider the case with F=C and n=4. Suppose that the degree of the

composition S2cCP4-^-> S2 is dc (4)= 12 [4]. Then (l)c implies

#! = 12 , #2 — —6, tf3 = 4 and #4 = —3 ,

and then by (2)c

and so

But e: GΊ-^QIZ is monomorphic [1, §7] , so that

Then there exists/: CP5-+S2 such that the composition CP4cCP5

2coincides with 5/. Clearly the degree of the composition 52cCP5 - > S

is 5dc(4)= 22 3 5 [4]. Hence dc(5) is a divisor of 22 3 5. But, by [4], dc(5) is

a multiple of 22 3 5. Therefore we have that rfc(5)=:22 3-5. This implies the

half of (i).
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By the same method as the proof of (ii), we have that dc(6) is a divisor of
2dc(5), since Gg=Z2-\-Z2-{-Z2 [6]. Hence we have

This completes the proof of (i).
When F=C and n=8, the same computations as the proof of (i) imply that

But the kernel of e: G1B->£/Z is Z2 [1, §7], so that

2-3^ = 0

and then dc(9) is a divisor of 2 3rfc(8). Then (ii) and [4, Th. A] imply

This implies (iii).
By the same computations as the proof of (i) using the fact rfκ(2)=23 3 [4],

we have

And when F=H and n=3, we have

But e=2e'R: G^-^Q/Z and the real ^-invariant e'R is monomorphic in this case
[1, §7] so that

and then dH(4) is a divisor of 22 7rf/ί(3)=25 32 5 7. But, by [5], dH(4) is a
multiple of 25 32 5 7. Thus

By the same methods as aboves, we can prove the remaining parts of (iv).
Q.E.D.
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