Bannai, E. Osaka J. Math. 13 (1976), 123–129

ON MULTIPLY TRANSITIVE PERMUTATION GROUPS IV

EIICHI BANNAI*)

(Received February 12, 1975)

Introduction

By combining the results of Miyamoto [5] and Bannai [1, 2], we have obtained the following theorem ([2, Main Theorem]) which is an odd prime version of a theorem of M. Hall [3].

Theorem. Let p be an odd prime. Let G be a 2p-ply transitive permutation group such that $G_{1,2,\dots,2p}$ (=the pointwise stabilizer of 2p points) is of order prime to p. Then G is one of $S_n(2p \le n \le 3p-1)$ and $A_n(2p+2\le n\le 3p-1)$, where S_n and A_n denote the symmetric and alternating groups of degree n.

The purpose of this paper is to generalize the above theorem. Namely, we will prove the following theorem.

Theorem 1. Let p be an odd prime. Let G be a 2p-ply transitive permutation group such that either

- (i) each element in G of order p fixes at most 2p+(p-1) points, or
- (ii) a Sylow p subgroup of $G_{1,2,\dots,2p}$ is cyclic.

Then G is one of $S_n(2p \le n \le 4p-1)$ and $A_n(2p+2 \le n \le 4p-1)$.

Note that Theorem 1 (i) and Theorem 1 (ii) are some odd prime versions of a theorem of Nagao [6] and a theorem of Noda and Oyama [7] respectively. The essential part of the proof of Theorem 1 (i) is picked up as follows:

Theorem A. Let p be an odd prime. Then there exists no (p+3)-ply transitive permutation group G on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following two conditions:

(1) a Sylow p subgroup $P(\pm 1)$ of $G_{1,2,\dots,P+3}$ fixes at most p-1 points in $\Omega - \{1, 2, \dots, p+3\}$, and P is semiregular on $\Omega - I(P)$, where I(P) denotes the set of the points which are fixed by any element of P. (2) $|\Omega - I(P)| \equiv p \pmod{p^2}$.

Note that Theorem A generalizes Lemma 1.5 in Miyamoto [5] to some

^{*)} Supported in part by the Sakkokai Foundation.

E. BANNAI

extent. We remark that in our proof of Theorem A the idea of Miyamoto and Nagao ingeniously using the formula of Frobenius (cf. [5, Lemma 1.1]) is essential.

1. Proof of Theorem A

Let G and P be as in the assumption of Theorem A. Then, we will derive a contradiction.

By the assumptions, and by using Theorem 1¹⁾ in [1] (if $|\Omega - I(P)| \equiv 0 \pmod{p^2}$) we may assume that P is of order p and is generated by the element

$$a = (1)\cdots(p+3)\cdots(p+3+r)(p+4+r, \cdots, 2p+3+r)\cdots,$$

where $I(P) = I(a) = \{1, 2, \dots, p+3+r\}$ and $0 \le r \le p-1$.

By the lemma of Jordan-Witt, we get $N_G(P)^{I(P)} \ge A^{I(P)}$. Therefore, $C_G(P)^{I(P)} \ge A^{I(P)}$, because of |P| = p.

First, from (1.1) to (1.4), we only treat the case $|\Omega - I(P)| \equiv 0 \pmod{p^2}$. Similar results will be proved later as (1.1') to (1.4') for the case $|\Omega - I(P)| \equiv 0 \pmod{p^2}$.

(1.1) $C_G(a)$ is transitive on $\Omega - I(P)$.

By the remark following Lemma 1.1 in [5], we get the following formula for any *p-ply* transitive permutation groups X on a set Ω :

$$\frac{|X|}{p} = \sum_{x \in \mathcal{X}} \alpha_p(x) \ge \sum_i \frac{|X|}{|C_x(u_i)|} \cdot \frac{1}{p} \cdot \sum_{y'} \alpha^*(y) ,$$

where $\alpha_p(x)$ denotes the number of p cycles in the cylce structure of x, u_i ranges all representatives of conjugacy classes (in X) of elements of order p, y ranges all p'-elements in $C_X(u_i)$ and $\alpha^*(y)$ denotes the number of the fixed points of y (acting) on $\Omega - I(u_i)$.

In our situation, let us take X=G. Since we are assuming that $|\Omega - I(P)| \equiv 0 \pmod{p^2}$, G contains an element of order p which fixes less than |I(a)| points. Hence,

$$\frac{|G|}{p} = \sum_{x \in G} \alpha_p(x) \ge \frac{|G|}{|C_G(a)|} \cdot \frac{1}{p} \cdot \sum_{y} \alpha^*(y) \,.$$

Now, $\sum_{\mathbf{y}}' \alpha^*(\mathbf{y}) \ge \sum_{\mathbf{y} \in \mathcal{O}_{\mathcal{G}}(a)} \alpha^*(\mathbf{y}) - p \cdot \sum_{\mathbf{y} \in \mathcal{O}_{\mathcal{G}}(a)} (\text{the number of } p \text{ cycles in } y^{I(a)}).$ Since $C_{\mathbf{G}}(a)^{I(a)} \ge A^{I(a)}$ and $A^{I(a)}$ is p-ply transitive (on I(a)), we get $p \cdot \sum_{\mathbf{y} \in \mathcal{O}_{\mathcal{G}}(a)} (\text{the number of } p \text{ cycles in } y^{I(a)}) = |C_{\mathbf{G}}(a)|$ by the formula of Frobenius. On the other hand,

124

¹⁾ Theorem 1 in [1] is stated only for the case r=0. But it is evident that the assertion is also true for $1 \le r \le p-1$.

$$\sum_{\mathbf{y}\in\mathcal{O}_{G}^{(a)}}\alpha^{*}(\mathbf{y})=t_{a}|C_{G}(a)|,$$

where t_a is the number of orbits of $C_G(a)$ on $\Omega - I(a)$. Hence, we get

$$\frac{|G|}{p} \geqq \frac{1}{p} (t_a - 1) |G| .$$

Therefore, $t_a=1$, and so $C_G(a)$ is transitive on $\Omega-I(a)$.

(1.2) $C_{G_1}(a)$ is transitive on $\Omega - I(a)$. Moreover, if j is one of 0, 1, 2 and 3 and if $p+3+r-j \ge p+2$, then $C_{G_{1,2,\dots,j}}(a)$ is transitive on $\Omega - I(a)$.

Proof is quite similar as in (1.1). Here we have only to notice that $C_{G_{1,2},\ldots,j}(a)^{I(a)-(1,2,\ldots,j)} \ge A^{I(a)-(1,2,\ldots,j)}$ and so is *p*-ply transitive.

Since $C_G(a)$ is transitive on $\Omega - I(a)$, a normal subgroup $C_{G_{1,2,\dots,p+3+r}}(a)$ is half transitive on $\Omega - I(a)$. Let $\Delta_1, \Delta_2, \dots, \Delta_k$ be the orbits of $C_{G_{1,2,\dots,p+3+r}}(a)$ on $\Omega - I(a)$.

(1.3) $k \leq 2$.

Since $C_{G_{1,2},...,p+3+r}(a)$ acts trivially on the set $\{\Delta_1, \Delta_2, \cdots, \Delta_k\}$, $C_G(a)^{I(a)}$ acts on the set $\{\Delta_1, \Delta_2, \cdots, \Delta_k\}$ transitively. Let Y be the subgroup of $C_G(a)$ which fixes Δ_1 . Then, $|C_G(a)^{I(a)}: Y^{I(a)}| = k$. Since $C_{G_1}(a)$ is also transitive on $\Omega - I(a)$, $|C_{G_1}(a)^{I(a)}: Y_1^{I(a)}|$ is $\geq k$. But, in order that this holds, Y must be transitive on I(a). Similarly, if $r \geq 1$, then $|C_{G_{1,2}}(a)^{I(a)}: Y_{1,2}^{I(a)}| \geq k$ by (1.2), and so, Y must be doubly transitive on I(a). On the other hand, we may assume without loss of generality that $Y^{I(a)}$ contains an element of just a p cycle. If $r \geq 1$, then since there exists no nontrivial doubly transitive permutation group of degree p+3+r containing an element of a p cycle we get $Y^{I(a)} \geq A^{I(a)}$ (cf. [8, Theorem 13.9]). On the other hand, if r=0, then $Y^{I(a)}$ becomes triply transitive by a lemma of Livingstone and Wagner [4, Lemma 6]. So, in any way, we get $Y^{I(a)} \geq A^{I(a)}$. Hence $k \leq 2$.

(1.4) $C_{G_{1,2,\cdots,p},\{p+1,p+2\},p+3,\cdots,p+3+r}(a)$ is transitive on $\Omega-I(a)$.

If $C_G(a)^{I(a)} = A^{I(a)}$, then k=1 and $C_{G_{1,2,\dots,p+3+r}}(a)$ is transitive on $\Omega - I(a)$, so we have the assertion. If $C_G(a)^{I(a)} = S^{I(a)}$, then k=1 or 2. In any way, $C_{G_{1,2,\dots,p},(p+1,p+2),p+3,\dots,p+3+r}(a)$ is transitive on $\Omega - I(a)$.

Next, let us assume that $|\Omega - I(P)| \equiv 0 \pmod{p^2}$. Then the order of a Sylow p subgroup of $G_{1,2,3}$ is p^2 by the assumption and Theorem 1 in [1].

(1.1') If $p+3+r\geq 2p$, then $C_G(a)$ is either transitive or has two orbits on $\Omega - I(a)$. If $(p+2\leq)p+3+r\leq 2p-1$, then $C_G(a)$ has two orbits on $\Omega - I(a)$.

If $p+3+r\geq 2p$, and if G contains an element of order p which fixes less than |I(a)| points, then the same argument as in (1.1) proves the assertion. If $p+3+r\leq 2p-1$, then every element in G of order p fixes |I(a)| points because of $|\Omega-I(p)|\equiv 0 \pmod{p^2}$. Therefore,

$$\frac{|G|}{p} = \sum_{x \in G} \alpha_p(x) \ge \frac{|G|}{|C_G(a)|} \cdot \frac{1}{p} \cdot \sum_{y} \alpha^*(y), \text{ and}$$

E. BANNAI

$$\sum_{a} \alpha^*(y) = (t_a - 1) \cdot |C_G(a)|$$
,

where t_a denotes the number of orbits of $C_G(a)$ on $\Omega - I(a)$. Hence, $t_a = 2$ (and all elements of order p in G are conjugate).

(1.2') Let j be one of 0, 1, 2 and 3. If $p+3+r-j\geq 2p$, then $C_{G_{1,2,\dots,j}}(a)$ is either transitive or has two orbits on $\Omega - I(a)$. If $2p-1\geq p+3+r-j\geq p+2$, then $C_{G_{1,2,\dots,j}}(a)$ has two orbits on $\Omega - I(a)$.

Proof is similar as in (1.1') (i.e., as in (1.1)).

(1.3') Let $\Delta_1, \Delta_2, \dots, \Delta_{k_1}$ and $\Gamma_1, \Gamma_2, \dots, \Gamma_{k_2}$ be the partition of Ω into the orbits of $C_{G_{1,2,\dots,p+3+r}}(a)$ on $\Omega - I(a)$, such that $\{\Delta_1, \Delta_2, \dots, \Delta_{k_1}\}$ and $\{\Gamma_1, \Gamma_2, \dots, \Gamma_{k_2}\}$ are fixes by $C_{G_{1,2,\dots,j}}(a)$ with p+3+r-j being the greatest integer not exceeding 2p-1. Then $k_1 \leq 2$ and $k_2 \leq 2$.

Proof of (1.3'). Let $\Delta_1, \dots, \Delta_k$ be the ste of orbits of $C_{G_{1,2},\dots,p+3+r}(a)$ on $\Omega - I(a). \quad \text{Then } C_{G_1,\dots,i}(a)^{I(a)} (j=0,1,\dots,p+3+r) \text{ acts on the set } \{\Delta_1,\dots,\Delta_k\}.$ First assume that $C_G(a)^{I(a)}$ and $C_{G_1}(a)^{I(a)}$ are both transitive on $\{\Delta_1, \dots, \Delta_k\}$. Let Y be the stabilizer of Δ_1 in $C_G(a)$. Then $Y^{I(a)}$ is transitive. Moreover, Y satisfies the following condition: for any three points i_1 , i_2 , i_3 in I(a), a Sylow p subgroup of $C_{G_{i_1,i_2,i_3}}$ fixes just r points on $I(a) - \{i_1, i_2, i_3\}$ and semiregular on the remaining points. Using this fact, we get $Y^{I(a)}$ primitive. Because if r=p-1, then for $j=2, p+3+r-j\geq 2p$ and so $C_{G_{1,2}}(a)^{I(a)-\{1,2\}}$ is transitive on $\{\Delta_1, \dots, \Delta_k\}$, hence $Y^{I(a)}$ is doubly transitive. If r < p-1, we easily get $Y^{I(a)}$ primitive, by noticing that the number of blocks is at most 2. Hence $Y^{I(a)} \ge A^{I(a)}$. Hence k=2. But this is a contradiction, because $|\Delta_1|$ is dividuable by p^2 as $|\Omega-I(P)|$ $\equiv 0 \pmod{p^2}$ but $C_{G_1,\dots,p^{+3+r}}(a)$ is not divisible by p^2 . Next assume that both $C_G^{I(a)}$ and $C_{G_1}(a)^{I(a)}$ have two orbits on $\{\Delta_1, \dots, \Delta_k\}$ (say, $\{\Delta_1, \dots, \Delta_{k_1}\}$ and $\{\Gamma_1, \dots, \Gamma_{k_2}\}, k_1 + k_2 = k\}$. Let $Y(\Delta)$ be the stabilizer of Δ_1 in $C_G(a)$ and let $Y(\Gamma)$ be the stabilizer of Γ_1 in $C_G(a)$. Then the same argument as above shows that $Y(\Delta)^{I(a)} \ge A^{I(a)}$, and $Y(\Gamma)^{I(a)} \ge A^{I(a)}$. So, $k_1 \le 2$ and $k_2 \le 2$. Finally, if $C_G(a)^{I(a)}$ is transitive and $C_{G_1}(a)^{I(a)}$ has two orbits on $\{\Delta_1, \dots, \Delta_k\}$ (say, $\{\Delta_1, \dots, \Delta_{k_1}\}$ and $\{\Gamma_1, \dots, \Gamma_{k_2}\}\)$, then $C_{G_{1,2}}(a)^{I(a)}$ has the same two orbits on $\{\Delta_1, \dots, \Delta_k\}$. (Because this is true if $r \ge 1$, and if r = 0 we get $Y^{I(a)}$ 3-transitive on I(a) and $Y^{I(a)} \ge A^{I(a)}$ and we get a contradiction.) Now the same argument as before shows that $Y(\Delta)_{1}^{I(a)-\{1\}} \ge A^{I(a)-\{1\}}$ and $Y(\Gamma)_{1}^{I(a)-\{1\}} \ge A^{I(a)-\{1\}}$. So, we completed the proof of (1.3').

(1.4') $C_{G_{1,2,\cdots,p},\{p+1,p+2\},p+3,\cdots,p+3+r}(a)$ has two orbits on $\Omega - I(a)$.

Proof is similar as in (1.4).

(1.5) Completion of the proof of Theorem A.

The method in this step is owing to Miyamoto [5, Lemma 1.5]. Let b be an element of order p in $C_G(a)$ such that

$$b = (1, 2, \dots, p)(p+1)\cdots(p+3+r)(p+4+r)\cdots(2p+3+r)\cdots$$

126

and *ab* fixes the points $2p+4+r, \dots, 3p+3+r$ (this is possible because of the assumption (2)). Now, let us set

$$K = G_{\scriptscriptstyle 1,2,\cdots,p,(b+1,p+2),p+3,\cdots,p+3+4}$$
, and
 $L = \langle b
angle \cdot K$.

Then, $|C_L(a): C_K(a)| = p$, and since $C_L(a)$ and $C_K(a)$ has *m* orbits on $\Omega - I(a)$, where m=1 or 2 according as $|\Omega - I(P)| \equiv 0 \pmod{p^2}$ and $|\Omega - I(P)| \equiv 0 \pmod{p^2}$, we have $m \cdot \frac{p-1}{p} |C_L(a)| = \sum_{j \in \mathcal{O}_L(a) \subset \mathcal{O}_K(a)} \alpha^*(y)$. Let *s* be the number of orbits of length *p* of $\langle a, b \rangle$ on $\Omega - I(P)$. Then in our case, $s \ge 2$. The s(p-1) elements $a^i b^j$ (*i* are *s* of 0, 1, \cdots , p-1 (which depend on *j*) such that $|I(a^i b^j)| = |I(a)|$ and $j=1,2,\cdots,p-1$) are not conjugate to each other. Clearly, $a^i b^j$ and $a^i' b^{j'}$ are not conjugate if $j \pm j'$. $a^i b^j$ and $a^{i'} b^j$ are not conjugate if $i \pm i'$, because otherwise there exists an element of order *p* in $C_L(a) \cap N_L(\langle a, b \rangle)$ which does not centralize $\langle a, b \rangle$, and this contradicts the fact (assumption) that $\langle a, b \rangle$ is a Sylow *p* subgroup of $G_{1,2,3}$. Thus we have s(p-1) conjugacy classes in $C_L(a) - C_K(a)$ represented by the elements $a^i b^j$ (*i* are *s* of 0, 1, \cdots , p-1 (which depend on *j*) such that $|I(a^i b^j)| = |I(a)|$ and $j=1, 2, \cdots, p-1$), and any of which has *p* fixed points on $\Omega - I(a)$. Since the restriction on any orbit of $\langle a, b \rangle$ of length *p* is selfcentralizing, we have

$$\sum_{\substack{y \in \sigma_L(a) - \sigma_k(a)}} \alpha^*(y) \ge s(p-1) \cdot p \cdot |C_L(a): C_L(\langle a, b \rangle)| \cdot |\{y \in C_L(\langle a, b \rangle) | p \nmid o(y)\}|$$

$$= s(p-1) \cdot p \cdot |C_L(a): C_L(\langle a, b \rangle)| \cdot |C_L(\langle a, b \rangle): \langle a, b \rangle|$$

$$= \frac{s(p-1)}{p} \cdot |C_L(a)|.$$

Therefore, $\frac{m \cdot (p-1)}{p} \cdot |C_L(a)| \ge \frac{s(p-1)}{p} \cdot |C_L(a)|$. But this is a contradiction, because m=1 and $s\ge 2$ if $|r-I(p)| \equiv 0 \pmod{p^2}$ and m=2 and $s=p\ge 3$ if $|r-I(p)| \equiv 0 \pmod{p^2}$.

Thus we have completed the proof of Theorem A.

2. Proof of Theorem 1 (i)

Let p be an odd prime, and let G be a 2p-ply transitive permutation group which satisfies the assumptions of Theorem 1 (i). Let P be a Sylow p subgroup of $G_{1,2,\dots,2p}$. If P=1, then we have already shown that G is one of $S_n(2p \le n \le 3p-1)$ and $A_n(2p+2\le n\le 3p-1)$. Suppose that $P \ne 1$ in the following. Then |I(P)|=2p+r with $0\le r\le p-1$.

We divide our proof into the following two cases:

Case 1 $|\Omega - I(P)| \equiv p \pmod{p^2}$

Case 2 $|\Omega - I(P)| \equiv p \pmod{p^2}$

E. BANNAI

First let us assume that Case 1 holds. Assume that $|\Omega| \ge 4p$. Then there exist two elements a and b of order p which commute to each other such that

$$a = (1)\cdots(2p)(2p+1)\cdots(2p+r)(2p+1+r, \cdots, 3p+r)(3p+r+1, \cdots, 4p+r)\cdots$$

$$b = (1\cdots p)(p+1, \cdots, 2p)(2p+1)\cdots(2p+r)(2p+1+r)\cdots(3p+r)\cdots(4p+r)\cdots.$$

Then $\langle a, b \rangle$ has p+3 orbits of length p because of the assumption that $|\Omega - I(P)| \equiv p \pmod{p^2}$. Since $\langle a, b \rangle$ fixes the set $\{p+1, \dots, 2p, 2p+1+r, \dots, 3p+r\}$ of 2p points as a whole, there exists an elemten c of order p such that $c \in C_G$ ($\langle a, b \rangle$) and c fixes the 2p points $p, p+1, \dots, 2p-1, 2p+r+1, \dots, 3p+r$ pointwisely. Since c must have a p cycle on the set $\{1, 2, \dots, 2p+r\}$ of 2p+r points, and since $|\Omega - I(P)| \equiv p \pmod{p^2}$, the group $\langle a, c \rangle$ has at least p+2 orbits of length p. But this clearly contradicts the assumption of Theorem 1 (i). Thus $|\Omega| \leq 4p-1$, and G is one of S_n and A_n , with $n \leq 4p-1$.

Secondly, let us assume that Case 2 holds. Then the permutation group $G_{1,2,\dots,p-3}$ on $\Omega - \{1, 2, \dots, p-3\}$ satisfies the assumptions of Theorem A, and so we get a contradiction. Thus, the proof of Theorem 1 (i) is completed.

3. Proof of Theorem 1 (ii)

Let G satisfy the assumption of Theorem 1 (ii), and let P be a Sylow p subgroup of $G_{1,2...,2p}$ which is cyclic. If P=1, then we have already shown that G is one of $S_n(2p \le n \le 3p-1)$ and $A_n(2p+2\le n \le 3p-1)$. Suppose that $P \ne 1$. Then |I(P)| = 2p + r with $0 \le r \le p-1$, because $N_G(P)^{I(P)}$ is a 2p-ply transitive group whose stabilizer of 2p points is of order prime to p. If P is semiregular on $\Omega - I(P)$, then G is one of S_n and A_n , with $3p \le n \le 4p-1$. Henceforth, we assume that P is not semiregular on $\Omega - I(P)$, and we will derive a contradiction. We assume moreover that G is of the least possible degree among them. Clearly, $|P| \ge p^2$. Let a be an element of order p in P. Since P is cyclic and is not semiregular on $\Omega - I(P)$, $N_G(\langle a \rangle)^{I(a)}$ is 2p-ply transitive group such that $N_G(\langle a \rangle)_{1,2,...,2p}^{I(a)}$ has a cyclic Sylow p subgroup which is nontrivial. Therefore, $N_G(\langle a \rangle)^{I(a)}$ is one of S_n and A_n with $3p \le n \le 4p-1$ by the minimal nature of G. Thus, we may assume that P is generated by the element b of the form

$$b = (1)\cdots(2p+r)(2p+1+r, \dots, 3p+r)(3p+1+r, \dots, 4p+r, \dots)\cdots$$

Clearly $C_G(P)^{I(P)} \ge A^{I(P)}$ and each element of order p in $N_{G_{I(P)}}(P)$ centralizes P. Therefore, let c be an element of order p such that

$$c = (1, 2, \dots, p)(p+1)\cdots(2p+r)\cdots$$

and that |I(c)| = 3p + r. Then we may assume (by rechoosing P) without loss

128

of generality that c normalizes P and therefore centralizes P. Since c fixes p or 2p points on $\Omega - \{1, 2, \dots, 3p+r\}$ and since P is semiregular on the set of fixed points of c in $\Omega - \{1, 2, \dots, 3p+r\}$, we have |P| = p. But this is a contradiction, and so the proof of Theorem 1 (ii) is completed.

THE OHIO STATE UNIVERSITY AND THE UNIVERSITY OF TOKYO

References

- [1] E. Bannai: On multiply transitive permutation groups I, Osaka J. Math. 11 (1974), 401-411.
- [2] E. Bannai: On multiply transitive permutation groups II, Osaka J. Math. 11 (1974), 413–416.
- [3] M. Hall, Jr.: On a theorem of Jordan, Pacific. J. Math. 4 (1954), 219-226.
- [4] D. Livingston and Wagner: Transitivity of finite permutation groups on unordered set, Math. Z. 90 (1965), 393-403.
- [5] I. Miyamoto: Multiply transitive permutation groups and odd primes, Osaka J. Math. 11 (1974), 9–13.
- [6] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
- [7] R. Noda and T. Oyama: On multiply transitive groups VI, J. Algebra 11 (1969), 145-154.
- [8] H. Wielandt: Finite Permutation Groups, Academic Press, New York and London, 1964.