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ON t-DESIGNS

DIJEN K. RAY-CHAUDHURI* AND RICHARD M. WILSON**

(Received January 14, 1975)

Introduction and preliminaries

An incidence structure is a triple S=(X, <J,9 S} where X and JL are disjoint
sets andc^ci^fX^?. Elements x^X are called points and elements A^JL are
called blocks of S. A point x and a block ^4 are incident iff (#, ^4)ec?. For any
block A, (A) will denote the set of points incident with A.

Let v, k, t and λ be integers with v>k>t>0 and X>1. An Sλ(t, k, v)
(a t-design on v points with block size k and index λ) is an incidence structure
D=(X, JL, J) such that

(i) I* 1=*,
(ii) \(A)\=k for every A^Jl,

(iii) for every ί-subset T of X, there are exactly λ blocks A^JL with

It is well known that every Sλ(t, k, v) has exactly b=\(®)( J blocks

and more generally, for any /-subset / of points (0</<ί), the number of blocks
A of the design with I c:(A) is

independent of the subset / [2],

Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher's

Inequality b>v for 2-designs and Petrenjuk's Inequality ^^(2) f°r 4-designs. The ί-designs

satisfying the inequality with equality may be considered as generalizations of the symmetric

2-designs (b=v) and have the property that there are exactly — t possible values for the size

of the intersection of two distinct blocks, these values being computable from the parameters.
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An Sλ(t, k, v), say D= (X, Jly cί), is simple when the mapping At-*(A) from
JH into 9?k(X) (the class of all Λ-element subsets of X ) is injective and D is
trivial when the mapping A H-> (A) is (surjective and) w-to-one for some integer
m, i.e. each ^-subset "occurs as a block" exactly m times. In this latter case,

evidently λ=W?~ j.

The well known Fisher's Inequality (see [2]) asserts that the number b of
blocks of an 5 (̂2, k, v) is at least v, under the assumption v>k-}-l. A. Ja.

Petrenjuk [4] proved in 1968 that b>(^ ) for any Sλ(4, A, v) with v>:k+2 and

conjectured that b>( v j in any Sx(2s, k, v) with v>k-}-s. This conjecture is

established in the following section.

This condition shows the nonexistence of certain ί-designs. For
example, Petrenjuk's Inequality shows that S5(4, 22, 79) do not exist even
though the έ, 's (0</<4) are integral. We might note that a hypothetical

S2U, k, 2+^-(k-l)(k—2)\ would satisfy b=( ^ \ (and the i/s are integral

when k^ 1 (mod 4)), but no such designs exist by the corollary of Theorem 5

below. The inequality 6>ί ^ J rules out the entire family of 6-designs with

v = 120m ,

k = 60m y

λ = (20w-l)(15ifi-l)(12ifi-l) ,

(for which the ό/s are integral).
By a tight ί-desigh (t even, say t=2s) we mean an Sλ(t,k,v) with v>k+s

and b= ( J . As examples, we have the trivial designs Sλ(2s, ky k-\-s) where

λ=ί b—2 /' ^n example °f a tight 4-design is the well known 5 (̂4, 7, 23)
/23\

where b=253=( ^ )• N. Ito [3] has recently shown, using Theorem 5 below,

that the only nontrivial tight 4-desighns are the *SΊ(4, 7, 23) and its complement,
an 552(4, 16, 23). Tight ί-designs with t>4 seem to be very rare.

Our proof of Petrenjuk's conjecture uses only elementary linear algebra and
the observation that the nunber of blocks of an Sλ(t, k, v) which are incident
with some i points and not incident some other j points is constant (i.e., depends
only on /,/, and the parameters; not the particular sets of points) whenever

Proposition 1. Let (X, Jl, J) be an Sλ(t, k, v). Let i and j be nonnegative
integers with i+j<t. Then for any subsets I,JςιX with |/| = i, 1/1=.;",
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/Π J=φ, the number of blocks A^JL such that I^(A) and J Γϊ (A)=φ is exactly

k-t

Proof. By inclusion-exclusion,

In view of the above expression for biy we have bj

t—\c where

t-i—rl t-i-r

But in the case of the trivial design (X, &k(X\ <Ξ), λ=(]j|~*) and b{= (ϋ^~T Λ,

from which we deduce the simpler expression £=f ϋ , _^7 Mί ?~.) .

As a corollary, the complement (X, <Jl, (XxJΐ)—<3) of an Sλ(£, β, ^) is an
Sλ*(t, v—k,v) with

(unless £;<Λ+ί, in which case the original Ŝ , ky v) is evidently trivial).

2. Generalizations of Fisher's inequality

For any set Y, we denote by V( Y) the free vector space over the rationals
generated by Y, i.e. V(Y) consists of all formal sums cc = ̂ Σyeγayy with
rational coefficients ay and formal addition and scalar multiplication. The "unit
vectors" y, y^. Y, by definition provide a basis for V( Y).

Theorem 1. The existence of an Sλ(ty ky v) with t even, say t=2s, and
v>,k-\-s implies

b>

where b is the number of blocks of the design. In facty the number of distinct subsets

(A) is itself at least (v\ .

Proof. Let D=(X,JLy J) be an Sλ(ty ky v) and put VS=V(S>S(X))9 where
ίPX-XΓ) is the class of all ^-element subsets of X. For each block A of Z), define
a vector A^ Vs as the "sum" of all ^-subsets of (^4), i.e.
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We claim that the set of vectors {A: A^Jl} spans Vs. Since V3 has dimension

( v ), the theorem follows immediately.
\ s /

Let S0<ΞίP5(Z). To show S0 belongs to the span of {A: A(=Jl}, we intro-
duce the vectors

: S(Ξ&S(X), | S Π S0 \ = s-i)

(so E0=S0) and

for i=0, 1, — ,j. Now for S^eff^X) with I^Π S0\ =s—i, the coefficient of
S1 in the sum Fr is the number of blocks A such that S^(A) and | (^4) fΊ S0 \ =

ί— r; and this number is ( }br

s.r+i with the notation of Proposition 1. Thus

The above system of linear equations is triangular and the diagonal coefficients
br

s (r=0, 1, •• ,ί) are all nonzero under our hypothesis v>k-\-s. Thus we can
solve for the £/s (in particular, for E0=S0) as linear combinations of the /Vs.
Since the F,s are by definition in the span of {A: A^<_A}, we have
{A: A^Jί} for every S0eίP5(^Q, and our claim is verified.

Corollary. The existence of an Sλ(t, k, v) with t odd, say t = 2s+ 1 and
(v—l)>k-\-s implies the inequality

V

 Ό-l
~ ( k \ ~ (k-\

\2s+l) \ 2s

Proof. Let D=(X, Jl, J) be an Sλ(t, k, v) and x^X. Let JL' be the class
of blocks incident with x and Jl" be the class of blocks not incident with x.
Observe that both Ό'=(X', Jl' , <5Π (X' X Jl')) and &'=(X', Jl" , ̂ Π (X' X Jl"}\
where X'= X— {x} , are 2s— designs and apply Theorem 1.

The above inequality also rules out infinitely many parameters for which ό/s
are integers, ί'=0, 1, •••, t.

Theorem 2. Let D=(X, Jl, J) be an Sλ(t, k, v) where t=2s and v>k+s.
If there exists a partition Jl=Jl1[jJl2^J" \jJlr such that each substructure
(X, Jli, /Γ\(Xx Jli)) is an Sλ.(s, k, v) for some positive integers λ, , then
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Proof. With the notation of Theorem 1, the vectors {A: A^^Λ} span V.
But observe that

2 {A: AϊΞJli} = λ, 2(5: Se ŝ(^)) = λ,£ say.

So if we choose one block Λ from each oί/, then 0: ^4(ΞeΛί— {̂  ••-, ^4r}} U
spans V. The stated inequality follows.

3. Tight t-designs

Recall that a tight ^-design (t=2s) is an Sλ(t, k, v) with v>k+s and

In view of Theorem 1, tight designs are simple. In this section we extend
the well known result that two distinct blocks of a symmetric design (tight
2-design) have exactly λ common incident points (see Theorem 4 below).

Theorem 3. Let X be a v-set and Jl a class of k-subsets of X such that for
distinct A, B<=Jl,

\AΓ\B\ e {μl9 μ2, ••-, μs}

where k>μl>μ2>" >μs>0. Then

Proof. Let V= V(J). For each S^SPS(X), define a vector

We claim that the vectors {S : S&3*S(X)} span V. Since V has dimension | <Jl \ ,
the theorem will follow.

Write μ0=k. Let A^Jl be given. Define

for ί=0, 1, •••, ί (note H0=A0). For r=0, 1, •••, s, we see that

Gr = Σ(S: 5e5>χ^), |5 ΓΊ A l = r) =
s—r

by comparing the coefficient of each A^Jl on both sides of the equation. We
now show that the coefficient matrix of this system of s-{- 1 linear equations is
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nonsingular, so that we can solve for the Hf's in terms of the G'rs. In particular,

we then have H0=A0^span {G0, G19 •••, Gr} cspan {S: S<=&S(X)}.

So consider the s+1 row vectors

"=((?)(tr ) (M;)C:r) ••••(?)(*,:?•))•
r=0, 1, •••,$. Suppose ^o+^iH hv*=0. This means that the polyno-
mial

*) = ±J *)(*-*)» =o \ r J\s—r/

of degree <ί has ί+1 distinct roots μ0, μn •••, μs and hence is the zero poly-

nomial. Now p(Q) = cJ * j, so ̂ =0; then ί(l)=c/*~ A so ^ι=0*> and» in~

ductively, c0— ̂ 1= =cs=0. That is, ϋ0, ••-, t;, are linearly independent. This

completes the proof.

Theorem 4. Let D=(X, Jl, J) be an Sλ(t, k, v) with t=2s and v>k+s.

Then there are at least s distinct elements in the set

and there are exactly s distinct elements if and only if D is a tight t-design.

Proof. In view of Theorems 1 and 3, it remains only to show that for

any tight ί-design, there exist s integers μl9 μ2, •• ,μs with 0<μ, <& so that
\(A)n(B)\G{μl9—9μΛ} for distinct blocks A and B. Let D = (X,JlyJ)

be a tight Sλ(t, k, v). With the notation of Theorem 1, the b=( v j vectors

{A: A^<JI} must, since they span Vs, be a basis for Vs.

Fix A^Jl and for B^Jί, write μB= |(β)n(^0)| . For i=0, 1, ••-,$,

define vectors

Now given S^3?S(X) with 1*50(^0)1=^ the coefficient of S in the sum

i.e., the number of ordered pairs (B, R) in Jlx&^X) such that S ^(B) and

Λc(^0)Π(β). For any r-subset R^(A0) with |jRn5|=;, the number of

blocks B such that (B, J?) satisfies the above conditions is #5+r_y. Thus the
coefficient of S in Λfr is
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N, = c'Mi (r = 0,1, •»,*).
ί*0

The s-\-l vectors Nr—c'Ms are contained in the span of M0> Mlf •••, M^;
hence there exist rationals a0, al9 , asί not all zero, such that

Σ<*r(Nr-c'rMs) == Q , or

Now {4: A^Jl} is a basis for F5, so for B^A0, the coefficient

s-C )
of a must be 0. That is, for any Bή=A0, the intersection number μB is a root
of the polynomial

of degree at most s. Finally, note that the coefficients c*r are (and hence f(x) can
be chosen to be) independent of the block A0: all intersection numbers are roots

of/(*).

The polynomials /(#) described in the proof of Theorem 4 have been found
explicitly by P. Delsarte [1]. As an example, we consider the case ί=4. The
equations of Theorem 4 are

NO =

N, =

Using the relation Λ2= ί 2 ) in a tight 4-design, one verifies that

is a scalar multiple of M2~Ά0. For a block B^Aoy the coefficient of J$ in the

above expression must be zero, i.e.,

. - o.

Rewriting the coefficients in terms of v, k, and λ, we have
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Theorem 5. The two "intersection numbers" μlt μz of a tight ^-design
A$A(4, k, v) are the roots of the polynomial

k— 3

Application of Theorem 5 yields the well known fact that any two distinct
blocks of an *SΊ(4, 7, 23) meet in 1 or 3 points.

Since f(x) has integral roots, it must have integral coefficients, and we have
the

Corollary. The existence of a tight 4-desigh Sλ(4, k, v) implies v — 3 divides
2(k-\)(k-2\ andk-3 divides 4λ.

In [1], Delsarte observes that Theorems 4 and 5 are similar to Lloyd's
Theorem on perfect codes. Indeed, Delsarte develops a theory of designs and
codes (emphasizing a "formal duality") in the context of association schemes.
Contained therein are results analogous to the above for orthogonal arrays of
strength £, the analogue of Theorem 1 being Rao's bound.

We conclude with the following remarks.
Let D=(X, Jίy J) be a tight Sλ(t, k, v) with t=2s and v>k+s. Let /(s, v)

denote the association scheme whose points are the ^-element subsets of X
(see [1]). Let N be a (0— l)-matrix whose rows are indexed by elements of
3?S(X) and columus are indexed by the blocks of D. At the row corresponding
to S and column corresponding to a block A, the entry of TV is 1 iff S ^(A).
The matrix NNT belongs to the Bose-Mesner algebra of the scheme J(s, v).
The matrix NNT is obviously rationally congruent to the identity matrix.
Using the properties of the algebra of J(s, v), it is possible to compute the Hasse-
Minkowski invariant of NNT and obtain some more necessary conditions for

the existence of tight 2ί-designs. (See also [5].)
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