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Introduction

Kolmogorov, Petrovskii and Piskunov [1], whom we shall refer to as KPP,
studied the initial value problem for a semilinear diffusion equation

(Lu=f(u),

Ifiί*, 0) = ιφ)

, ),

under the conditions:

(i) /(?)eC-[0, 1],

(ii)
(iii)
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These conditions are supposed to be satisfied throughout this paper. Replacing
u by w(x-\~2\t) the equation (1) is reduced to

(2) w"-2\w'+f(w) = 0 , 0<w<l xεΞR1 ,

(where ' = - , w = w(x) . )
\ dx /

Since the equation (2) is invariant under the transformation (#, λ)— *( — x9 — X),
we shall treat the case of λ>0.
KPP showed that

(3) X0

is the critical value in the following sense:
If 0<λ<λ0 then (2) has only trivial solutions w = 0 and w= 1. (As it is easy to
prove this fact, we omit it.)
If λ>X0 then (2) andthe normalizing condition w(0)=l/2 determine the unique
solution wλ(x). It satisfies automatically w\(x)>Q x^R1, wλ(—oo)=Q and
wλ(+oo)=l. (This fact is proved in Part I for the sake of completeness.)

We call wλ(x) or zuλ(x-\-2\t) the travelling wave of (1) with speed — 2λ.
In Part I we investigate the equation (2) in case of λ>X0. The existence

and uniqueness of the nontrivial solution wλ(x) will be established. We shall
give also the detailed properties of wλ(x) which play important roles in Parts II
and III. We also investigate

( 4 ) w"- {2λ +g'(w)} w'+f(w) = 0, 0<«;< 1

under suitable conditions on g. The existence and uniqueness of solution of (4)
will be needed in Part III. The nontrivial solution w(x) of (4) is also called the
travelling wave for the sake of convenience.

Replacing u(x+2\t, f) by u(x, t) the problem (1) is reduced to

\L+2\-H-]u=f(u)y 0<*/<1 fcOe/rxίO, oo),
( 5 ) L ox J

u(x, 0) = u0(x) x<=Rl .

In Part II we propose two kinds of criteria on the initial function u0(x) which

conclude

lim sup u(x, t) = 0 for any A
/^.oo XtζA

or

lim sup \u(x9 t)—zϋλ(x-{-c)\ = 0 for some c.
/•*•"» x^R1

An application of this result to a problem with higher space dimension is con-
sidered also. Adding the assumption:
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(6) /'(?)</'(0) fe(0,l),

we propose certain criterion on the initial function UQ(X) which concludes

lim sup \u(x, t)—wλ(x)\ = 0 .
t+°° X&R1

KPP obtained in [1] a remarkable result: If the solution u(x, t) of (1) has
the initial function u0(x)=l (tf>0), =0 (#<0), then we have

( a ) (sgn x){u(x+u-\ξ, T), τ)-«

as τy^-f oo, uniformly with respect to x^R1 and uniformly with respect to ξ on

every closed subinterval of (0, 1).

(b)

Here u~l(ξ, T) is given by the implicit relation u(u~l(ξ, T), τ)=ξ for (ξ, τ)e(0, 1)

X(0, oo ). This is well defined since we have — u(x, t)>0 for (x, t)^RlX
dx

(0, oo ). Their proof is based on the fascinating method which we would like to
call the method of KPP transform. Part III is devoted to showing the effecti-
veness of the method of KPP transform. Let us introduce the class M of smooth

functions by

( 7 ) M= {u(x)\ ίφ)>0 x(ΞR\ u(-oo) = 0, u(+oo) = 1} .

Suppose that the smooth function u(x, t) belongs to the class M for any

Then we can define the smooth function u~l(ξ, T) by the implicit relation

(8) u(u-\ξ, T), r) = ξ (ξ> τ)e(0, l)χ [0, oo).

Let us call the new function ύ(ξ, r) given by

( 9) ύ(ξ, r) = u'(u-\ζ, T), r) (f, τ)e(0, 1)X [0, oo)

the KPP transform of u(x, t). Here and hereafter for any smooth function/of

two independent variables (x, t) or (ξ, r) /' and / mean the partial differentia-

tions with respect to the first and the second variable respectively. If the above

u(χ, t)=u(x) is independent of ί, then u~l(ξ,τ)=u~l(ξ) and ύ(ξ,τ)=ύ(ξ) are also
independent of T. The transformation

•ξ = u(x, t),
or

gives diffeomorphism between the region jR1 X [0, oo) of the (#, ί)-plane and the

region (0, l)x [0, oo) of the (ξ, τ)-ρlane. Hereafter, let u(x, t) be the solution of
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(1) with uQ(x)€ΞM. It follows easily that u(x,
ing (8) we have

1 1

any ί>0. Differentiat-

(11)
«'(#, t) a(ξ, T) '

The transformation (10) induces the rules of transformations between the partial

differentiations (—, -®Λ and (—, —) :
V 9£ 9τ / V Qx dt 1

(12)

dx

1 9
dξ u'(x, t) dx '

_9_ = 9 _ u(x, t) 9
9τ dt u'(x, t) dx '

(13)
dx

>T-t' ' dξ '

Especially we have

It follows from (12) that

(15) #(ξ9

(16)

r >
u(x, t)

>(ζ r) = 1
v ; '

I

Differentiating (1) we have

(17)

This can be rewritten as

(18)

or

(19) ύ(ξ, T) = a\ξ, , T)



NONLINEAR DIFFUSION EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV TYPE 15

= ""'<*• ί>-! -̂/<"('' <tf +Λ"<A: ι>«* "
Since we have

(20) wλ"(x)-2\wλ'(X)+f(wλ(x)) = 0

it follows

(21)
\ζ

Differentiating (21) with respect to ξ we get

(22) 0 = ^(ξ)^"(ξ)-f(ξ)ώ>!

Subtracting (22) from (19) we have

(23) [Lά- {/'(?)+(«+ λ̂"}](β- λ̂) = 0 .

Putting

(24) φ, t) = {f'(

we can rewrite (23) in the form

(25) [L-φ, t)] (u'-ιί,λ(u)) = 0 .

Differentiating (18) with respect to r we get

(26) [4-ί/'(?)+2ώβ"}]ώ = 0.

Putting

(27) c2(x, t) = f/'(f )+2ββ"} I ί̂ c,.,,.,-,

we can rewrite (26) in the form

(28) [L-c,(x, t)]ώ(u(x, t), t) = 0.

For any function h(ξ, T), subtracting \Lh— f(ξ )]h from (18) we have

(29) [4- {/'(f)+(β+A)A"}](β-A) = -[Lh~f'(ξ)]h .

Let us call the (β, f )-plane the phase plane. Roughly speaking the main results
in Part III are that all the travelling waves are stable from above and below on
the phase plane. Especially corresponding to the original results of KPP, the
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slowest travelling wave is stable from above almost in the large on the phase plane.
In Part III the following standard comparison theorem plays an essential role.

Comparison Theorem (see [2] Chapter 10).

Suppose that c(x, t) satisfies the growth condition:

(x, t)(ΞRlx[Q, T]

for some C>0. Suppose that u(x, t) satisfies the regularity conditions:

«(*,/) eC"(JFx[0, Γ]),

uf(x, t), «"(*, t\ u(χ, t) e C'OR1 x (0, T\)

and the growth condition:

u(x, t)^-Meκ«χ2 (x, ήzΞR1 x [0, T]

for some M>0 and K0^Q. Then the differential inequality

I[L-C(X, t)]u>0 (x, ήtΞR1 X (0, T] ,

[u(x, 0)>0 x&R1

implies

u(x, *)>0 (x, ίJe^xfO, Γ\.

The following simple fact also plays an important role. If u0(x) e S\Rl) (u0(x)
has the bounded continuous derivatives up to the third order), then the solu-

tion u(x, t) of (1) satisfies

(30> , k = 0, 1, 2, 3

for some A^O and β>0. This can be shown as follows. Define the approxi-
mate solution Uj(xt t) by the iteration

\u0(x,t)=(~ H(x-y, t)u0(y)dy,

\Uj(x, t) = u0(x, t)+ ('(" H(»-y, t-ήftUj^y, s))dyds j = 1, 2, 3, - .
\ J θJ —°°

Here and hereafter

represents the fundamental solution of the diffusion equation. Then it is easy

to see that there exist ^4>0 and B^O such that
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3, ft = 0, 1,2,3,

j = 0,1,2,3,-.

It is also easy to see that for k=Q, 1, 2, 3,

' = 0(32)

for any Γ>0. (31) and (32) proves (30).

PART I TRAVELLING WAVES

1. Existence, uniqueness and properties of the travelling wave

In this section we study

under the condition

(l l) £(<>) = /(O) = 0, g(ξ)eC-[0, 1].

The assumptions on/are stated in Introduction. Put

(1.2) 2μ =

Then (4) is equivalent to

0

Here "•••" represents the higher order term for small (w— 1, w'). The coefficient
matrix in (1.3) has two distinct eigenvalues

(1.4) r± = r±(μ)

with opposite sign (τ+>0>τ_). The singular point (w— 1, «/)=(0, 0) is the
saddle. Well known theory of 2-dimensional autonomous system gives

Lemma 1.1 (see [3] Chapter 13). There exists a C°° function w(x) defined
and satisfying (4) in the interval [0, oo). Moreover it satisfies

(1.5)

[1—w(x) — a1e
r-x{l-}-O(e~8x)} as x -* +00 ,

/or ίow^ αt>0 αwrf δ>0,
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(1.7) ώ(ξ) = w\w-\ξ))^C

(where w~\ξ) is given by w(w~\ξ))=ξ for ξ e|χθ), 1],)
and

(1.8) ιί)(ξ)>0 £eKO), 1], ώ(l) = 0,

The above w(x) is unique in the following sense.

Theorem 1.1. We assume λ>0. Suppose that v(x)^C2(09 oo) satisfies

(1.9) v"- {2\+g/(v)}v/+f(v) = 0, 0<e;< 1 x>0 .

T/" #(#) is not identically equal to 0 or 1, ίAtf/z «;# have

(1.10) *;(*) = ^(ΛI+C) x>x0

for some c and x0. Here w(x) is the function stated in Lemma 1.1.

Proof. Integrating (1.9) on the interval [0, x], we have

(1.11) v'(x) = O(x) as x-*+oo .

For any £>0, we can rewrite (1.9) in the form

(1.12)

Here

(1.13) h(v) = f(2λ-φ-/(t>)

Integrating (1.12) and using (1.11), we get

(1.14) ΐ/(x)-(2\-ε)v(x)-g(v(x))

Suppose that v(x) is not identically equal to 0 or 1. Then it is easy to see

(1.15) v'(x)>Q x>x,

or

(1.16) v'(x)<Q x>x,

for some x^O. In any case there exists the limit τ;(+oo)=lim v(x). By Le-
X+ + oo

besgue's theorem we have

(1.17) lim [°e-*yh(v(x+y))dy = ~h(v(+oo)) .
*->+°° Jo 8
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(1.14) and (1.17) assure the existence of the limit ί/(+oo)=lim v'(x) and give

(1.18)

This implies

(1.19)

or

(1.20) v(+oo) = v'(+oo) = 0 .

The singular point (v, ί/)=(0, 0) has the characteristic roots σ±(λ)=λ± \/λ2— λj.
Since real parts of σ±(λ) are non negative for λ>0. This means that this singular
point is unstable node, center or spiral. So it does not occur (1.20) and (1.16).
It is well known that (1.19) implies (1.10). This proves Theorem 1.1.

Now we proceed to prove the existence of the solution w(x) of (4). Since /
and g may be considered as C°° functions with compact supports defined on
the whole real line, then w(x) in Lemma 1.1 can be continued uniquely on the
whole real line as a solution of the equation (4). The remaining task is to show

(1.21) 0<w(*)<l x<=Rl

under suitable assumption on g. Put

(1.22) σ± = σ±(λ) = λ ± \/λ2-λ* .

Hereafter we assume λ>X0. Then we have

(1.23) σ+(λ)>σ_(X)>0.

We can rewrite (4) in the form

(1.24)

Let us introduce following notations:
( i ) Incaseofλ>X 0

,;,)•
(1.26) u = '(u+, u_), u± = zo'—σ^(\)w

(1.27) h(ξ) = '(H4ξ), h_(ξ)), h±(ξ) =

(ii) In case of λ=X0

<"»>
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(1.29) u = '(tt+, u_), u+ = so, ι/_ =. w'—\ϋw—g(w) ,

(1.30) *(g) = <(λ+(£), /*_(?))> h+(ξ) = g(ξ\ h_(ξ) =

Then the equation (4) is equivalent to

(1.31) -tj
ax

Lemma 1.2. If

(1.32)

ί/^« ZO(Λ ) ί« Lemma 1.1 satisfies

(1.33)

(1.34) ^lim sup - - log{ \w(x) \ + \w'(x) \} <-σ_

Proof. The second component of the equation (1.31) and (1.6) yield

(1.35) u_(x) = -

Suppose that (1.33) is violated. Since «/(#)>() on every interval (#0, oo) on
which 0<w(x)<l, then we have only the possibility of the following situation.
There exists x0 such that

(1.36) w(x0) = 0,

By (1.32), (1.35) and (1.36) we have

(1.37) w'(x0) = -
*o

On the other hand by (1.36) we have α/(#0)>0. This is a contradiction. This
proves (1.33). By (1.33) we have the limit w(— 00)= Hm w(x). By Lebesgue's

theorem we have

(1.38) lim \~e-*-"h_(w(x+y))dy = —h_(w(-oo)) .
χ+-°°Jo (j _

(1.35) and (1.38) assure the existence of the limit w'(—oo)=\im w'(x) and yield
X+-o*

(1.39) w'(- oo ) = _L /(«,(- oo )) .
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This implies

(1.34) follows automatically from (1.40) (see [3] Chapter 13). This completes
the proof of Lemma 1.2.

Suppose that h_(ξ) satisfies (1.32) and

(1.41) M

for some £0

e(0, 1]> t'ιen we ̂ ave ̂  more precise information than (1.34).

Lemma 1.3. If\>\0 then there exist a > 0 and 8 > 0 such that

(1.42) (A-}*ιo(χ) = (σ_)kae*-*{l+0(e8x)$ as x -+ -oo
\ ax '

k = 0,1,2,

(1.43) ' = 0(e8Jt) m x ~* ~ °°

Lemma 1.4.
// λ=λ0, ί/tew ί/tere emί α>0, όe/?1 and δ>0

(1.44)
ax

k = 0, 1, 2 ,
.. ._. /"'"(Λ;))' Λ/ 1 \
(1.45) r^ΓTί =o(τ-rι) «*^ -oo.v (w'(x)) \ | i c | 2 /

Proof of Lemma 1.3. By (1.34) we have

(1.46) J° je-

Put

(1.47) α =

(1.48) i =
&+ — cr_

It follows from (1.31) that

(1.49) «+(*) - (σ+

(1.50) «-(*)= -(<r

or equivalently
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(1.51) w(x) = ae'

(1.52) wf(x)

σ + — σ_

(1.51) shows that #>0. Suppose that 0=0, then by (1.35) and (1.50) we have

(1.53) Γ e-*-yh_(w(y))dy = 0 .
J_oo

By (1.32) this implies

(1.54)

Since we have (1.41), this is a contradiction. This proves a>0. (1.42) follows
at once from (1.51), (1.52) and (4). Note that

(1.55) = o(**) as x
w(x)

for some δ>0. Since we have

(1.56)
w w

it follows

(1.57)

By (1.42) this implies

<' 58>
Since

(1.59) w' = σ.w+g(ιo)+u+ ,

(1.60) «/ = σ+M++A+(α>) ,

then it follows

w
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Thus we have

(1.61) =(σ+-σ_)-±-+0(w) as *->-oo.
\ W / W \ W '

By (1.42), (1.55), (1.58) and (1.61) we get (1.43). This proves Lemma 1.3.

Proof of Lemma 1.4. By (1.34) we have

(1.62) Γ e-^\y\\h±(w(y))\dy < + oo .
J _oo

Put

(1 .63) a = - {«_((>)- j" j-W_(w(y))dy} ,

(1.64) b = w+(0)- (° β- V {h+(w(y))-yh_(w(y))} dy .
J-oo

It follows from (1.31) that

(1.65) u+(x) = (b-ax)^x

(1.66) «_(*)=

or equivalently

(1.67) w(x) = (b-ax)eλox+{* e^χ

J_oo

(1.68) z</(x)-g(

+ Γ *V'
J _ o o

(1.67) shows that α>0. Suppose that #=0, then by (1.35) and (1.66) we have

(1.69) Γ e-*oyk_(w(y))dy = 0 .
J_oo

By (1.32) this implies

(1.70) *-(«<*)) = 0

Since we have (1.41), this is a contradiction. This proves #>0. (1.44) follows
at once from (1.67), (1.68) and (4). Now we proceed to prove (1.45). First we
note that

(1.71) ^W^of— ) as*->-oo.
V } w(oc) \\x\J

In this case we also have (1.58). Since
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(1.72) w' = \0w+g(w)+u_ ,

(1.73) uj = \0u.+h_(w) .

Then it follows

w / \ w

By (1.44), (1.71), (1.58) and (1.74) we get (1.45). This completes the proof of
Lemma 1.4. Thus we obtain

Theorem 1.2. We assume λ>λ0. Suppose that f satisfies the assumptions
stated in Introduction, g is a C°° function satisfying (1.1), (1.32) and (1.41). Then
there exists uniquely the solution w(x) of (4) supplemented by the normalizing con-
dition w(Q)=ί/2. w(x) belongs to the class M given by (7), and has the bounded
continuous derivatives of any order. Moreover it satisfies

fl-ίφO = aιe

τ-*{
' ' I -w'(x)=τ_aιe

r-

-ίφO = aιe

τ-*{l+0(e-**}) as x - +00 ,

{l+O(e-sx)} asx^+oo

for some at>0 and 8>0. Here τ_=r_(μ) is given by (1.4) and (1.2). If\>\0

then there exist a>0 and δ>0 such that

(1.76) (-r-)*w(*) = (o -)*0β*-*{l+O(β«*)} as x^-oo
V ax /

k = 0, 1, 2 ,

<r_=σ_(λ) is given by (1.22). If λ=λ0 then there exist «>0, b^R1 and

8>0 stick that

(1.78)

• A = 0,1,2,

(1.79)

Since g(ζ) = 0 satisfies (1.32) and (1.41) this theorem shows the existence
and uniqueness of the solution wλ(x) of (2) supplemented by the normalizing
condition α>(0)=l/2. wλ(x) also satisfies (1.75)~(1.79).

2. KPP transform of the travelling wave

In this section we investigate the properties of the KPP transform ti>(ξ ) of
the travelling wave w(x).



NONLINEAR DIFFUSION EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV TYPE 25

Theorem 2.1. If\^\oy the KPP transform w(£)=w'(w~l(ξ)} of the travel-
ling wave w(x) stated in Theorem 1.2 has the following properties'.

(2.1) f&($)eC"[0,l]nC-(0,l],

(2.2) w(ξ)>0 ee(0,l),

(2.3) ιft(0) = fδ(l) = 0, tί)'(0) = β _(λ), zί>'(l) = τ_(μ) ,

(/fere <r_(λ) is given by (1.22), τ_(μ) is given by (1.4) α«<i (1 2) )

(2.4) #(£)+ ̂  = 2λ+/(f) ξ e(0, 1) ,

(2.5) *nm^^)-^(£)}-/(^m/'(lτM£) = 0 £€=(0, 1) ,

(2.6) lim #&"(£) = 0
£-> + 0

Proof. It is easy to see (2.1)~(2.3). (2.4) follows from (4). Differentiating
(2.4) we get (2.5). Since

by (1.43) or (1.45) we get (2.6). This completes the proof of theorem 2.1. It is
easy to show

Lemma 2.1. Suppose that Ω(f ) and ω(|) are both positive valued smooth
functions on some interval [α, /3]c[0, 1]. Then the differential inequality

zί)λ(^) satisfies (2.1)'̂ -{2.6). Moreover it satisfies

Theorem 2.2.

(2.7) zί>λ2(£)<^λl(f) fe(0, 1) λ i>λ l>λβ,

(2.8) lim sup |f&λ(£)-ιftλl(£)| =0
λ-ί λ! 0<ξ<l

(2.9) lim sup ιfcλ(f ) = 0 .

Proof. Since fftλl(l)=fftλf(l)=0, fftλl

/(l)=τ_(λ l) <τ_(λ2)=^λ2

/(l), then (2.7)
follows at once from (21) and Lemma 2.1. Multiplying (21) by zί>λ(f), we get
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(2.10) H>tfW(ξ)+f(ξ) = 2\tiλ(ξ)

Integrating over (0, ξ) and imposing the boundary condition z#λ(0)=0, we get

(2.11) -f*V(?)
L

Since w)λ(l)=0, this implies

(2.12)
o λ J o

Suppose that λ2>λ1>λ0, by (2.11) and (2.12) we get

f {dx^-f
Jo

(2.13) -1 «2(£)-*V(i)} <2λ2Z J

This gives

(2.14) 0<^ λ l(?)-^ λ 2(f)<-l/('7X'?^7τr fe(0, 1).

On the other hand we have

(2.15)

(2.14) and (2.15) prove (2.8). Multiplying (2.10) by z£/(£), we get

(2.16)

Integrating over (0, 1) and imposing the boundary condition
we get

<2 17>
< sup \f'(ξ)\

Integrating (2.16) over (0, ξ) and imposing $λ(0)=0, we get

51 (i
^λfa) (wA'(i7))2rfi7+ \ I /''o Jo

By (2.12) and (2.17) this gives
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(2.19) λeV(? )-/(£)^)<^OSUP I /'(£) | J

Since

(2.20)

It follows from (2.19) that

(2.21) {^λ(f)_ J-/^))^ J_{l/^)+sup \f'(ξ) I

This proves (2.9). This completes the proof of Theorem 2.2.

3. Second existence theorem for the travelling wave

Theorem 3.1. Suppose that λ>X0 and g satisfies (1.1). We assume that
there exists smooth function W(ξ) defined on [0, 1] which satisfies

(3.1)

(3.2) (ξ)>0 £€=(0,1),

(3.3)

Here τ_(/i) M ̂ we« όy (1.4) and (1.2). TAera ίAere exists uniquely the solution w(x)
of (4) supplemented by the normalizing condition a>(0)=l/2. zί>(£) satisfies (2.1),
(2.2), (2.4), (2.5)

(3.4) fft(0) = ιft(l) = 0,

(3.5) zί)'(O) = σ_(λ) or <r+(λ) .

(3.6) ξώ"(ξ) is bounded on [0, 1].

Here τ_(μ) is given by (1.4) and (1.2), αw<ί <τ±(λ) is given by (1.22).

Proof. Let us fix λ^λ,, such that

(3.7) 2\+g'(ξ)<2\1 £e[0, 1].

By Lemma 1.1 we have the solution ti>(ξ) of

(3-8)

defined in some subinterval [f α, 1] of [0, 1] which satisfies

(3.9) ιδ(l) = 0, «&'(!) =.̂ (1*), Λ(f)>0 eefft, 1).
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Lemma 2.1 assures the inequality

(3.10)

as long as ιv(ξ) satisfies (3.8). Thus we can continue ιυ(ξ) on [0, 1] as a solution
of (3.8). The relation

(3.11) ,-r*

gives the solution w(x) of (4) with w(0)=l/2. We omit the proof of the remain-
ing parts. It can be easily obtained by the standard theory of 2-dimensional
autonomous system.

PART II. ASYMPTOTIC BEHAVIOR OF THE TIME DEPENDENT SOLUTION

4. Stability and instability criteria for wλ(x)

Throughout this section we assume λ>λ0. We study the relation between
the solutions of the time dependent problem

( 5 )
u(x, 0) = u0(x)

and the travelling wave wλ(x). As is proved in Part I wλ(x) is the unique solution
of the problem

(2) w"-2\w'+f(w) = 0, 0<α;<l xEΞR1

supplemented by the normalizing condition w(G)=\!2. Throughout this section
ι>>0 is taken such that the function F(ξ v) given by

(4.1) *•(*; ")=/(£)+"£ ee[o, i]
is monotone increasing with respect to ξ in [0, 1]. Let us introduce following

notations:

(4.2)

(4.3) #(*; /,) = e-»H(x, t)dt = -
2v μ

(4.4) u(*, y, ί; λ, v) = *ί"-*>-of™H(x-yt t)

= e~"H(x-2\t-y, t) ,

(4.5) E7_(«, >, ί; λ, ») = *o-*>-<#™{H(x-y, t)-H(x+y, t)} ,
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(4.6) G(x, y;\,v) = ^*-»K(x-y \*+v),

(4.7) G_(x, y, λ, v) = e"χ-»{K(x-y; \>+v)-K(X+y; \ +v)} .

It is easy to see the following relations:

(4.8) (" U(x,y,t ,\tv)dy = e-",
J_co

(4.9) (T U(x, y, *; λ, ̂ Λ = 1*-* ,
Jt J-<» ϊ'

(4.10) Γ t/(*. j, ί; λ, v)dy+ΛtΓ U(x, y, s; λ, v)dyds = 1 ,
J_oo J o J - o o

(4.11) J"oβG(*,^;λ,y>fy = 4-,

(4.12) (~i7(»r, y, t; λ, v)A = G(x, y; λ, ι>),
Jo

(4.13) U.(x,y, t;\, v)>0 (x, y, ί)ί=(-oo, 0)x(-oo, 0)x(0, oo),

(4.14) Γ—|-^-(*,J',ί;λ,«')l >0 (*,t)e(-oo,0)x(0, oo),
L όy J.y=o

(4.15) G_(Λ;,j;λ, ^)>0 («f,y)e(-oo, 0)x(-°o, 0).

Suppose that

K*)e£\-oo,0], c»(0)=l,

' lθ<ω(Λ;)<l Λ<0.

Define ώ(Λ ) by the relation

(4.17) ω(x) = -ω"(x)+2\ω'(x)-\2

0ω(x)

Then we have

(4.18)

By (4.16) and (4.18), we have

(4.19) ω(x) = ep+x+

f° ,

J_oo ~^ '^' '

Here we use the abbreviation

(4.20) p+ =

It can be also represented as
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(4.21) ω(«) = J° JJ.(x, y, t; λ, v)ω(y)dy+

00
U_(x,y,t-s;\,v]

— oo

—- u-(χ> y> *-*; λ> »oy

We define {Wj(x)}^0 by

(4.22)

(4.23) wy(«) = jG(x, y; λ, ̂ .̂.(y); )̂<ίy = 1,2,3, - .

We define {u^x, f)}7_β by

(4.24) n,(», ί) = W0(x),

(4.25) aχ«, ί) =^U(x, y, t; λ, v)w0(y)dy+

+ΓΓ ί̂*' ̂  i-i' λ> "WPί- Ay *)'>Jo«/-°°

Hereafter we assume

(4.26) ω(*)>

Lemma 4.1.

(4.27) Q<W1(x)<WQ(x)

(4.28) O<BI(Λ> ί)<nβ(Λr, t) = W0(x) (x, t)^Rlx(09 oo),

(4.29) H^ΛJ, ί+A)<B1(Λ?, t) (x, t)<=Rlx(Q, oo), A>0.

Proof. (4.26) shows that W0(x)& I it follows from (4.11) and (4.23) that

(4.30)

To prove (4.27) it suffices to show

(4.31)

By (4.23) we have

(4.32) | ^ - + 2 v + ^ W l = F(ω(x)-y v) x<0.

Therefore W^x) can be represented as
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(4.33) W1(*) =

Here p+ is given by (4.20). Since S?j(0)<l and F(ω(y) ,v)^(\l+v)a>(y) for
3><0, it follows from the positivity of the kernel G_ that

(4.34) W,(x) <e^x+ Γ G_(x, y;\,v) (\l+v)ω(y)dy .
J -00

(4.26), (4.34) and (4.19) give (4.31). This proves (4.27). It is easy to see

(4.35) 0<nfa *)<! (x, ^eJ^xfO, oo) .

To prove (4.28), it suffices to show

(4.36) 0<nfa *)<«>(*) (Λ, Oe(-°°> 0]x(0, oo) .

By (4.25) we have

-+v\nl = F(ω(x); v) (x, i)e(-oo', 0)x(0, oo) ,
(4.37)

n^x, 0) = ω(Λ ) Λ;^(— oo, 0) .

So we have

(4.38) u^x, t) = (° t/.(*, y, *; λ, ^)
J _oo

+ (ΐ U_(x, y, t-ί; λ, v)F(ω(y); v)dyds+
JoJ-00

o

— -^-(* y '-'; λ' v

This gives

(4.39) Ufa t) < Γ [/_(*, y , ί λ, v)ω(y)dy+
J_oo

+ (ΐ ί/_(«, J, «-*; λ, v)(\l+v)ω(y)dyds+
JoJ-°°

- ' >oy

(4.26), (4.39) and (4.21) show (4.36). This proves (4.28). For any h>0 we have

(4.40) B1(*,ί+A)=Γ U(x,y,t;\,vfl1(y,h)dy+

By (4.28) we have
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(4.41) n.fat+hxΓ Ufa y, t;\, v)w0(y)dy+
J_oo

υ(*> y* *-*; λ>-°

By (4.25) this gives (4.29). This completes the proof of Lemma 4.1.

Lemma 4.2.

(4.42) W^(x)>Wj(x)>Q xfΞR1 j = 1, 2, 3, — ,

(4.43) Uj.fa f)>By(*, ί)>0 (*, ήe^xίO, oo) y = 1, 2, 3,

(4.44) B/*, *)>«/*, t+h) (x, t)*=Rlx(Q, oo), Λ>0, = 1, 2, 3, - .

Proof. (4.42) and (4.43) follow from (4.27) and (4.28) by using the monoto-
nicity of the nonlinearity and the positity of the kernels. For any Λ>0 we have

(4.45) By(*, t+h) = Γ U(x, y, t\ λ, v)n.(y, h)dy+
J —00

+ (T Ufa y, t-s; λ, vWΛj.Jϋ, *+*); »)rfyί& = 1, 2, 3, - .
JoJ-°°

(4.28) and (4.43) give

(4.46) tt.(y, h)<w0(y) j = 1, 2, 3, - .

(4.46) and the induction hypothesis

(4.47) n._,(y, s+h^u.^y, s) (y, s^R1 x (0, oo)

give

(4.48) a. fa t+h) < Γ Ufa y, t; λ, ι>)W0(y)dy+
J -oo

u(*> y> f-5; λ>

This proves (4.44). This completes the proof of Lemma 4.2.

Lemma 4.3. For any j ^ 0 we have

(4.49) lim u.(x, t) = Wj(x)

uniformly with respect to x^R1, monotone decreasingly with respect to t.

Proof. By (4.12) and (4.23) we have

(4.50) w,(x) = (T U(x,y, t-s; λ, v)F(Wj.,(y)\ v)dyds+
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+1 \ U(x, yy s λ, ήFίWf-iίy); v)dyds.
J ί J - o o J

Subtracting (4.50) from (4.25) we have

(4.51) */*, t)-w,(x) = /!+/,+/.+/< .

Here

Γ°°(4.52) A = \ U(χ, y,t\\, v)w0(y)dy,
J _00

(4.53) 72 = — \ I U(x, y, s; λ, v)F(wj_l(y); v)dyds,

(4.54) I, = Γ \~ U(x, y, s λ, ̂ {̂ ...(j, t-t); v)-
Jt-TJ -°°

(4.55) 74 = ..^(*» y> *-*'• λ> "

-^y-ι(y); ")}4v* (O<τ<θ

By (4.8), (4.9), (4.11) and (4.12) we have

(4.56) |7, |<β-*,

(4.57) |7, |<β-w,

(4.58) |7,|<β-w-Γ>,

(4.59) 1 74 1 < 1 sup I F'(ί, v) \ sup | βy.̂ , t)-Wj _,
'

This proves (4.49) inductively. This completes the proof of Lemma 4.3. Lemma
4.2 shows the existence of the limits

(4.60) W(x) = lim wAx) ,
y frββ

(4.61) B(Λ, ί) = lim » fa t) .

Letting^' tends to infinity in (4.23) and (4.25) we have

(4.62) w(x) = Γ G(x, y; λ, v)F(w(y)\ v)dy ,
J_oo

(4.63) u(x, t) = f " U(x, y,t;\, v)w0(y)dy+
J _oo

+ ΓΓ U(x, y, t-s; λ, v)F(π(j, *); ι>)dyds .
JoJ-00

So we have
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(4.64) - + 2 λ + * s > ( * ) = F(W(x); v)

|~L+2λ -j-+v]u(x9 t) = F(n(x, t); v) ,L ox -i(4.65)
(u(x, 0) = W0(x).

Finally we have

Lemma 4.4.

(4.66) w"-2\w'+f(w) = 0,

(Γz,+2λ— ]u=f(u),
(4.67) L 9*J

(u(x, 0) =

Since W(x) is continuous it follows

Lemma 4.5.

(4.68) lim Wj(x) = W(x)

uniformly with respect to x in every finite subίnterval of R1 and monotone decreasingly
with respect to j.

Since U(x, t) is continuous, it follows

Lemma 4.6.

(4.69) lim n.(x, t) = u(x, t)

uniformly with respect to (x, t) in every compact subset of R1 X [0, oo) and monotone
decreasingly with respect to j.

(4.44) gives

Lemma 4.7.

(4.70) u(x, t) > u(x, t+h) (x, t) e R1 x [0, oo), h > 0 .

By (4.49), (4.68), (4.69) and (4.70) we have

Lemma 4.8.

(4.71) lim u(x, t) = W(x)

uniformly with respect to x in every finite subinterval of R1 and monotone decreasingly
with respect to t.

Theorem 4.1. We assume λ>λ0. Suppose that the solution u(xy t) of (5)
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has the initial function

(4.22)

Here ω(x) satisfies

(4.16) K*)e <δ*(-oo, 0],

(4.26) ώ(x) = -ω"(x

and

(4.72) lim inf ̂ L = 0 .
*•>-- wλ(x)

Then we have

(4.73) lim π(x, t) = 0
/-><»

uniformly with respect to x in every finite subίnterval of Rl and monotone decreasίngly
with respect to t. If we and the assumption ω(— oo)— 0, then the convergence in
(4.73) is uniform with respect to x€=( — oo, A] for any A.

Proof. By (4.71) it suffices to prove w(x)=0. Suppose that this is not true,
then by (4.66) there exists c such that w(x)=wλ(x-\-c). Since W(x)^ω(x) # <0,
we have

0 = lim inf ̂ I> lim inf
*->-~ ^x(̂ ) *+-°*

On the other hand, by (1.76) or (1.78) we have

This is a contradiction. Therefore we have w(x)=0. This completes the proof
of Theorem 4.1. By comparison theorem we have

Corollary to Theorem 4.1. Suppose that the solution u(x, t) of (5) has the
initial function u0(x). If

with W0(x) given in Theorem 4.1, then we have

lim u(x, t) = 0
/->«»

uniformly with respect to x in every finite subinterval of R1. In case of ω(— oo)=0,
the above convergence is uniform with respect to #e( — oo, A] for any A.
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Now we give some examples of ω(x) which satisfy all the conditions stated
in Theorem 4.1.

EXAMPLE 4.1. (λ > X0)

(4.74) ω(x) = e«* σ_(λ)<σ<σ+(λ) .

EXAMPLE 4.2. (λ>X0)

(4.75) ω(x) = e'-^*(l-axΓβ .

Here <*>0, /3>0 and

EXAMPLE 4.3. (λ > X0)

(4.76) ω(Λθ

Here α>0, /3>0, a(ί+β-\ {-β*+2β*+1)^σ+—σ. and

(4.77)
(l.+1(x) = /.(/X*)) j = 1, 2, .-., n .

EXAMPLE 4.4. (λ=λ0)

(4.78) ω(x) = ̂ V(l-

Here X0>λ>0, l>α>0 and 1>/3>0.

EXAMPLE 4.5. (λ=λ0)

(4.79) α>(^) =

Here λ0>X>0, l>α>0, /S>0, β-\ ----- \-β"+2β"+1<:l and /Λ+I(Λ;) is given by
(4.77).
Suppose that k(x) satisfies

(4.80)

Put
...... . . ff-ovit-ax) (λ>λ0),
(4.81) ω(X) = |Λ,(1

Here α>0 and X0>λ>0. Since

(λ = λ0) .
a—
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Then we have

(4.83) ω(#)>0 #<0

if and only if

(λ>X0),

(4.84) -^%< °2

a+x

It is easy to see that

(4.85) k(x) = l

satisfies (4.80) and

(4 86) ~Ί^\ = 2l"+1'^ -l-^^

Since

Then under conditions stated in Examples 4.3 or 4.5, k(x) given by (4.85) satisfies
(4.84). This shows that ω(x) in Examples 4.3 or 4.5 satisfies (4.83). All the other
requirements in Theorem 4.1 are also satisfied. Especially we have ω(— oo)=0.
The above examples give fairly sharp instability criteria for the travelling wave
wλ(x). Now we proceed to show a stability criteron for the travelling wave wλ(#).

Theorem 4.2. Suppose that the solution tt(x, f) of (5) has the initial function

1

(4.22) **-MO

with

(λ>X0),
V^'""/ -V-7 I ^λ.ΛP/1 Si .Λ /^ -v \— ΛO; .

λ0 ̂  5L> 0. Then there exists c such that

(4.89) lim n(x, t) = wλ(x+c)
t+<»

uniformly with respect to x^R1 and monotone decreasingly with respect to t.

Proof. Note that ώ(x)=0 #<0. By (4.71) and (4.66) it suffices to show
that W(x)^0. By (1.76) or (1.78) there exists ^ such that
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(4.90) W.(*)>«Ά(*+CI)

Since we have

(4.91) »*(*+*!) = (" G(x, y; λ, v
J_oo

it follows

(4.92) HJ/*)>WA(*+*I) xtΞR1 j = 0, 1, 2, - .

This gives

(4.93) !>W(x)^wλ(x+c1) x<=R* .

This proves Theorem 4.2. Theorem 4.2 and the comparison theorem give

Corollary to Theorem 4.2. Suppose that the solution u(x, t) of (5) has the
initial function UQ(X). If

for some c1 and c2, where W0(x) is the function given in Theorem 4.2, then there exists
c such that

^^ lim inf u(x, ί)< lim sup u(x,

5. A problem with higher space dimension

Theorem 5.1. Suppose that ω(xt) satisfies

^ lω(0)=l, ω(-oo) = 0,

(5.2) ω(xt) = -ω"(x1)+2\ω'(x1)-\lω(x1

(5.3) liminf **(*') = 0.

Suppose that the continuous function ujίx) defined on n-dΐmensional Euclidean space
R" satisfies

f l |*|<Λ,
(5>4) ' ^"'^(ω(R-\x\)

for some R^O. Then the solution u(x, t) of the problem

— Δ lii =/(«), 0<W<1 (x,t)tΞR«x(^ oo),
/ J(5.5)

«(Λ?, 0) = u0(x) x<=Rn
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satisfies

(5.6)

for any A.

lim sup u(x, i) = 0
'->°° \*\>2\t-A

Note that all of ω^) given by Examples 4.1^4.5 satisfy (5.1)^(5.3).
Suppose that the initial function u0(x) of the solution u(x9 t) of (5.5) satisfies

(5.7) sup UQ(X) =

(λ>λ > '
as

Here

log Mr = log r, log ['+1V = log (log

Then we have (5.6).

j - 1, 2, 3, •- .

Proof of Theorem 5.1. Theorem 4.1 implies that the solution tt(x19 ΐ) of the
problem

(5.8)

1
βiX, 0) =

satisfies

(5.9) lim sup U(xly t) = 0
/->°° *̂ < ι̂

for any ̂ 4. For any ξ^Sn~1={ξe/?n; |f | =1}, we have

Γ Λ T
——Δ β«Λ?, f>+Λ+2λί, t) =/(e«ff

L 9ί J

ίl <*,

"<*,

, 0) ,
(5.10)

Here <X i>=»1̂ 1+-"+x), ê represents usual Euclidean inner product of #=
(*!, •••, xn) and f=(ft, •••, £„). Since ω'^J^O ̂ <0, we have

ω(R- I *

This implies

(5.11) 0<β,(*)<β«*, £>+Λ, 0)
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for any ^^Sn~\ By (5.5), (5.10) and (5.11) we have

(5.12) 0<«(*, *)<B«*, ξy+R+2\t, t)

(x,t)(ΞRnx[09 oo), feS"-1.

This gives

(5.13) sup u(xy t) = sup sup u(xy t)
\*l^R+2\t-A fe-Sr"-1 <*,£> + J8+2λ/<U

< SUg K(^, ί) .

(5.9) and (5.13) imply (5.6). This completes the proof of Theorem 5.1.

6. Second stability theorem

In this section we add the assumption:

(6.1) /'(*)</'(<>) *e[0,l].

Theorem 6.1. Suppose that O0(x) and u0(x) satisfies

(6.2)

(6.3) Γ
J -0

Suppose that the solution u(x, t) of (5) has the initial function u0(x). If

(6.4) U0(x)<u0(x)<u0(x) XZΞ& ,

then we have

(6.5) lim sup \u(x, t)—wλ(x)\ = 0
ί *00 *<A

for any A.

Proof. Let U(x, t) and u(x, t) be the solutions of the problem (5) with the
initial function U0(x) and UQ(x) respectively. On account of the comparison
theorem to prove (6.5) it suffices to show that

(6.6) lim sup {u(x, t)—w>J(x)} = 0
t *** *<A

and

(6.7) lim sup {wλ(x)—u(x, t)} = 0
t-+°* *<A

for any A. Put

(6.8) v(x, t) = u(x, t)—zvλ(x) (or wλ(x)— u(x, t)) .

We have the differential inequality:
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(6.9)

Here

(6.10)

k(x) is a suitable continuous function which satisfies

(6.11)

Let Ί)(x, t) be the solution of the problem

(Γz-+2λ-^—λ*]&=0 (*,
(6.12) L °x J

By the comparison theorem we have

(6.13) Qtζv(x, t)<ϋ(x, t) (x, ^eΛ'xfO, oo).

(6.12) can be solved explicitly. We have

(6.14) V(x, t) = Γ ^-"-^-^'H^-y, tfa(y)dy

),

t, t)k(y)dy+

x-yy t)dy .

This gives

(6.15) ϋ(x, .-
V 4πt I λ

(6.13) and (6.15) prove (6.6) and (6.7). This completes the proof of Theorem 6.1.

PART III. METHOD OF KPP

7. Fundamental theorem of KPP

KPP has established an interesting result in [1]. Suppose that the KPP
transform fi(ζ, r) of the solution u(x, t) of (1) converges to some function as r
tends to infinity. Then u(x, t) tends to one of the travelling waves wλ(x) in the
manner which will be clarified soon after. The following theorem is a immediate
generalization of this result. For the sake of completeness we give a detailed
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proof of it.
In this section u(x, t) always represents the solution of (1) with uQ(x

M is given by (7). We assume the existence of the limit:

(7.1) lim &(ξ, T) =

and supplementary condition:

(7.2) f&A&Kate τ)< %) (£, τ)6Ξ(0, l)x [0, oo)

for some Xj>X 0 and W(x)^M (W(ϋ)=\β). Conclusion is as follows:

Theorem 7.1. There exists λ satisfying λ>λ0 such that

(7 3)

< //
JL

for any integers j > 0, k > 0 and any p satisfying 1 < p < + oo .

/or ^wy integers j^O and k > 0.

(7.5)

(7.6) lim sup \u~\ξ, t+τ)-u-
l(ξ, r)+2\t\ = 0

T-^oo 0</<Γ

for any T>0.

(7.7) lim-l-iί-1^ , T) = -2λτ->°° oτ

(7.8) lim(— Yί —u-\ξ, T) -- L_) = 0
^ ' τ+~\dξJ Idξ ^' ' tbλ(ξ)i

for any integer j^O.

<7 9>
for any integers j^ 1, &> 1 orj^Q,
Convergence with respect to ξ is uniform in every closed subinteeval of (0, 1) in all
the cases of (7. 3)^(7.9). In (7.3) || \\LP means usual Lp norm.

(p= +00)-
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REMARK 7.1. If we have the additional condition:

(7.10) ό(f, τ)<0 (f, τ)<E(0, 1)X [0, oo).

Then we have the monotonicity of the convergence in the following sense.

(7.11) (sen x){u(x+u~1(ξ, T), T)—w^x+w^'1^))} \ 0

as τ/*+ oo. Here sgn x—x/\x\. As an immediate consequence of (7.3) we have

REMARK 7.2.

(7.12) l im\ >'OM)I2^ = ̂

Proof of Theorem 7.1.

First of all we have following relations:

(7.13)

(7.14)

(7.15)

(7.16)

i/i

ξ e(0, 1) ,

x = ΓλCΛ)_
Jl/2 t

1/26(57, T)

l/2 β^, T)

, 1),

Jl/2 t

Here u^^ξ), uτ(x) and u~ l(^), MM(Λ;) are defined by the relations (7.15) and (7.16)
respectively. It is easy to see

(7.17)

(7.18) iφ) = «(*+«-'(-!-, τ),τ).
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It follows from (7.2) that

(7.19)
,

(7.20)

By (7.15) and (7.16) we have

= f «~wί^l __ 1
Jl/2 1^97 T, T)J

Since we have (7.1) and (7.2) this implies

(7.22) lim sup \ur(x)—uJx)\ = 0
T->oo |Λ|<4

for any A > 0. On the other hand (7.20) gives

(7.23)

Thus we obtain

Lemma 7.1.

(7.24)

for any p satisfying 1 </>< + oo.

Put

(7.25) uτ(x, t) = i

This is the solution of (1) with the initial function ur(x). Let uJjc, t) be the
solution of (1) with the initial function #«,(#).

In general the solution v(x, t) of

(7.26) Lv=f(x,f)

has the representation:

(7.27) v(x, t) = (" H(x-y, t-tύ)v(y, t0)dy+



NONLINEAR DIFFUSION EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV TYPE 45

+ Γ Γ H(x-y, t-s)f(y, s)dyds (x, t)t=Rlx[t9, °o).
JfoJ- 0 0

Differentiating with respect to x, we have

(7.28) *'(*, ί) = -JL3LH(x-y, t-ta)v(y, te)dy+

Since

(7.29) r j*ι/y(a. | ί)Λf= * ,
J-°° 2t v Trί

we have

(7.30) sup ||t/(*, Oll^<

sup ||
π

for any triple ί2>*ι>*o>0 and any p satisfying !</>< + oo. Repeated appli-
cations of the above estimate to

(7.31) L{ιφ, ί)-M*. 0> =/K(^, *))-/("-(*> 0)

and Lemma 7.1 yield

Lemma 7.2.

<7 32)

for any couple ί1>ί0>0, any integers j^Q, k^O and any p satisfying

In case ofj=k=Q we can choose tQ=0.

Now we define φτ(t) and φ^t) by the implicit relations:

(7.33) Ur(<Pr(t), ί) =

(7.34) "oo(2>oo(0>*)=~
^

It is easy to see

(7.35) φr(t) = «-l(l, ί+τ)-«-«(l, T) .

Since ur(x, t) e C"̂ 1 X [0, oo )) ,
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it follows φτ(t) (Ξ C°°[0, oo ), φj(t) e C°°(0, oo ) Π C°[0, oo ) .

Especially φjj) is bounded on [0, T] for any Γ>0. By (7.33) and (7.34) we
have

ί
*ΌoCf)
wo«-'(y, t)dy = u4φ4f), t)-u4φτ(t), 0 =

= Uτ(φτ(t), t)-u4φτ(t), t) .

Since we have

(7.37) «.'(*, 0> 0 (*, ί)e/P X [0, oo)

and

(7.38) lim sup \\uτ(x, ί)— «~(«, OIL- = °
T-><» 0<ί<Γ

foranyΓ>0. (7.36) gives

Lemma 7.3.

(7.39) lim sup |$>τ(f)— $>~(OI =0 .
T^oo 0</<Γ

foranyTX).

Differentiating (7.33) and (7.34) with respect to t we have

(7.40) φ,(t) = -*&£>lΆt
1 ^ φ*' Uτ'(φr(t),t)'

(7.41) ^(0=-^S'l
M.o'ί̂ f̂O, 0

Subtracting (7.40) from (7.41) we have

(7.42) Φ4t)

Here

/0 = Vr'(φjt), t)uJ(φ4t\ ί) ,

Λ = {*&#), t)-U4φτ(t), t)\UJ(φ4t), 0 ,

/2 = {ώ«,(̂ τ(0. t)-U4<p4t), t)}uj(φ4t), t) ,

I3 = ώ.(9».(ί), Oί«-V (0> 0-«»'(9>τ(0.0>,
/4 = U4φ4ί), t){UJ(φτ(t), t)-U,'(φJ(t), t)} .

Let us fix any !Γ>0. There exists R>0 such that

sup \φ4t)\<R.
0</<Γ

By Lemma 7.3 there exists τ0>0 such that
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SUp \φτ(t)\<R.

Therefore by Lemma 7.2 and (7.37) we have

(7.43) inf /0>0
*0<W.τ>τo

for any fixed tQ>0. On the other hand we have

(7.44) l/,l<ll*r-*-IWI«-'llι:-,

(7.45) \I2\< \φτ(t)-φ4t)\ \\UJ\\L~\\uJ\\L~ ,

(7.46) \I3\<\\*~\

(7.47) I Λ K H Λ - I

Thus Lemmas 7.2 and 7.3 give

Lemma 7.4.

(7.48) lira sup \φτ(ί)-φ4ί)\ = 0τ-* '
for any couple T>t0>0.

Put

(7.49) ur(x+φr(t), t)-u~(x+φ»(t), t) = Λ

Here

I, = Ur(x+φτ(t), t)-U~(x+φτ(t), t) ,

ί), t) .

Since

\\Ii\\L- = IW*, «)-«-(*. 01 It- »

llw-'ί*. OIL- .

it follows from Lemmas 7.2 and 7.3 that

(7.50) lira sup \\ιφ+φjt), ί)— «
T^ o* 0</<ϊf

On the other hand we have

(7.51) uτ(x+φr(t), t) = ut+τ(x) .

By Lemma 7.1 this shows

(7.52) lim I \uτ(x+φr(t), ί) -««(*) I L- = 0

for any f >0. (7.50) and (7.52) shows
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Lemma 7.5.

(7.53) u4x+φ4t), t) = u4x) (x, t) <Ξ R1 X [0 oo ,) .

This implies u4x)^C°°(Rl). Differentiating (7.53) with respect to t, we

have

(7.54) 0 = Φ4ϊ)uj(x+φ4t\ t)+u4x+φ4t), t) .

Since w0o==Wo0

//+/(ttoo), (7.54) implies

(7.55) uJ\x)+φ4t)uJ(x)+f(u4x)) = 0 xtΞR1 .

This shows that φ4i) is independent of t. Since ««>(#) eM we have

Lemma 7.6.

(7.56) φ4ή = — 2λ for some λ>X0 ,

(7.57) u4x) = wλ(x)

(7.58) Mf) = ̂ λ(e)

(7.59) Km«(ftτ) = ιftλ(e) fe(0f 1).

By (7.14) and (7.15) this gives

(7.60) lim {uτ-\ζ)-wλ-\ξ)} = 0

uniformly with respect to ξ in every closed subinterval of (0, 1), This proves
(7.5). Since (7.57) gives

(7.61) u4x, t) = wx(x+2\f) ,

it follows from Lemma 7.2 that

gs

for any couple ίj ><0 > 0, any integers / > 0, k ̂  0 and any p satisfying l^.p*ζ.-{-<χ>.
Since 9>»(0)=0, (7.56) gives

(7.63) (̂0 = -2λί .

Put
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Here

By (7.62) we have lim ||/1||ί,*=0, Lemma 7.3 gives lim ||/2||£*=0. Thus we have

-<2λ>*(fΓ <"<4.=0

for any integers j ̂  0, k ̂  0 and any /> satisfying 1 < p < + °°

(7 66)

Here

(7.65) gives lim ||/1||i*=0, (7.60) gives lim ||/2IL*=0. Thus we have

= 0

for any integers j^O,
Since

and any p satisfying 1 </>< + °° This proves (7.3).
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(7.2) and (7.3) give

(7.68) lim sup |β(£, τ)-ιfrλ(£) | = 0 .
T j

Since

\x=w\

(7.3) gives

(7.69) lun( {ώ(?, τ)-ΛA(f)} = 0

for any integer y>0. Since

(19) a = «
(22) 0 = ̂ λ

(7.69) gives

for any integer y>0. If we assume

for any integersy>0 and /=!, 2, •••, Λ— 1, then it follows from (19) that

for any integer j >0. This proves (7.4). (7.6) follows from (7.5) and Lemma 7.3.
Since

(11),

(21) '̂

(7.4) gives (7.7). Since

(ID, £""<*• T> = T

(7.8) follows from (7.4). (7.9) follows from (7.4) and (11)^ This completes the
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proof of Theorem 7.1.
We shall next prove remark 7.1 and 7.2. (7.15) gives

(7.73)

(7.74)
Subtracting (7.74) from (7.73) we get

(7.75)

Differentiating with respect to r we have

> > rw«-1<|tτ).τ) ,, ,
(7.76) - - = \ aW'τ>dη .
1 ^ βίlKΛ+β-'tf, T), T), T) Jί β^.T)

This proves (7. 11). (7.3) gives

(7.77) limΓ \u'(x, t)Vdx = (" | »/(*) | 2^ = Γ
/^.o* J_oo J_oo Jo

Since we have (2.12) this proves (7.12).

8. Stability of the slowest travelling wave

First we introduce the function E(x) by

(8.1) E(x) = \'_Jff(y, l)dy = -̂  Erfc (-| ) .

Here

x
(8.2) Erfc x =

is the error function of Gauss. It is easy to see

(8.3) E'(x) = H(x, 1)>0 x<=Rl,

(8.4) E(- oo) = 0, E(Q) = 1, £(+ co) = 1 ,

(8.5) (̂»)+JG:(-Λ;) =1

The well known asymptotic expansion

(8.6) xe** Erfc x~ f* (-1)" ̂ 2"~ ̂  ! !«"!"' as

yields
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( I v I
" l, '

(8.7) V 7Γ IxIeT' lfί— \x\)= 1+U( — -̂r ) as

and

(8 8) - - VTH(x,ΐ)

for some C>0. The KPP transform £(ξ) of E(x) satisfies

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14) .....
ί-"+°v—log?

By (8.13) and (8.14) we can find C>0 such that
£"/f\

(8.15)

lim
f >+o

lim

— log

(8.16)

Lemma 8.1. Put

(8.17) β0(?) =

and

(8.18) sup

For any δ satisfying 0<δ<δ0, we have

(8.19) ^o(f)>^λo(?) 5^(0, 1),

(8.20) #o(£)#o"(f)-/(?>

The conclusions of this section is as follows

Theorem 8.1. Suppose that u(x, t) is the solution of (1) with the initial func-
tion



NONLINEAR DIFFUSION EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV TYPE 53

(8.21) UO(X

for some S satisfying 0<δ<δ0. Here δ0 is given by (8.18). Then we have

(8.22) a(f , τ)>^λo(£) (f , τ)e(0,

(8.23) i(f,

(8.24) lίm sup | fi(f , τ)-ώλo(ξ) | = 0 .

conclusions (7.3)^(7.9) o/ Theorem 7.1 are wi&ΐ replacing λ fry λ0.
# λ# s>£

(8.25) (sgn Λ)

Theorem 8.2. Suppose that u(x, t) and uQ(x) are the same as above. Suppose
that v(x, t) is the solution of (I) with the initial function v0(x)^M satisfying

(8.26) ι

Then we have

(8.27) *&Ao(£)<4(£, τ)<^> τ)

(8.28) hm sup | ί(f , rj-ift^f ) | = 0 .

^4// the conclusions (7.3)̂ 7.9) o/ Theorem 7.1 are valid replacing u(x, t) and λ fry
??(#, ί) and X0 respectively.

Proof of Theorem 8.1.
To prove Theorem 8.1 it is sufficient to show (8.22) and (8.23). The

remaining parts of the conclusions follow from Theorem 7.1. Formally (8.22)
and (8.23) follow from (25) and (28) respectively. All we have to do is to show
the applicability of the comparison theorem to (25) and (28).

Lemma 8.2. The following inequalities hold on ^xfO, oo) with suitable

A^O

(8 29)

(8.30) u(X> t) {!-«(*,

(8.31) e~AtH(x, t+S)^(x, t)^eAtH(x, t+δ)
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(8.32)

Y. KAMETAKA

V2

(8.33)

Proof. Note that we have the following relations:

Lu=f(u),(8 34)

(8.35)

(8.36)

<8 37)

Since

it is easy to see (8.29) and (8.31). (8.30) follows from (8.29). Put

( V2 \kfZ

(8.38) ΛA(Λ )0 = ^ * ' + s * + l H(x,t+$) A =1,2.

-/'(«)]«'= 0,

«'(*, 0) = #(*, δ),

[L-/WK =/"(«)(«')*,

[L-f(u)]u"f = 3f"(u)u'u"+f"(u)(u')3,

= 0, Lff(*, ί+δ) = 0 (*f

There exists CA>0, which is independent of the choice of Ak and Bky such that

(8.39) [L-/'(«)]/ίft>(Λ-Cft)AA teOe/FxίO, oo) Λ = l , 2 .

Taking ^4j and β, sufficiently large, we see that (8.31), (8.36) and (8.39) give

-/'(«)] (Al±β'0>0 (*, ί)eΛl X (0, oo) ,

The estimate (30) assures the applicability of the comparison theorem to (8.40).
Thus we have

(8.41) I «"(*, ί) I <*,(*, ί) (*, ίJeΛ1 x [0, oo) .

This proves (8.32). Taking A2 and B2 sufficiently large, we can see that (8.31),
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(8.32), (8.37) and (8.39) give

The comparison theorem yields

(8.43) I u'"(x, t) I < hz(x, t) (x, t) e R1 x [0, <χ> ) .

This proves (8.33). This completes the proof of Lemma 8.2. By (8.19) and (25)
we have

( ' '
Here

(8.45) φ, t) = f(u(x, ί))+ {u'(x, t)+ιi>4u(x, t))}^f(u(x, t)) .

Since uώ^'(ιί) is bounded, (8.29) and (8.31) give

(8.46) φ, t)^eAt+B(x*+iγ<* (x,

for some ^4>0 and B>0. This assures the applicability of the comparison
theorem to (8.44). Thus we have

(8.47) u'(x, t)-ιί>4u(x, t)) > 0 (*, ί) eΛ1 x [0, «χ») .

This proves (8.22). By (8.20) and (28) we have

\[L-c2(x, t)]ό(u(x, t), ί) = 0 (*, OeΛ' x(0,

U(φ,o),oχo.
Here

(8.50) ώ(M(*, 0, 0 =

,
M (X, I)

Lemma 8.2 gives

(8.51) φ, t)^eAt+B(x*+l) (x, t)t=Rlx[0, oo) ,

(8.52) 1 0(φ, t), t) I ^eA<+* (x, t)eR*x [0, oo)

for some A^O and J3>0. (8.51) and (8.52) assures the "applicability of the
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comparison theorem to (8.48). Thus we have

(8.53) a(u(x, ί), /)<Q (*, f)eΛlχ.[0, oo).

This proves (8.23). This completes the proof of Theorem 8.1.

Proof of Theorem 8.2.
To prove Theorem 8.2 it is sufficient to show (8.27). The remaining parts

follow from Theorems 8.1 and 7.1.

Lemma 8.3.

(8.54) ύ(ξ, τ)<ώ0(£) (ξ, τ)eΞ(0,

Proof. (8.20) gives

Replacing ft and h by ύ and #0 in (29) we have

(8.55)

Since ύ>0, #0>0 and #0"<0 this implies (8.54). This completes the proof of

Lemma 8.3. Since

Replacing β and h by $ and ̂ λo in (29) we have

= 0 ,

(1.79) and (8.13) show that ύ0(ξ)ιb^'(ξ) and ώ^ώ^ξ) are bounded. There-

fore (8.54) shows that {f\Z)+(4+ti)JA^r} is bounded. Thus (8.56) gives

(8.57) ά

Lemma 8.4.

(8.58) β(£, τ)>e-»χ(|) (f , τ)e(0, l)χ [0,

for some A^Q.

Proof. Put

(8.59) h(£,T) = e-^ate).

Taking A sufficiently large, we have
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Therefore (29) gives

86Q ([U-{f(ξ)+(ύ+h)h^}](ύ-h)>Oy

* ((ώ-A)|τ=0 = 0.

Since ώ>0, λ>0 and λ"<0, (8.60) gives (8.58). This completes the proof of
Lemma 8.4. Replacing ύ and h by ύ and ώ respectively in (29) we have

« ftn(8 61)

Note that (8.54) and (8.58) give

(8.62) ύ(ξ, r)<e

Aτύ(ξ, τ) (ξ, τ)e(0, l)χ [0, oo)

for some A>0. (19) and (8.23) give

(8.63) άύ"^f(ξ)^-f'(ξ) (ξ, τ)e(0, l)χ [0, oo) .

Lemma 8.2 shows that

(8.64) /(f)-|Ό"« (£, T)€Ξ(0, l)x [0, oo)

for some A^Q and β>0. (8.62), (8.63), and (8.64) give

(8.65) lΓ(f )+(d+4)*"} <eA^B (?, τ)e(0, 1) X [0,

for some A^O and B>0. This assures the applicability of the comparison
theorem to (8.61). It follows

(8.66) ύ(ξ, τ)<d(f , T) (ζ , τ)e(0, l)x [0, oo) .

(8.57) and (8.66) prove (8.27). This completes the proof of Theorem 8.2.

9. Stability of the travelling wave with arbitrary speed

Suppose that the solution u(x, t) of (1) has the initial function u0(x). Throug-
hout this section we assume that u0(x) belongs to the class JV. Here u0(x) belongs
to the class N, if and only if u0(x) belongs to the class M and the KPP transform
U0(ξ) of uQ(x) satisfies the following conditions:

(9.1)

(9.2)
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for some C> 0.

(9.3) ύ0'(ξ) and ύQ(ξ)ύJ'(ξ) are bounded on (0, 1).

Put

(9.4) Xf) = cξ(\-ξ) fe(0,l).

There exist \^\0 and c>0 such that

(9.5)

(9.6)

Lemma 9.1. Following inequalities hold on Λ'x [0, oo) «»YA suitable

(9.7) wλl(φ, OXβ'ί*. *)<#«(*. 0) .

(9.8)

(9.9) |a

Proof. Since

ω
( ' }

( '
it follows (9.7). Since

(9.12) «o»

(9.13) «.w(*)

there exists B^O such that

(9.14) \u<>"(x)\<eBp(u0(x))

(9.15) I «/"(*) I <β»ί(«.(*)

Put

(9.16) A*(Λ;, ί) = eW^p^x, ί)) A = 1, 2 .

Since

(9.17) [L-/
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There exists C>0, which is independent of the choice of Ak and Bk, such that

(9.18) [L-/'(«)]A*>(Λ-C)A* k = 1, 2 .

On the other hand we have

(9 19\ r[L-/'(κ)K=/»(u')2,
( ' } !«"(*, o) - «."(*) ,

(9 20) f[L-/»K' = 3/>)MV'+/'>)(W')3 ,
( ' ' \u'"(x, 0) = «„"'(*) .

Taking At and ̂  sufficiently large, it follows from (9.7), (9.14), (9.18) and (9.19)
that

* ' '
ί[W(«)](*.±«
ί(A1±«'OI*-.>0

This gives

(9.22) I u"(x, ί) I < h,(x, t) (x, t) <Ξ Rl x [0, oo ) .

This proves (9.8). Taking A2 and B2 sufficiently large, it follows from (9.7), (9.8),
(9.15), (9.18) and (9.20) that

(x,
( ' }

This gives

(9.24)

This proves (9.9). This completes the proof of Lemma 9.1.

Lemma 9.2. If

(9.25)
ίAen «;̂  have

(9.26) ώ(?, T) < 0 (f , T) e (0, 1) x [0, oo) .

Proof. By (28) and (9.25) we have

[L-c2(x, t)]ά(u(x, t), t) = Q (x, t) GR1 X (0, oo ) ,
(9 27)
V ' ' (ά(u(x, 0), 0) < 0
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Here

(9.28) φ, t) =f(u(X,
(x, t) V «'(*, t)

(9.29) *(«(*, ί), ί) = «"'(*, *)- ( <*' *)2-

Lemma 9.1 gives

(9.30) c2(x, t)^eAt+B (x, ίje^xp, oo),

(9.31) |6(«(#, ί), 0 1 <eΛ'+s/>(φ, 0) (*, ί)e/2lX [0,

for some A^O and B^Q. Thus the comparison theorem can be applied to
(9.27). (9.27) gives

(9.32) ά(u(x, t), t) < 0 (*, O^Λ'x [0, oo) .
(»

This proves Lemma 9.2.

Theorem 9.1. Suppose that the solution u(x, t) of (I) has the initial function
u0(x) which belongs to the class N. Suppose that we have

(9.33) ^(ξ)>w^(ξ) f€=(0, 1),

(9.34)

Then we have

(9.35) fl(f , T) > άλo(ξ) (ξ, r) e (0, 1) x [0,

(9.36) ώ(?,τ)<0 (f,τ)e(0,l)x[0,,oo),

(9.37) lim sup \ύ(ξ, r)-ώ^(ξ) | = 0 .
-»>

^4// the conclusions (7. 3)^(7. 9) of Theorem 7Λare valid replacing λ by X0. Especially

we have

(9.38) (sgn *){«(*+«-χe, T), τ)-Wλβ(*+WAβ-»(f))}.\0

as

This Theorem follows at once from Lemmas 9.1, 9.2 and Theorem 7.1.
Note that Theorem 7.1 gives
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REMARK TO THEOREM 9.1.

(9.39)

gives

(9.40) ^odX^Λod) £^(0, 1).

Theorem 9.2. Let its fix any λ satisfying λ>λ0. Suppose that the solutions
Uk(x> 0 (Λ=l, 2) o/(l) Afl^tf £/ί£ initial functions uko(x) which belong to the class N.
Suppose that UkQ(ξ)^Cl[Qy 1]. Suppose that we have

(9.41) V(

(9.42) (_i)*{0Λo'(i)_τ_(λ)>}o, τ_(χ) = λ-Vλ2-/

(9.43) (-i

(9.44) (-l)*^,τ)>0 (ftτ)e(0,l)x[0,oo),

(9.45) (-l)*{^Λ(f)-

(9.46) lim sup I </.(?, τ)-

-4/7 ̂  conclusions (7.3)~(7.9) o/ Theorem 7.1 αre z α/ίW replacing u(x9 1) by uk(x, t).
Especially we have

(9.47) (-ί)Λ

as .τ\+oo .

Proof. We prove the case of A=l. The case of Λ=2 can be proved
similarly. Lemma 9.2 shows (9.44). To prove this theorem it suffices to show
(9.45). The remaining parts follow from Theorem 7.1. Suppose that (9.45) is
not valid, since ^λ(l)=#10(l)=0, ^x/(l)-^io/(l)=T-(^)-^10

/(l)>0, there exists
£0e(0, 1) such that

By (9.41) we have

(9.49)

(9.43), (9.49) and
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U10\ζθ)

(21) ύ

give

(9.50) ft

(9.48) and (9.50) give

(9.51) «,.'(£,

(9.43), (9.49), (9.51) and (9.48) give

(9.52)

By (21) and (9.52) we have

(9.54) Mf) = *

(9.48) and (9.54) show

(9.55)

(9.44) and (9.55) give

(9.56)

(9.54) and (9.56) give

(9.57) ώ10(?) = a

Since we have the relations:

So
(9.58)

(9.59) * = Γf*"
Jfo

Then it follows

(9.60)

(9.61)

, 1).

(f,τ)e[0,fjx[0, oo).

//»?

Differentiating (9.60) with respect to T we get

(9.62) (i/r1)-^, T) = - .
), T)
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Since U1=u1

f/+f(u1)y wλ"+f(wλ)=2\wλ'y it follows from (9.60) and (9.62) that

(9.63) (O (e. τ)=-2λ

This implies

(9.64) u-\ξΛ, T) = _2λτ+«w-'(fβ) .

Let us fix ι>>0 sufficiently large so that F(ξ,v)=f(ξ)-\-vξ is monotone increasing
with respect to ξ in (0, 1). Put

(9.65) h(x, t) = β*1+»'-»*{«1(*-2λί+«lβ-
1(£β), ί)-

(9.66) h0(x) = e

(9.67) k(x, t) =

-JXwxH-wrO; ")}

It is easy to see the relations:

(Lh = k(x, ί)>0 (x, ί)e(0, oo) x (0, oo) ,

(9.68) JA(0,ί) = 0 ίe(0,oo),

[h(x, 0) = /z0(ίc)>0 *e(0, oo) .

So we have

(9.69) h(x, t) = Γ {H(x-y, t)-H(x+y, t)}h0(y)dy+
JO

+ Π~ {H(x-y, t-s)-H(x+y, t-ή}k(y, s)dyds .
JoJo

Differentiating with respect to x and putting #=0, we get

(9.70) tf(0, ί) =

oJo t — S

This shows

o t

, t-s)k(y, s)dyds .

(9.71)

On the other hand (9.60) gives

(9.72) &'(0, ί) = 0 *e(0, oo).

This is a contradiction. This proves (9.45) and completes the proof of Theorem
9.2. The following two theorems answer the question how to show the existence
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of such functions as uko(x) (k=l, 2) in Theorem 9.2. Consider the equation

(9.73) ώ'®+£j) = 2λ+/(£) £e(°> !) >

giving a smooth function g(ξ) which satisfies £(0)=£'(0)=0.

Theorem 9.3. Let us fix any X satisfying λ>λ0. Suppose that

(9.74)
l/'(ίXO, 2λ+/(f)>2λ0 fe(0, 1).

ύfc w(x)^Nfor which ιv(ξ) satisfies (9.73) flwrf

(9.75) 1̂ (0) = σ_(X), τ_(χo)<*ί>'(l)<τ_(χ) ,

(9.76) *M<W)<d>>tf) ' εe(0,l).,

Theorem 9.4. Lei ^^Λ; αwy λ satisfying X>λ0. Suppose that

(9.77) /(l)>0f ^(?)>0 fe(0,l).

ΓA^w ίAer^ exists w(x)^N for which w(ξ) satisfies (9.73) and

(9.78)

(9.79)

Theorem 9.3 and 9.4 follow at once from Theorems 1.2, 3.1 and 9.2.

Theorem 9.5. Let us fix any X satisfying X>X0. Suppose that uk(x, t) and
uko(x) (k=l, 2) are the functions stated in Theorem 9.2. Suppose that the solution
v(x, t) of(ί) has the initial function v0(x)^M. If

(9.80)

then we have

(9.81) «,(£, τ)^ύ(ξ, τ)^a2(ξ, T) (f , T)e(0,

(9.82) lim sup | ύ(ξ, T)- fftλ(f ) | = 0 .
τ >°° 0<ξ<l

ίA^ conclusions (7.3)~(7.9) o/ Theorem 7.1 are valid replacing u(x, t) by v(x, t).

Proof. Replacing ύ and h by ύ and uk in (29) we have

*- )̂ = 0 ,

Since

(9.84) 0<% rX/^f) = «f(l-f) (ξ, τ)e(0, l)x [0,
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(9.85) zί>λl(£)<«2(£, rXAβXύβ, T) (£, τ)e(0,

for some c>0 and λj^λ,,, it follows

(9.86) 0<% i XCfltf, T) (f,T)e(0,l)x[0,oo), k =1,2.

for some OO. Lemma 9.1 gives

(9.87) |%(? , τW(ξ, r) I <^*+* (ξf T)(Ξ(0, i)X [0, oo)

for some A^O and B>0. By (9.86) and (9.87) we have

(9.88) |/(f)+(d+**)**"l <^T+Λ (£, τ)e=(0, l)x[0, oo) A = 1, 2

for some A^O and 5>0. This assures the applicability of the comparison
theorem to (9.83). Thus we have

(9.89) (_!)*- {^(f, τ)_d(f , T)} >0 (f, τ)e(0, l)x [0, oo) k = 1, 2 .

This proves (9.81). The remaining parts of the proof of Theorem 9.5 follow
from Theorem 9.2 and 7.1.

10. An example

To illustrate the meaning of the results obtained in Section 9 we consider
the special example:

(10.1)
φ, 0) = iio(«

Here X0>0 and w=l,2,3, •••. The case of w=l, (10.1) is the combined diffusion
and logistic equation which appears in the theories of population dynamics,
branching Markov processes and so on. ([4], [5]) The case of w=2, (10.1) is
the time dependent Ginzburg-Landau equation which appears in the theory of
super conductivity. ([6], [7]) Consider the one parameter family of the initial
functions in the class N.

(10.2) iφ) = {l+(2M/2-iχ(Λ/2)σ *} -2/Λ χeR\ σ>0 .

The question is what happens for the solution u(x, t) of (10.1). The answer is
as follows
( i ) If σ>λ0, then we have

(10.3) (sgn *) {u(x+u-\ξ, T), τ)-«;λo(Λ;+^λo-
1(f))}\0 as

( „ \-l/2

— + 1 j λ0, then we have



66 Y. KAMETAKA

(10.4) (sgnx){u(x+u-1(ξ,r),r)-v,,(x+w,-\ξ))}\0 as

(iii) If σ=σί=\1— \/\\— \l , then we have

(10.5) «(*, ί) = [l+(2»/2-l) exp {-- |o-l

(iv) If ̂  > σ =λ-\/λ2— λ* > 0, then we have

(10.6) (sgn *) {u(x+u'\ξ9 r), τ)-wλ(x+zvλ-\ξ))} /Ό as

In all the cases the convergence occurs uniformly with respect to x^R1 and uni-

formly with respect to ξ in every closed subinterval of (0, 1). The proof of the

above results is based on the following facts:

(10.7) flβ(£) = σ£(l-f)"" ?e(0,l),

(10.8) *.'(f)+iS = ̂ °+<r+{^-(-^
#0(ξ) <r I <r \ 2

(10.9) λ0?(l-Γ/2)>^x0(f) ?e(0,l).
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