ON MULTIPLY TRANSITIVE PERMUTATION GROUPS IV

Eiichi BANNAI*)

(Received February 12, 1975)

Introduction

By combining the results of Miyamoto [5] and Bannai [1, 2], we have obtained the following theorem ($[2$, Main Theorem $]$) which is an odd prime version of a theorem of M. Hall [3].

Theorem. Let p be an odd prime. Let G be a $2 p-p l y$ transitive permutation group such that $G_{1,2, \cdots, 2 p}$ ($=$ the pointwise stabilizer of $2 p$ points) is of order prime to p. Then G is one of $S_{n}(2 p \leq n \leq 3 p-1)$ and $A_{n}(2 p+2 \leq n \leq 3 p-1)$, where S_{n} and A_{n} denote the symmetric and alternating groups of degree n.

The purpose of this paper is to generalize the above theorem. Namely, we will prove the following theorem.

Theorem 1. Let p be an odd prime. Let G be a $2 p$-ply transitive permutation group such that either
(i) each element in G of order p fixes at most $2 p+(p-1)$ points, or
(ii) a Sylow p subgroup of $G_{1,2, \ldots, 2 p}$ is cyclic.

Then G is one of $S_{n}(2 p \leq n \leq 4 p-1)$ and $A_{n}(2 p+2 \leqq n \leq 4 p-1)$.
Note that Theorem 1 (i) and Theorem 1 (ii) are some odd prime versions of a theorem of Nagao [6] and a theorem of Noda and Oyama [7] respectively.

The essential part of the proof of Theorem 1 (i) is picked up as follows:
Theorem A. Let p be an odd prime. Then there exists no $(p+3)$-ply transitive permutation group G on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following two conditions:
(1) a Sylow p subgroup $P(\neq 1)$ of $G_{1,2, \ldots, p+3}$ fixes at most $p-1$ points in $\Omega-$ $\{1,2, \cdots, p+3\}$, and P is semiregular on $\Omega-I(P)$, where $I(P)$ denotes the set of the points which are fixed by any element of P.
(2) $|\Omega-I(P)| \equiv p\left(\bmod p^{2}\right)$.

Note that Theorem A generalizes Lemma 1.5 in Miyamoto [5] to some

[^0]extent. We remark that in our proof of Theorem A the idea of Miyamoto and Nagao ingeniously using the formula of Frobenius (cf. [5, Lemma 1.1]) is essential.

1. Proof of Theorem A

Let G and P be as in the assumption of Theorem A. Then, we will derive a contradiction.

By the assumptions, and by using Theorem $1^{1)}$ in [1] (if $|\Omega-I(P)| \equiv 0$ $\left.\left(\bmod p^{2}\right)\right)$ we may assume that P is of order p and is generated by the element

$$
a=(1) \cdots(p+3) \cdots(p+3+r)(p+4+r, \cdots, 2 p+3+r) \cdots
$$

where $I(P)=I(a)=\{1,2, \cdots, p+3+r\}$ and $0 \leq r \leq p-1$.
By the lemma of Jordan-Witt, we get $N_{G}(P)^{I(P)} \geq A^{I(P)}$. Therefore, $C_{G}(P)^{I(P)} \geq A^{I(P)}$, because of $|P|=p$.

First, from (1.1) to (1.4), we only treat the case $|\Omega-I(P)| \equiv 0\left(\bmod p^{2}\right)$. Similar results will be proved later as $\left(1.1^{\prime}\right)$ to $\left(1.4^{\prime}\right)$ for the case $|\Omega-I(P)| \equiv 0$ $\left(\bmod p^{2}\right)$.
(1.1) $C_{G}(a)$ is transitive on $\Omega-I(P)$.

By the remark following Lemma 1.1 in [5], we get the following formula for any p-ply transitive permutation groups X on a set Ω :

$$
\frac{|X|}{p}=\sum_{x \in X} \alpha_{p}(x) \geq \sum_{i} \frac{|X|}{\left|C_{X}\left(u_{i}\right)\right|} \cdot \frac{1}{p} \cdot \sum_{y}^{\prime} \alpha^{*}(y),
$$

where $\alpha_{p}(x)$ denotes the number of p cycles in the cylce structure of x, u_{i} ranges all representatives of conjugacy classes (in X) of elements of order p, y ranges all p^{\prime}-elements in $C_{X}\left(u_{t}\right)$ and $\alpha^{*}(y)$ denotes the number of the fixed points of y (acting) on $\Omega-I\left(u_{i}\right)$.

In our situation, let us take $X=G$. Since we are assuming that $|\Omega-I(P)|$ $\equiv 0\left(\bmod p^{2}\right), G$ contains an element of order p which fixes less than $|I(a)|$ points. Hence,

$$
\frac{|G|}{p}=\sum_{x \in G} \alpha_{p}(x) \varsubsetneqq \frac{|G|}{\left|C_{G}(a)\right|} \cdot \frac{1}{p} \cdot \sum_{y}^{\prime} \alpha^{*}(y) .
$$

Now, $\sum_{y}^{\prime} \alpha^{*}(y) \geq \sum_{y \in \sigma_{G^{(a)}}} \alpha^{*}(y)-p \cdot \sum_{y \in \sigma_{G^{(a)}}}$ (the number of p cycles in $y^{I(a)}$. Since $C_{G}(a)^{I(a)} \geq A^{I(a)}$ and $A^{I(a)}$ is p-ply transitive (on $I(a)$), we get $p \cdot \sum_{y \in \sigma_{G^{(a)}}}$ (the number of p cycles in $\left.y^{I(a)}\right)=\left|C_{G}(a)\right|$ by the formula of Frobenius. On the other hand,

[^1]$$
\sum_{y \in \sigma_{G^{(a)}}} \alpha^{*}(y)=t_{a}\left|C_{G}(a)\right|
$$
where t_{a} is the number of orbits of $C_{G}(a)$ on $\Omega-I(a)$. Hence, we get
$$
\frac{|G|}{p} \geqq \frac{1}{p}\left(t_{a}-1\right)|G| .
$$

Therefore, $t_{a}=1$, and so $C_{G}(a)$ is transitive on $\Omega-I(a)$.
(1.2) $C_{G_{1}}(a)$ is transitive on $\Omega-I(a)$. Moreover, if j is one of $0,1,2$ and 3 and if $p+3+r-j \geq p+2$, then $C_{G 1,2 \cdots, j}(a)$ is transitive on $\Omega-I(a)$.

Proof is quite similar as in (1.1). Here we have only to notice that $C_{G_{1,2}, \ldots, j, j}(a)^{I(a)-\{1,2, \ldots, j\}} \geq A^{I(a)-\{1,2, \ldots, j\}}$ and so is $p-p l y$ transitive.

Since $C_{G}(a)$ is transitive on $\Omega-I(a)$, a normal subgroup $C_{G_{1,2}, \ldots, p+3+r}(a)$ is half transitive on $\Omega-I(a)$. Let $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k}$ be the orbits of $C_{G_{1,2}, \cdots, p+3+r}(a)$ on $\Omega-I(a)$.
(1.3) $k \leq 2$.

Since $C_{G_{1,2}, \cdots, p+3+r}(a)$ acts trivially on the set $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k}\right\}, C_{G}(a)^{I(a)}$ acts on the set $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k}\right\}$ transitively. Let Y be the subgroup of $C_{G}(a)$ which fixes Δ_{1}. Then, $\left|C_{G}(a)^{I(a)}: Y^{I(a)}\right|=k$. Since $C_{G_{1}}(a)$ is also transitive on $\Omega-I(a),\left|C_{G_{1}}(a)^{I(a)}: Y_{1}{ }^{I(a)}\right|$ is $\geq k$. But, in order that this holds, Y must be transitive on $I(a)$. Similarly, if $r \geq 1$, then $\left|C_{G_{1,2}}(a)^{I(a)}: Y_{1,2}^{I(a)}\right| \geq k$ by (1.2), and so, Y must be doubly transitive on $I(a)$. On the other hand, we may assume without loss of generality that $Y^{I^{(a)}}$ contains an element of just a p cycle. If $r \geq 1$, then since there exists no nontrivial doubly transitive permutation group of degree $p+3+r$ containing an element of a p cycle we get $Y^{I(a)} \geq A^{I(a)}$ (cf. [8, Theorem 13.9]). On the other hand, if $r=0$, then $Y^{I^{(a)}}$ becomes triply transitive by a lemma of Livingstone and Wagner [4, Lemma 6]. So, in any way, we get $Y^{I(a)} \geq A^{I(a)}$. Hence $k \leq 2$.
(1.4) $C_{G_{1,2}, \cdots, p,\{p+1, p+2\}, p+3, \ldots, p+3+r}(a)$ is transitive on $\Omega-I(a)$.

If $C_{G}(a)^{I(a)}=A^{I(a)}$, then $k=1$ and $C_{G_{1,2, \ldots, p+3+\gamma}}(a)$ is transitive on $\Omega-I(a)$, so we have the assertion. If $C_{G}(a)^{I(a)}=S^{I(a)}$, then $k=1$ or 2 . In any way, $C_{G_{1,2}, \ldots, p,\{p+1, p+2\}, p+3, \ldots, p+3+r}(a)$ is transitive on $\Omega-I(a)$.

Next, let us assume that $|\Omega-I(P)| \equiv 0\left(\bmod p^{2}\right)$. Then the order of a Sylow p subgroup of $G_{1,2,3}$ is p^{2} by the assumption and Theorem 1 in [1].
(1.1) If $p+3+r \geq 2 p$, then $C_{G}(a)$ is either transitive or has two orbits on $\Omega-I(a)$. If $(p+2 \leq) p+3+r \leq 2 p-1$, then $C_{G}(a)$ has two orbits on $\Omega-I(a)$.

If $p+3+r \geq 2 p$, and if G contains an element of order p which fixes less than $|I(a)|$ points, then the same argument as in (1.1) proves the assertion. If $p+3+r \leq 2 p-1$, then every element in G of order p fixes $|I(a)|$ points because of $|\Omega-I(p)| \equiv 0\left(\bmod p^{2}\right)$. Therefore,

$$
\frac{|G|}{p}=\sum_{x \in G} \alpha_{p}(x) \geq \frac{|G|}{\left|C_{G}(a)\right|} \cdot \frac{1}{p} \cdot \sum_{y}^{\prime} \alpha^{*}(y), \text { and }
$$

$$
\sum_{y}^{\prime} \alpha^{*}(y)=\left(t_{a}-1\right) \cdot\left|C_{G}(a)\right|,
$$

where t_{a} denotes the number of orbits of $C_{G}(a)$ on $\Omega-I(a)$. Hence, $t_{a}=2$ (and all elements of order p in G are conjugate).
(1.2') Let j be one of $0,1,2$ and 3. If $p+3+r-j \geq 2 p$, then $C_{G_{1,2}, \ldots, j}(a)$ is either transitive or has two orbits on $\Omega-I(a)$. If $2 p-1 \geq p+3+r-j \geq p+2$, then $C_{G_{1,2}, \ldots, j}(a)$ has two orbits on $\Omega-I(a)$.

Proof is similar as in (1.1) (i.e., as in (1.1)).
(1.3') Let $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k_{1}}$ and $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{k_{2}}$ be the partition of Ω into the orbits of $C_{G_{1,2}, \cdots, p+3+r}(a)$ on $\Omega-I(a)$, such that $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{k_{1}}\right\}$ and $\left\{\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{k_{2}}\right\}$ are fixes by $C_{G_{1,2}, \ldots, j}(a)$ with $p+3+r-j$ being the greatest integer not exceeding $2 p-1$. Then $k_{1} \leq 2$ and $k_{2} \leq 2$.

Proof of (1.3'). Let $\Delta_{1}, \cdots, \Delta_{k}$ be the ste of orbits of $C_{G_{1,2, \cdots, p+3+r}}(a)$ on $\Omega-I(a)$. Then $C_{G_{1}, \cdots, j}(a)^{I(a)}(j=0,1, \cdots, p+3+r)$ acts on the set $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$. First assume that $C_{G}(a)^{I(a)}$ and $C_{G_{1}}(a)^{I(a)}$ are both transitive on $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$. Let Y be the stabilizer of Δ_{1} in $C_{G}(a)$. Then $Y^{I(a)}$ is transitive. Moreover, Y satisfies the following condition: for any three points i_{1}, i_{2}, i_{3} in $I(a)$, a Sylow p subgroup of $C_{G_{i_{1}, i_{2}, i_{3}}^{I(a)}}^{I \text { fixes just } r}$ points on $I(a)-\left\{i_{1}, i_{2}, i_{3}\right\}$ and semiregular on the remaining points. Using this fact, we get $Y^{I^{(a)}}$ primitive. Because if $r=p-1$, then for $j=2, p+3+r-j \geq 2 p$ and so $C_{G_{1,2}}(a)^{I^{(a)-(1,2)}}$ is transitive on $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$, hence $Y^{I(a)}$ is doubly transitive. If $r<p-1$, we easily get $Y^{I(a)}$ primitive, by noticing that the number of blocks is at most 2. Hence $Y^{I(a)} \geq A^{I(a)}$. Hence $k=2$. But this is a contradiction, because $\left|\Delta_{1}\right|$ is dividsible by p^{2} as $|\Omega-I(P)|$ $\equiv 0\left(\bmod p^{2}\right)$ but $C_{G_{1}, \ldots, p^{+3+r}}(a)$ is not divisible by p^{2}. Next assume that both $C_{G}^{I(a)}$ and $C_{G_{1}}(a)^{I(a)}$ have two orbits on $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$ (say, $\left\{\Delta_{1}, \cdots, \Delta_{k_{1}}\right\}$ and $\left.\left\{\Gamma_{1}, \cdots, \Gamma_{k_{2}}\right\}, k_{1}+k_{2}=k\right)$. Let $Y(\Delta)$ be the stabilizer of Δ_{1} in $C_{G}(a)$ and let $Y(\Gamma)$ be the stabilizer of Γ_{1} in $C_{G}(a)$. Then the same argument as above shows that $Y(\Delta)^{I(a)} \geq A^{I(a)}$, and $Y(\Gamma)^{I(a)} \geq A^{I(a)}$. So, $k_{1} \leq 2$ and $k_{2} \leq 2$. Finally, if $C_{G}(a)^{I(a)}$ is transitive and $C_{G_{1}}(a)^{I(a)}$ has two orbits on $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$ (say, $\left\{\Delta_{1}, \cdots, \Delta_{k_{1}}\right\}$ and $\left\{\Gamma_{1}, \cdots, \Gamma_{k_{2}}\right\}$), then $C_{G_{1,2}}(a)^{I(a)}$ has the same two orbits on $\left\{\Delta_{1}, \cdots, \Delta_{k}\right\}$. (Because this is true if $r \geq 1$, and if $r=0$ we get $Y^{I(a)} 3$-transitive on $I(a)$ and $Y^{I^{(a)}} \geq A^{I(a)}$ and we get a contradiction.) Now the same argument as before shows that $Y(\Delta)_{1}{ }^{I(a)-(1)} \geq A^{I(a)-(1)}$ and $Y(\Gamma)_{1}{ }^{I(a)-(1)} \geq A^{I(a)-(1)}$. So, we completed the proof of (1.3').
(1.4') $\quad C_{G_{1,2, \cdots, p,(p+1, p+2), p+3, \cdots, p+3+r}}(a)$ has two orbits on $\Omega-I(a)$.

Proof is similar as in (1.4).
(1.5) Completion of the proof of Theorem A.

The method in this step is owing to Miyamoto [5, Lemma 1.5]. Let be an element of order p in $C_{G}(a)$ such that

$$
b=(1,2, \cdots, p)(p+1) \cdots(p+3+r)(p+4+r) \cdots(2 p+3+r) \cdots
$$

and $a b$ fixes the points $2 p+4+r, \cdots, 3 p+3+r$ (this is possible because of the assumption (2)). Now, let us set

$$
\begin{aligned}
K & =G_{1,2, \ldots, p,(p+1, p+2\}, p+3, \cdots, p+3+4}, \quad \text { and } \\
L & =\langle b\rangle \cdot K
\end{aligned}
$$

Then, $\left|C_{L}(a): C_{K}(a)\right|=p$, and since $C_{L}(a)$ and $C_{K}(a)$ has m orbits on $\Omega-I(a)$, where $m=1$ or 2 according as $|\Omega-I(P)| \equiv 0\left(\bmod p^{2}\right)$ and $|\Omega-I(P)| \equiv 0\left(\bmod p^{2}\right)$, we have $m \cdot \frac{p-1}{p}\left|C_{L}(a)\right|=\sum_{y \in \sigma_{L^{(a)}-\sigma_{K}}{ }^{(a)}} \alpha^{*}(y)$. Let s be the number of orbits of length p of $\langle a, b\rangle$ on $\Omega-I(P)$. Then in our case, $s \geq 2$. The $s(p-1)$ elements $a^{i} b^{j}$ (i are s of $0,1, \cdots, p-1$ (which depend on j) such that $\left|I\left(a^{i} b^{j}\right)\right|=|I(a)|$ and $j=1,2, \cdots, p-1)$ are not conjugate to each other. Clearly, $a^{i} b^{j}$ and $a^{i^{\prime}} b^{j^{\prime}}$ are not conjugate if $j \neq j^{\prime} . \quad a^{i} b^{j}$ and $a^{i^{\prime}} b^{j}$ are not conjugate if $i \neq i^{\prime}$, because otherwise there exists an element of order p in $C_{L}(a) \cap N_{L}(\langle a, b\rangle)$ which does not centralize $\langle a, b\rangle$, and this contradicts the fact (assumption) that $\langle a, b\rangle$ is a Sylow p subgroup of $G_{1,2,3}$. Thus we have $s(p-1)$ conjugacy classes in $C_{L}(a)-C_{K}(a)$ represented by the elements $a^{i} b^{j}$ (i are s of $0,1, \cdots, p-1$ (which depend on j) such that $\left|I\left(a^{i} b^{j}\right)\right|=|I(a)|$ and $\left.j=1,2, \cdots, p-1\right)$, and any of which has p fixed points on $\Omega-I(a)$. Since the restriction on any orbit of $\langle a, b\rangle$ of length p is selfcentralizing, we have

$$
\begin{aligned}
\sum_{y \in C_{L}(a)-C_{k}(a)} \alpha^{*}(y) & \geq s(p-1) \cdot p \cdot\left|C_{L}(a): C_{L}(\langle a, b\rangle)\right| \cdot\left|\left\{y \in C_{L}(\langle a, b\rangle) \mid p \nmid o(y)\right\}\right| \\
& =s(p-1) \cdot p \cdot\left|C_{L}(a): C_{L}(\langle a, b\rangle)\right| \cdot\left|C_{L}(\langle a, b\rangle):\langle a, b\rangle\right| \\
& =\frac{s(p-1)}{p} \cdot\left|C_{L}(a)\right|
\end{aligned}
$$

Therefore, $\frac{m \cdot(p-1)}{p} \cdot\left|C_{L}(a)\right| \geq \frac{s(p-1)}{p} \cdot\left|C_{L}(a)\right|$. But this is a contradiction, because $m=1$ and $s \geq 2$ if $|r-I(p)| \equiv 0\left(\bmod p^{2}\right)$ and $m=2$ and $s=p \geq 3$ if $|r-I(p)| \equiv 0\left(\bmod p^{2}\right)$.

Thus we have completed the proof of Theorem A.

2. Proof of Theorem 1 (i)

Let p be an odd prime, and let G be a $2 p$-ply transitive permutation group which satisfies the assumptions of Theorem 1 (i). Let P be a Sylow p subgroup of $G_{1,2, \cdots, 2 p}$. If $P=1$, then we have already shown that G is one of $S_{n}(2 p \leq$ $n \leq 3 p-1)$ and $A_{n}(2 p+2 \leq n \leq 3 p-1)$. Suppose that $P \neq 1$ in the following. Then $|I(P)|=2 p+r$ with $0 \leq r \leqq p-1$.

We divide our proof into the following two cases:
Case $1 \quad|\Omega-I(P)| \equiv p\left(\bmod p^{2}\right)$
Case $2|\Omega-I(P)| \equiv p\left(\bmod p^{2}\right)$

First let us assume that Case 1 holds. Assume that $|\Omega| \geq 4 p$. Then there exist two elements a and b of order p which commute to each other such that

$$
\begin{array}{r}
a=(1) \cdots(2 p)(2 p+1) \cdots(2 p+r)(2 p+1+r, \cdots, 3 p+r)(3 p+r+1, \\
\cdots, 4 p+r) \cdots \\
b=(1 \cdots p)(p+1, \cdots, 2 p)(2 p+1) \cdots(2 p+r)(2 p+1+r) \cdots(3 p+r) \cdots(4 p+r) \cdots
\end{array}
$$

Then $\langle a, b\rangle$ has $p+3$ orbits of length p because of the assumption that $\mid \Omega-$ $I(P) \mid \equiv p\left(\bmod p^{2}\right)$. Since $\langle a, b\rangle$ fixes the set $\{p+1, \cdots, 2 p, 2 p+1+r, \cdots, 3 p+r\}$ of $2 p$ points as a whole, there exists an elemten c of order p such that $c \in C_{G}$ $(\langle a, b\rangle)$ and c fixes the $2 p$ points $p, p+1, \cdots, 2 p-1,2 p+r+1, \cdots, 3 p+r$ pointwisely. Since c must have a p cycle on the set $\{1,2, \cdots, 2 p+r\}$ of $2 p+r$ points, and since $|\Omega-I(P)| \equiv p\left(\bmod p^{2}\right)$, the group $\langle a, c\rangle$ has at least $p+2$ orbits of length p. But this clearly contradicts the assumption of Theorem 1 (i). Thus $|\Omega| \leq 4 p-1$, and G is one of S_{n} and A_{n}, with $n \leq 4 p-1$.

Secondly, let us assume that Case 2 holds. Then the permutation group $G_{1,2, \cdots, p-3}$ on $\Omega-\{1,2, \cdots, p-3\}$ satisfies the assumptions of Theorem A, and so we get a contradiction. Thus, the proof of Theorem 1 (i) is completed.

3. Proof of Theorem 1 (ii)

Let G satisfy the assumption of Theorem 1 (ii), and let P be a Sylow p subgroup of $G_{1,2 \ldots, 2 p}$ which is cyclic. If $P=1$, then we have already shown that G is one of $S_{n}(2 p \leq n \leq 3 p-1)$ and $A_{n}(2 p+2 \leq n \leq 3 p-1)$. Suppose that $P \neq 1$. Then $|I(P)|=2 p+r$ with $0 \leq r \leq p-1$, because $N_{G}(P)^{I(P)}$ is a $2 p-p l y$ transitive group whose stabilizer of $2 p$ points is of order prime to p. If P is semiregular on $\Omega-I(P)$, then G is one of S_{n} and A_{n}, with $3 p \leq n \leqq 4 p-1$. Henceforth, we assume that P is not semiregular on $\Omega-I(P)$, and we will derive a contradiction. We assume moreover that G is of the least possible degree among them. Clearly, $|P| \geq p^{2}$. Let a be an element of order p in P. Since P is cyclic and is not semiregular on $\Omega-I(P), N_{G}(\langle a\rangle)^{I(a)}$ is $2 p-p l y$ transitive group such that $N_{G}(\langle a\rangle)_{1,2, \ldots, 2 p}^{I(a)}$ has a cyclic Sylow p subgroup which is nontrivial. Therefore, $N_{G}(\langle a\rangle)^{I(a)}$ is one of S_{n} and A_{n} with $3 p \leq n \leq 4 p-1$ by the minimal nature of G. Thus, we may assume that P is generated by the element b of the form

$$
b=(1) \cdots(2 p+r)(2 p+1+r, \cdots, 3 p+r)(3 p+1+r, \cdots, 4 p+r, \cdots) \cdots
$$

Clearly $C_{G}(P)^{I(P)} \geq A^{I(P)}$ and each element of order p in $N_{G_{I(P)}}(P)$ centralizes P. Therefore, let c be an element of order p such that

$$
c=(1,2, \cdots, p)(p+1) \cdots(2 p+r) \cdots
$$

and that $|I(c)|=3 p+r$. Then we may assume (by rechoosing P) without loss
of generality that c normalizes P and therefore centralizes P. Since c fixes p or $2 p$ points on $\Omega-\{1,2, \cdots, 3 p+r\}$ and since P is semiregular on the set of fixed points of c in $\Omega-\{1,2, \cdots, 3 p+r\}$, we have $|P|=p$. But this is a contradiction, and so the proof of Theorem 1 (ii) is completed.

The Ohio State University and the University of Tokyo

References

[1] E. Bannai: On multiply transitive permutation groups I, Osaka J. Math. 11 (1974), 401-411.
[2] E. Bannai: On multiply transitive permutation groups II, Osaka J. Math. 11 (1974), 413-416.
[3] M. Hall, Jr.: On a theorem of Jordan, Pacific. J. Math. 4 (1954), 219-226.
[4] D. Livingston and Wagner: Transitivity of finite permutation groups on unordered set, Math. Z. 90 (1965), 393-403.
[5] I. Miyamoto: Multiply transitive permutation groups and odd primes, Osaka J. Math. 11 (1974), 9-13.
[6] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[7] R. Noda and T. Oyama: On multiply transitive groups VI, J. Algebra 11 (1969), 145-154.
[8] H. Wielandt: Finite Permutation Groups, Academic Press, New York and London, 1964.

[^0]: *) Supported in part by the Sakkokai Foundation.

[^1]: 1) Theorem 1 in [1] is stated only for the case $r=0$. But it is evident that the assertion is also true for $1 \leq r \leq p-1$.
