ON THE EXCHANGE PROPERTY IN A DIRECTSUM OF INDECOMPOSABLE MODULES

Dedicated to Professor Kiiti Morita on his 60th birthday

MANABU HARADA

(Received January 8, 1975)

Throughout R will denote a ring with identity and every R-modules considered in this note are unitary R-modules. Let M be an R-module. If $\operatorname{End}_R(M)$ is a local ring, we call M a completely indecomposable module. We take a set of completely indecomposable modules $\{M_{\alpha}\}_I$ and put $M = \sum_I \bigoplus M_{\alpha}$. Then we know several properties of M with respect to this decomposition. For instance, let $M = \sum_J \bigoplus N_\beta$ be another decomposition and I' a finite subset of I, then $M = \sum_J \bigoplus M_{\alpha'} \bigoplus_{J \to \varphi(I')} \bigoplus N_\beta$, where $\varphi: I' \to J$ is a one-to-one into mapping [1]. H. Kanbara [8] shows that the above fact is true for any subset I' of I if and only if $\{M_{\alpha}\}_I$ is a locally semi-T-nilpotent (see the definition below).

In this note, we fix a subset I' (not necessarily finite) and give criteria for $\sum_{I'} \oplus M_{\alpha'}$ to satisfy the above property. If $\{M_{\alpha'}\}_{I'}$ is locally semi-T-nilpotent, $\sum_{I'} \oplus M_{\alpha'}$ satisfies it, however the converse is not true [4]. When we fix the subset I', the above property does depend not only on $\sum_{I'} \oplus M_{\alpha'}$ but also on $\sum_{I'=I'} \oplus M_{\alpha''}$. On the other hand, the concept of semi-T-nilpotency of $\{M_{\alpha'}\}_{I'}$ does depend only on $\sum_{I'} \oplus M_{\alpha''}$. Hence, we shall define a new concept in this note, namely relative semi-T-nilpotency (see the definition below) and give a relation between relative semi-T-nilpotency and the property above.

In the final saction (Appendix), we shall generalize [6], Lemma 5 as Theorem A.1 by virtue of K. Yamagata's idea [12], [13] and [14] (Lemma A.1). That theorem gives the complete proof of [5], Lemma 2 (Corollary 2) and a generalization of [14], Theorem (Theorem A.2).

1. Definition

Let $\{M_{\alpha}\}_{I}$ be a set of completely indecomposable modules. We shall recall definitions of locally semi-T-nilpotency and the induced category \mathfrak{A} from

 $\{M_{\alpha}\}_{I}$. Let $\{M_{\alpha_{i}}\}_{1}^{\infty}$ be a countable subset of $\{M_{\alpha}\}_{I}$ and $\{f_{i}: M_{\alpha_{i}} \rightarrow M_{\alpha_{i+1}}\}$ a set of non-isomorphisms. If for any m in M_{α_1} there exists a natural number n, which depends on m, such that $f_n f_{n-1} \cdots f_1(m) = 0$, then the set $\{f_i\}$ is called *locally T-nilpotent.* If every sets $\{f_i\}$ of non-isomorphisms for every countable subsets $\{M_{\alpha}\}$ of $\{M_{\alpha}\}_{I}$ are locally T-nilpotent, then the set $\{M_{\alpha}\}_{I}$ is called locally semi-T-nilpotent (cf. [3] and [4]). In the definition above, if we allow that $\alpha_i = \alpha_i$ for some $i \neq i$, we call $\{M_a\}_I$ locally T-nilpotent. We shall generalize this concept as follows: Let $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ be sets of completely indecomposable modules. We take countable subsets $\{M_{\alpha_i}\}_{1}^{\infty}$, $\{N_{\beta_i}\}_{1}^{\infty}$ of $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$, respectively. We take sets $\{f_i\}$ and $\{g_i\}$ of non-isomorphisms, where $f_i: M_{\alpha_i} \rightarrow f_i$ N_{β_i} and $g_i: N_{\beta_i} \rightarrow M_{\alpha_{i+1}}$. If for any element m in M_{α_1} there exists n, which depends on *m*, such that $g_n f_n \cdots g_1 f_1(m) = 0$, then we call $\{f_i, g_i\}$ (locally and) relatively T-nilpotent. If for every countable subsets $\{M_{\alpha}\}_{1}^{\infty}$ and $\{N_{\beta}\}_{1}^{\infty}$, every sets $\{f_i, g_i\}$ of non-isomorphisms are relatively T-nilpotent, then we call $\{M_a\}_I$ and $\{N_{\beta}\}_{J}$ (locally and) relatively semi-T-nilpotent (see Remark 3 in §4). We note that if $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ are relatively semi-T-nilpotent, there exists n' for any element x in N_{β_1} , such that $f_{n'+1}g_{n'}f_{n'}\cdots f_2g_1(x)=0$. If we allow in the above that $\alpha_i = \alpha_i' (\beta_j = \beta_j')$ for some $i \neq i' (j \neq i')$, we call $\{M_{\alpha}\}_I$ and $\{N_{\beta}\}_J$ relatively T*nilpotent*. It is clear that if either $\{M_{\alpha}\}_{I}$ or $\{N_{\beta}\}_{J}$ is locally semi-T-nilpotent, then $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ are relatively semi-T-nilpotent, however the converse is not ture. If either I or J is finite, we assume as a definition that $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ are relatively semi-T-nilpotent, $(\{M_{\alpha}\}_{J} \text{ or } \{N_{\beta}\}_{J} \text{ is locally semi-T-nilpotent}).$

Let $\{M_{\alpha}\}_{I}$ be as before and \mathfrak{M}_{R} the category of right *R*-modules. Let \mathfrak{A} be the full sub additive category of \mathfrak{M}_{R} , whose objects consist of all modules which are isomorphic to direct sums of some modules in $\{M_{\alpha}\}_{I}$. We define the ideal \mathfrak{F}' in \mathfrak{A} as follows: $\mathfrak{F}' \cap [A, B] = \{f \in \operatorname{Hom}_{R}(A, B) \mid p_{\beta}fi_{\alpha} \text{ are non-isomorphisms for all } \alpha \text{ and } \beta\}$, where $A \approx \sum_{I'} \oplus M_{\alpha'} \in \mathfrak{A}, B \approx \sum_{J'} \oplus M_{\beta'} \in \mathfrak{A}$ and $i_{\alpha'}: M_{\alpha'} \to A$ injection, $p_{\beta'}: B \to M_{\beta'}$ projection. By $\mathfrak{A}/\mathfrak{F}'$ we denote the factor category of \mathfrak{A} with respect to \mathfrak{F}' . Let A be in \mathfrak{A} and $A = \sum_{L} \oplus A_{\alpha}(A_{\alpha} \text{ are not necessarily in } \mathfrak{A})$. Then there exist submodules $A_{\alpha'}$ in \mathfrak{A} of A_{α} for each α such that $\sum_{L} \oplus A_{\alpha'} = A$ in $\mathfrak{A}/\mathfrak{F}'$ and those $A_{\alpha'}$ are unique up to isomorphism. We call those $A_{\alpha'}'$ dense submodules of A_{α} (see [4], [5] and [6] for detail).

2. Main theorem

We recall Krull-Remak-Schmidt-Azumaya theorem. Let $\{M_{\alpha}\}_{I}$ be as in §1 and $M = \sum_{I} \oplus M_{\alpha}$. We take any other decomposition of M by completely indecomposable modules N_{β} : $M = \sum_{J} \oplus N_{\beta}$. In the theorem above we consider the following two properties for M: EXCHANGE PROPERTY IN A DIRECTSUM OF INDECOMPOSABLE MODULES

P,1 For a direct summand $\sum_{I'} \oplus M_{\omega'}$ of $M(I' \subseteq I)$, there exists a one-to-one mapping φ of I' into I such that $M_{\omega'} \approx N_{\varphi(\omega')}$ for all $\alpha \in I'$ and $M = \sum_{I'} \oplus N_{\varphi(\omega')} \oplus \sum_{I = I'} \oplus M_{\omega''}$.

P,2 For a dirsect summand $\sum_{I'} \oplus M_{\omega'}$ of $M(I' \subseteq I)$, there exists a one-to-one mapping ψ of I' into J such that $M = \sum_{I'} \oplus M_{\omega'} \oplus \sum_{J \to \psi(I')} \oplus N_{\beta''}$.

Those two properties are general cases of the exchange property in M which is defined in [4] as follows: Let N be a direct summand of M and $M = \sum_{\kappa} \oplus L_{\epsilon}$ any decomposition of M (L_{ϵ} are not necessarily indecomposable). If $M = N \oplus \sum_{\kappa} \oplus L_{\epsilon}'$ for any decomposition above, where $L_{\epsilon}' \subseteq L_{\epsilon}$ for all $\epsilon \in K$, we say N has the exchange property in M. If N has the above property only in case all L_{ϵ} are indecomposable, we say N has the exchange property in M with respect to indecomposable modules (briefly w. r. t. inde. modules).

It is clear that if N has the exchange property in M, N is in \mathfrak{A} and (P,2) is equivalent to the exchange property in M w. r. t. inde. modules. We have already known that (P,1) is true for any subset I' of I if and only if $\{M_{\sigma}\}_{I'}$ is locally semi-T-nilpotent [8]. Now we fix $\{M_{\sigma}\}_{I}$ and a subset I' of I and consider (P,1) and (P,2) for any decompositions of M. We shall show the following results and give proofs in the next section.

Theorem. Let $\{M_{\omega}\}_{I}$ be a set of completely indecomposable modules and $M = \sum_{T} \oplus M_{\omega}$. Let $M = S \oplus T$ and $S' = \sum_{T'} \oplus S_{\omega'}$, $T' = \sum_{T''} \oplus T_{\omega''}$ dense submodules of T and S, respectively. Then the following statements are equivalent.

- 1) S has the exchange property in M w. r. t. inde. modules.
- 2) T has the exchange property in M w. r. t. inde. modules.
- 3) $\{S_{\alpha'}\}_{I'}$ and $\{T_{\alpha''}\}_{I''}$ are relatively semi-T-nilpotent,

where $S_{\alpha'}$ and $T_{\alpha''}$ are completely indecomposable modules.

In those cases S and T are direct sums of completely indecomposable modules.

Corollary 1. Let M, S and T be as in Theorem. Then S has the exchange property in M if and only if 3) in Theorem is satisfied and any direct summand L of M has the following decomposition: $L=L_1\oplus L_2$ and a dense submodule L'_1 (resp. L'_2) of L_1 (resp. L_2) is isomorphic to a summand of S (resp. T), (cf. Theorem A.2 in §4).

Corollary 2. Let $M = \sum_{i=1}^{n} \bigoplus M^{(i)}$ and $M^{(i)}$ in \mathfrak{A} for all *i*. Then the following statements are equivalent.

1) $M^{(1)}$ has the exchange property in M w. r. t. inde. modules.

2) $M^{(1)}$ has the exchange property in $M^{(1)} \oplus M^{(i)}$ w. r. t. inde. modules for all i.

If $M^{(i)}$ and $M^{(j)}$ have the exchange property in M w. r. t. inde. modules, then so does $M^{(i)} \oplus M^{(j)}$. Coverversely, if $M^{(i)} \oplus M^{(j)}$ has the exchange property in M, then $M^{(i)}$ has the exchange property in M if and only if so does $M^{(j)}$. (cf. [2], Lemma 3.11)

Corollary 3. Let $\{M_{\omega}\}_{I}$ and $\{N_{\beta}\}_{J}$ be sets of completely indecomposable modules and $\mathfrak{A}, \mathfrak{B}$ the induced categories from $\{M_{\omega}\}_{I}$ and $\{N_{\beta}\}_{J}$, respectively. Then $\{M_{\omega}\}_{I}$ and $\{N_{\beta}\}_{J}$ are relatively T-nilpotent if any only if for any modules Mand N in $\mathfrak{A}, \mathfrak{B}$ respectively, M (resp. N) has the exchange property in $M \oplus N w. r.$ t. inde. modules.

Corollary 4. Let $\{S_{\alpha'}\}_{I'}$ (resp. $\{T_{\alpha''}\}_{I''}$) be a set of noetherian (resp. injective) and completely indecomposable modules. Then $\sum_{I'} \oplus S_{\alpha'}$ (and $\sum_{I''} \oplus T_{\alpha''}$) have the exchange property in $\sum_{I'} \oplus S_{\alpha'} \oplus \sum_{I''} \oplus T_{\alpha''}$ w. r. t. inde. modules.

Corollary 5. Let S, T and M be as in Theorem. If $Hom_R(S, T)=0$ or $Hom_R(T, S)=0$, then S and T have the exchange property in M w. r. t. inde. modules.

3. Proof of Theorem

Let $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ be as in §2. We shall rearrange them as follows: $\{M_{\alpha}\}_{I} = \{M_{kj}\}_{k \in K, j \in I_{k}}$ and $\{N_{\beta}\}_{J} = \{N_{kj}\}_{k \in K, j \in J_{k}}$, where $M_{kj} \approx M_{kj'} \approx N_{kj} \approx N_{kj'}$ and $M_{kj} \approx M_{k'j'}$, $N_{kj} \approx N_{k'j'}$ if $k \neq k'$.

Lemma 1. Let $\{M_{kj}\}_{k \in K, j \in I_k}$ and $\{N_{kj}\}_{k \in K, j \in J_k}$ be as above and K' a subset of K. We assume $\{M_{kj}\}$ and $\{N_{kj}\}$ are relatively semi-T-nilpotent. Then 1) if I_k and J_k are infinite for all $k \in K'$, then $\{M_{kj}\}_{K', I_k}$ is locally T-nilpotent. 2) If either $|I_k| \leq |J_k|$ or I_k is finite and $J_k \neq \phi$ for all $k \in K'$, then $\{M_{kj}\}_{K', I_k}$ is locally semi-T-nilpotent, where |I| means the cardinal number of a set I.

Proof. 1) and the first part of 2) are clear. We assume I_k is finite and $J_k = \phi$. Let $\{M_i\}_1^\infty$ be a countable subset of $\{M_{kj}\}_{K_1',I_k}$ and $\{f_i: M_i \to M_{i+1}\}$ a set of non-isomorphisms. We assume $M_1 = M_{k_1 j_1}$. Since I_{k_1} is finite, there exists n_2 such that $M_{n'} \approx M_{k_1 j_1}$ for all $n' \ge n_2$. Next, we assume $M_{n_2} = M_{k_2 j_2}$ $(k_1 \pm k_2)$. Again there exists $n_3 \ge n_2$ such that $M_{n'} \approx M_{k_2 j_2}$ for all $n' \ge n_3$. Repeating those arguments, we obtain a subset $\{M_{n_i}\}$ of $\{M_i\}, (n_1=1)$ such that $M_{n_i} \approx M_{n_j}$ for all $i \pm i$ and a set $\{g_i = f_{n_{i+1}-1}f_{n_{i+1}-2} \cdots f_{n_i}: M_{n_i} \to M_{n_{i+1}}\}$. It is clear that no one of g_i is isomorphic by [3], Lemma 4. Furthermore, $M_{n_i} \approx N_{k_j}$ for some k. Hence, $\{g_i\}$ is locally T-nilpotent from the assumption. Therefore, $\{f_i\}$ is locally T-nilpotent.

Lemma 2. If $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{I}$ are locally semi-T-nilpotent, then so is $\{M_{\alpha}, N_{\beta}\}_{I \cup J}$.

Proof. Let $\{T_i\}_{1}^{\infty}$ be a countable subset of $\{M_{\alpha}, N_{\beta}\}_{I \cup J}$ and $\{f_i: T_i \rightarrow T_{i+1}\}$ a set of non-isomorphisms. We assume $\{T_i\}_{i=1}^{\infty}$ contains an infinite number of modules in $\{M_{\alpha}\}_{I}$; say $\{T_{i}\} \supseteq \{M_{\alpha_{i}}\}_{1}^{\infty}$. Then $\{g_{i}=f_{\alpha_{i+1}-1}f_{\alpha_{i+1}-2}\cdots f_{\alpha_{i}}\}$ is locally T-nilpotent and hence so is $\{f_i\}$. If $\{T_i\}$ contains only a finite number of modules in $\{M_{\alpha}\}_{I}$, then there exists *n* such that $\{T_{i}\}_{i \ge n} \subseteq \{N_{\beta}\}_{J}$. Therefore, $\{f_i\}$ is also locally *T*-nilpotent.

Lemma 3 ([5], Theorem 2). Let M be as before and N_1 a direct summand of M: $M=N_1\oplus N_2$. We assume $N_1=\sum_{i'}\oplus N_{o'}$ and $\{N_{o'}\}_{i'}$, a set of completely indecomposable modules, is locally semi-T-nilpotent. Then N_i has the exchange property in M for i=1,2.

Lemma 4. Let $\{M_{a}\}_{I}$ and M be as before. Let $M = T \oplus S$ and N a direct summand of M such that $N = \sum_{r} \oplus N_{\beta}$ and every N_{β} is completely indecomposable and not isomorphic to any summand of S. If $\{N_{\beta}\}_J$ is locally semi-T-nilpotent, $M = N \oplus T' \oplus S$, where $T' \subseteq T$.

Proof. We have $M=N\oplus T'\oplus S'$, $T=T'\oplus T''$ and $S=S'\oplus S''$ by the assumption and Lemma 3. Since $T'' \oplus S'' \approx N$, S'' = (0).

Lemma 5. Let $M = M_1 \oplus M_2 \oplus N_1 \oplus N_2$ and $M_i = \sum_{K_i \equiv \alpha_i} \sum_{I \neq i} \oplus M_{\alpha_{ij}}$, $N_i = M_{\alpha_{ij}}$ $\sum_{L_i \ni \beta_i} \sum_{J_{\beta_i}} \bigoplus N_{\beta_i k}; \text{ the } M_{\alpha_i j}, N_{\beta_i k} \text{ are completely indecomposable. We assume}$ $M_{\alpha_1j} \stackrel{p_i}{\approx} M_{\alpha_2j'}$ and $M_{\alpha_1j} \stackrel{p_i}{\approx} N_{\alpha_2j''}$, $N_{\beta_1j} \stackrel{p_i}{\approx} N_{\beta_2j'}$ and $N_{\beta_1j} \stackrel{p_i}{\approx} M_{\beta_2j''}$ for any j, j' and j''. Let $M = T \oplus S$ and T', S' dense submodules of T and S, respectively. If $\{M_{\alpha_1}\}_{K_1, I_{\alpha_1}}$ is locally semi-T-nilpotent and $T' \approx M_1 \oplus M_2$, $S' \approx N_1 \oplus N_2$, then we have the following decompositions:

$$M = (M_1 \oplus T_1'') \oplus M_2 \oplus N_1' \oplus N_2 = (M_1 \oplus T_1'') \oplus T'' \oplus S'',$$

where 1) $T = T_1' \oplus T'', T_1' = T_1'' \oplus T_1''' (T = T_1'' \oplus T'' \oplus T_1'''), 2) S = S'' \oplus S''',$ 3) $N_1 = N_1' \oplus N_1''$, 4) T_1'' , T_1''' , S''' and N_1' are in \mathfrak{A} and 5) T'' (resp. S'') contains a dense submodule which is isomorphic to M_2 (resp. $N_1' \oplus N_2'$; N_2' is in \mathfrak{A} and is a summand of N_2).

Proof. Since $T' \approx M_1 \oplus M_2$ and $\{M_{a_1}\}_{K_1, I_{a_1}}$ is semi-T-nilpotent, $T' = T_1' \oplus T_1'$

¹⁾ Correction to the proof of [5], Theorem 2.

Replace the following words on the left side by ones on the right. "p" on 4, 5 and 6 th lines (from the bottom) $\Rightarrow p_{\beta}$. " $\Sigma \oplus T_{\beta}$ "" on 5th line $\Rightarrow T_{\beta}$ ". "Ker $\overline{p} = \Sigma \oplus T_{\beta}$ "" on 4th line $\Rightarrow \text{Ker } \overline{p}_{\beta} = \overline{T}_{\beta} \oplus \sum_{\gamma \neq \beta} \oplus \overline{T}_{\gamma}$. " $L = \Sigma \oplus T_{\beta}$ " and $L = \text{Ker } \overline{p}$ " on 3rd line $\Rightarrow \overline{T}_{\beta} \ast \subseteq \text{Ker } \overline{p}_{\beta} \cap \overline{T}_{\beta}$

 $^{=\}overline{T}_{\beta'}$. "Therefore" on 2nd line \Rightarrow Finally, let p be the projection of M onto $\sum_{\kappa} \oplus T_{\beta''}$ with Ker $p = \sum_{r} \bigoplus T_{\beta}^*$. Then

 $T_{2}'; T_{i}' \approx M_{i}$ and $T = T_{1}' \oplus T''$ by [4], Proposition 2. Now, we consider all modules in $\overline{\mathfrak{A}} = \mathfrak{A}/\mathfrak{F}'$. By \overline{A} we shall denote the residue class of A in $\overline{\mathfrak{A}}$. If B is a direct summand of A, \overline{B} means the image of \overline{e} in $\overline{\mathfrak{A}}$, where e is the projection of A to B. Then $\overline{T} = \overline{T}_{1}' \oplus \overline{T}'' = \overline{T}_{1}' \oplus \overline{T}_{2}'$ and hence $\overline{T}'' \approx \overline{T}_{2}' \approx \overline{M}_{2}$ in $\overline{\mathfrak{A}}$. Accordingly T'' contains a dense submodule isomorphic to M_{2} . If we apply Lemma 4 to the decomposition $M = T_{1}' \oplus T'' \oplus S$, then $M = M_{1} \oplus T_{1}'' \oplus S''$, where $T_{1}'' \subseteq T_{1}'$ and $S'' \subseteq S$. We put $T_{1}' = T_{1}'' \oplus T_{1}'''$, $S = S'' \oplus S'''$, and $\overline{M} = M/M_{1}$. Then $S''' \oplus T_{1}' \approx M/(S'' \oplus T'') \approx M_{1} \oplus T_{1}'' \in \mathfrak{A}$ and hence, $S''' \in \mathfrak{A}$ by Lemma 3. Further

We may assume those modules are equal to each other through isomorphisms. Since T_1'' is isomorphic to summand of M_1 , $\overline{M} = T_1'' \oplus M_2 \oplus N_1' \oplus N_2$ form (*) and Lemma 4, where $N_1 = N_1' \oplus N_1''$. $\overline{M}/T_1'' \approx M_2 \oplus N_1' \oplus N_2 \approx T'' \oplus S''$. On the other hand, $T_1'' \approx \overline{M}/(M_2 \oplus N_1' \oplus N_2) \approx N_1''$ and hence, N_1' is in \mathfrak{A} by Lemma 3. Since T'' contains a dense submodule isomorphic to M_2 and S'' is a direct summand of S, S'' contains a dense submodule isomorphic to $N_1' \oplus N_2'$, where N_2' is in \mathfrak{A} and a direct summand of N_2 . Therefore, $M = M_1 \oplus T_1'' \oplus M_2 \oplus N_1' \oplus N_2 \oplus N_1' \oplus N_2 \oplus M_1' \oplus N_2 \oplus M_1' \oplus N_2 \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_2 \oplus M_1' \oplus M_1' \oplus M_2 \oplus M_1' \oplus$

Lemma 6. Let $\{M_{\mathfrak{a}}\}_{I}$ and M be as in the theorem. We assume $M=N_{1}\oplus N_{2}, N_{1}=\sum_{I'}\oplus M_{\mathfrak{a}'}, N_{2}=\sum_{I''}\oplus M_{\mathfrak{a}''}$ and $M_{\mathfrak{a}'} \not\approx M_{\mathfrak{a}''}$ for any pair $(\alpha', \alpha'') \in I' \times I'', (I=I' \cup I'')$. We assume further that $M=T\oplus S, T=T_{1}\oplus T_{2}$ and T (resp. S) contains a dense submodule which is isomorphic to N_{1} (resp. N_{2}). Then for any element t in T_{1} there exists a direct summand $\sum_{1}^{n} \oplus T_{i'}$ of T_{1} such that $t \in \sum_{1}^{n} \oplus T_{i'}$ and $T_{i'} \approx M_{\mathfrak{a}'}$ for som $\alpha_{i}' \in I'$.

Proof. Let $t \in (\sum_{1}^{n_1} \oplus M_{\omega_i'} \oplus \sum_{1}^{n_2} \oplus M_{\omega_i''}) = M'$. Then $M = M' \oplus T_1' \oplus T_2' \oplus S'$ by Lemma 3, where $T_i = T_i' \oplus T_i''$, $S = S' \oplus S''$ and $T_1'' = T_1 \cap (M' \oplus T_2' \oplus S') \equiv t$. Since $T_1'' \oplus T_2'' \oplus S'' \approx M'$, $T_1'' = \sum_{1}^{n} \oplus T_{i'}$, $T_{i'} \approx M_{\omega_i'}$ by the assumption and Lemma 3.

Lemma 7. Let $M=N_1\oplus N_2$ be as in Lemma 6. Then $M=T\oplus N_2=N_1\oplus S$ for any decomposition $M=T\oplus S$ as in Lemma 6 if and only if $\{M_{\omega'}\}_{I'}$ and $\{M_{\omega''}\}_{I''}$ are relatively semi-T-nilpotent. In this case $T\approx N_1$ and $S\approx N_2$, (cf. Corollary 2 to Theorem A.1 in §4).

Proof. We assume $M=N_1\oplus S=T\oplus N_2$ as in the lemma. We may assume that I' and I'' are infinite. Let $\{M_{2i-1}\}_{1}^{\infty}$ and $\{M_{2i}\}_{1}^{\infty}$ be countable subsets of

 $\{M_{a'}\}_{I'}$ and $\{M_{a''}\}_{I''}$, respectively and let $\{f_n: M_n \rightarrow M_{n+1}\}$ be a set of nonisomorphisms. We shall make use of the same argument as the proof in [3], Lemma 9 and [5], Lemma 2. Put $M_n = \{x + f_n(x) | x \in M_n\} \subseteq M_n \oplus M_{n+1} \subseteq M$. Then $M = \sum_{1}^{\infty} \oplus M_{2i-1}' \oplus N_1^* \oplus N_2 = N_1 \oplus \sum_{1}^{\infty} \oplus M_{2i}' \oplus N_2^*$, where $N_1^* =$ $\sum_{\substack{I'=\aleph_0'\\2i,\cdots\}}} \oplus M_{\omega'}, \ \aleph_0' = \{1, 3, \cdots, 2i-1, \cdots\} \text{ and } N_2^* = \sum_{\substack{I''=\aleph_0''\\2i,\cdots\}}} \oplus M_{\omega''}, \ \aleph_0'' = \{2, 4, \cdots, 2i-1, \cdots\}$ It is clear that $\sum_{i=1}^{\infty} \oplus M_{2i-1} \approx \sum_{i=1}^{\infty} \oplus M_{2i-i}'. \text{ We define an automorphism}$ Φ of M by setting $\Phi = \varphi + I_{(I_1 \cap B_0) \oplus M_0 \oplus N_2)}$. Then $M = \Phi^{-1}(M) = \Phi^{-1}(N_1) \oplus \Phi^{-1}(N_2)$ $\sum \oplus \Phi^{-1}(M_{2i'}) \oplus \Phi^{-1}(N_2^*)$. Hence we have $M = N_1 \oplus \sum \oplus \Phi^{-1}(M_{2i'}) \oplus \Phi^{-1}(N_2^*)$ from the assumption. Therefore, $M = \Phi(M) = \Phi(N_1) \oplus \sum \oplus M_{2i} \oplus N_2 = \sum \oplus M_{2i}$ $\oplus \sum_{i=1}^{\infty} \oplus M_{2i-1} \oplus M_{1} \oplus M_{2}$. We can easily show from this decomposition that $\{f_i\}$ is locally T-nilpotent, (cf. [3], Lemma 9). Hence, $\{M_{\alpha'}\}_{I'}$ and $\{M_{\alpha''}\}_{I''}$ are relatively semi-T-nilpotent. We shall show the converse. Put $M^*=N_1 \cup S$. Let $s \in N_1 \cap S$, then there exists a direct summand S_1 of S (and hence of M) such that $s \in S_1$ and $S_1 \approx \sum_{i=1}^{n} \oplus M_{\alpha_i}$ by Lemma 6. On the other hand, $M = S_1 \oplus S_1$ $N_1 \oplus N_2'$ from Lemma 4. Hence, $N_1 \cap S = (0)$. If either I' or I'' is finite, $M = N_1 \oplus S' \oplus T'$ by Lemma 3. where $S' \subseteq S$ and $T' \subseteq T$. Since $N_2 \approx M/N_1 \approx$ $S' \oplus T'$, T'=(0) and so $M=N_1 \oplus S' \subseteq M^* \subseteq M$. We assume I' are infinite and $M \neq M^*$. Since $M^* \supseteq N_1$, there exists $\alpha_1'' \in I''$ such that $M_{\omega_1}'' \not\equiv M^*$. Let $m_{\omega_1} \cong M_{\omega_1} - M^*$. From the decomposition

$$M = T \oplus S \qquad \qquad \cdots \cdots \cdots \cdots (1)$$

 $m_{\alpha_1}{}''=t+s; t\in T, s\in S.$ Since $s\in S\subseteq M^*, t\in T-M^*$. We obtain, from Lemma 6, a direct summand $\sum_{i=1}^{n} \oplus T_i$ of T (and hence of M) such that $T_i \approx M_{\alpha_i}{}'$ and $t\in \sum \oplus T_i$. Let $p_i{}^{(1)}$ be the projection of M to T_i in that decomposition. Then there exists $i (=\alpha_2{}')$ such that $p_{\alpha_2{}'{}^{(1)}}(m_{\alpha_1}{}')=t_{\alpha_2{}'}\in T_{\alpha_2{}'}-M^*$. From Lemma 3 and the assumption, S contains a summand $S_{\alpha{}''{}_{(1)}}$ isomorphic to $M_{\alpha_1{}''}$. We obtain again from Lemma 3

$$M = N_1 \oplus \sum_{I''-\mathfrak{e}_1} \oplus M_{\mathfrak{a}''} \oplus S_{\mathfrak{a}''(1)} \qquad \cdots \cdots \cdots \cdots \cdots (2),$$

where, \mathcal{E}_1 is some index.

Let $p_{a_i''}^{(2)}$ be the projection of M to $M_{a_i''}$ in (2). Since $N_1 \oplus S_{a''(1)} \subseteq M^*$, there exists $\alpha_3'' \in I'' - \varepsilon_1$ such that $p_{a_3''}^{(2)}(t_{a_2'}) = m_{a_3''} \in M_{a_3''} - M^*$, (it is possible $\alpha_1'' = \alpha_3''$. In this case (2) implies M contains at least two summands isomorphic to $M_{a_1''}$). We may assume $T_{a_2'} \approx M_{a'(2)}$ for some $\alpha'(2) \in I'$. Then again from Lemma 3 and (1) we have

$$M = M_{\mathbf{a}'(2)} \oplus T' \oplus S \qquad \cdots \cdots \cdots (3),$$

where $T' \subseteq T$. Then $m_{\alpha_3''} = x+t$; $x \in M^*$, $t \in T'-M^*$. Similarly to the argument after the decomposition (1), we obtain α_4' and a homomorphism $p_{\alpha_4}'^{(3)}$ of M to $T_{\alpha_4'}$ such that $p_{\alpha_4}'^{(3)}(m_{\alpha_3''}) = t_{\alpha_4'} \in T_{\alpha_4'} - M^*$ and $T_{\alpha_4'}$ is a summand of T' (it is possible $T_{\alpha_2'} \approx T_{\alpha_4'}$. In this case (3) implies M contains at least two summands isomorphic to $M_{\alpha'(2)}$). From the remark after (2) and Lemma 3, there exists $\alpha''(3)$ such that

$$M = N_1 \bigoplus_{I'' - \{ \mathfrak{e}'_1, \mathfrak{e}'_2 \}} \bigoplus M_{\mathfrak{a}''} \bigoplus S'_{\mathfrak{a}''(1)} \bigoplus S_{\mathfrak{a}''(3)} \qquad \cdots \cdots \cdots (4),$$

where $S \supseteq S_{a''(3)} \approx M_{a_{3''}}$ and $S'_{a''(1)} \approx S_{a''(1)}$. Hence, we obtain $\alpha_{5''} \in I'' - \{\varepsilon_{1'}, \varepsilon_{2'}\}$ such that $p_{a_{5''}}^{(\prime)}(t_{a_{4'}}) = m_{a_{5''}} \in M_{a_{5''}} - M^*$. Similarly we have

$$M = M'_{\mathfrak{a}'(\mathfrak{a})} \oplus M'_{\mathfrak{a}'(\mathfrak{a})} \oplus T'' \oplus S \qquad \cdots \cdots \cdots (5),$$

where $M'_{\alpha'(4)} \approx T_{\alpha_4'}, M'_{\alpha(2)} \approx M_{\alpha'(2)}$ and $T'' \subseteq T$. Repeating those arguments, we have a series of indecomposable modules; $M_{\alpha_1''}, T_{\alpha_2'}, M_{\alpha_3''}, T_{\alpha_4'}, \cdots$ and a series of homomorphisms $p_1 = p_{\alpha_2'}^{(1)} | M_{\alpha_1''}, p_2 = p_{\alpha_3''}^{(2)} | T_{\alpha_2'}, \cdots$ (it is possible $\alpha_i'' = \alpha_j''$ (resp. $T_{\alpha_k'} \approx T_{\alpha_1'}$) for $i \neq j$ (resp. $k \neq l$)). Put $M^{(n)} = \sum_{1}^{n} \bigoplus M_{\alpha_{2i+1}''}, T^{(n)} = \sum_{1}^{n} \bigoplus T_{\alpha_{2i}'}$ (external directsum). Then $M^{(n)}$ and $T^{(n)}$ are isomorphic to direct summands of M for all n from the decompositions (n). We now concentrate to find a contradiction to the assumption of relative semi-T-nilpotency and hence, after replacing $M_{\alpha_i''}$ (resp. $T_{\alpha_k'}$) by another isomorphic summands when $\alpha_i'' = \alpha_j''$ (resp. $\alpha'(k) = \alpha'(l)$) for $i \neq i$ (resp. $k \neq l$), we may assume $\alpha_i'' \neq \alpha_j''$ (resp. $\alpha'(k) \neq \alpha'(l)$). It is clear that any p_i are non-isomorphic and $p_n p_{n-1} \cdots p_1(m_{\alpha_1''}) \neq 0$ for all n. This is a contradiction to the relative semi-T-nilpotency. Therefore, $M = M^*$. Similarly, we have $M = T \oplus N_2$.

Lemma 8. Let M and $\{M_{\omega}\}_{I}$ be as in the theorem and I' a subset of I. Put $M = (\sum_{I} \oplus M_{\omega} =) N_{1} \oplus N_{2}$, where $N_{1} = \sum_{I'} \oplus M_{\omega}$ and $N_{2} = \sum_{I-I'} \oplus M_{\omega''}$. Then the

following statements are equivaletnt.

- 1) N_1 satisfies (P,2), (equivalently N_2 satisfies (P,1)).
- 2) N_2 satisfies (P,2), (equivalently N_1 satisfies (P,1)).
- 3) $\{M_{\alpha'}\}_{I'}$ and $\{M_{\alpha''}\}_{I-I'}$ are relatively semi-T-nilpotent.

Proof. Since the condition in 3) is symmetric, we may show 1) is equivalent to 3). We know already from [5], Lemma 2 that 1) implies 3) (see Corollary 2 to Theorem A.1 in §4). Now we assume 3) and $\{M_a\}_I = \{M_{kj}\}_{k \in K, j \in I_k}$ as in the beginning and $N_1 = \sum_{K} \sum_{T_k} \bigoplus M_{kj}, N_2 = \sum_{K} \sum_{T_k} \bigoplus N_{kj}$. We consider a partition of K as follows:

726

EXCHANGE PROPERTY IN A DIRECTSUM OF INDECOMPOSABLE MODULES

727

 $K_{1} = \{k \in K | I_{k} \text{ and } J_{k} \text{ are infinite} \},\$ $K_{2} = \{k \in K | I_{k} \neq \phi \text{ and } J_{k} \text{ is finite} \},\$ $K_{3} = \{k \in K | I_{k} \text{ is finite and } J_{k} \text{ is infinite} \},\$ $K_{4} = \{k \in K | I_{k} = \phi\} \text{ and }\$ $K_{5} = \{k \in K | J_{k} = \phi\}.$

We put $M(i) = \sum_{K_i} \sum_{I_k} \bigoplus M_{kj}$ and $N(i) = \sum_{K_i} \sum_{J_k} \bigoplus N_{kj}$. $\{M_{kj}\}_{K_1,I_k}$, $\{N_{kj}\}_{K_1,J_k}$ are locally T-nilpotent and $\{M_{kj}\}_{K_3,I_k}$, $\{N_{kj}\}_{K_2,J_k}$ are locally semi-T-nilpotent by the assumption and Lemma 1. Hence, $\{M_{kj}\}_{K_1\cup K_3,I_k}$ is locally semi-Tnilpotent from Lemma 2. Let $M = \sum_{I} \bigoplus L_{e}$ be any decomposition with L_{e} indecomposable. Then $M = M(1) \oplus M(3) \oplus \sum_{I'} \bigoplus L_{e'}$ for some $I' \subseteq I$ by Lemma 3. We put $\overline{M} = M/(M(1) \oplus M(3))$ then

$$\overline{M} \approx M(2) \oplus M(5) \oplus \sum_{i=1}^{4} \oplus N(i) \approx \sum_{I'} \oplus L_{\varepsilon'} \qquad \cdots \cdots \cdots (**).$$

Since $\{N_{k_j}\}_{K_2.J_k}$ is locally semi-T-nilpotent, we obtain from (**) and Lemma 3 $\overline{M} \approx M(2) \oplus M(5) \oplus \sum_{i \pm 2} \oplus N(i) \oplus \sum_{I''} \oplus L_{\mathfrak{e}''}$ for some $I'' \subseteq I'$. Hence, $\overline{M}/(\sum_{I''} \oplus L_{\mathfrak{e}''}) \approx M(2) \oplus M(5) \oplus \sum_{i \neq 2} \oplus N(i) \approx \sum_{I'''} \oplus L_{\mathfrak{e}'''}$, where I''' = I' - I''. We consider a partition of I''' as follows: $I_1''' = \{\mathcal{E}''' \in I''' \mid L_{\mathfrak{e}'''} \approx M_{k_j}$ for some $k \in K_2 \cup K_5\}$ and $I_2''' = I''' - I_1'''$. Then $\sum_{I_1'''} \oplus L_{\mathfrak{e}'''}$ is a dense submodule of itself, which satisfies the assumption in Lemma 7. Hence, $\overline{M}/(\sum_{I'''} \oplus L_{\mathfrak{e}'''}) \approx M(2) \oplus$ $M(5) \oplus \sum_{I_2'''} \oplus L_{\mathfrak{e}'''}$. Therefore, $M = N_1 \oplus \sum_{I''} \oplus L_{\mathfrak{e}''} \oplus \sum_{I_2'''} \oplus L_{\mathfrak{e}'''}$.

Lemma 9. Let M and $\{M_{\alpha}\}_{I}$ be as in Theorem. We assume $M=T\oplus S$, and T', S' are dense submodules of T and S, respectively: $T'=\sum_{T'}\oplus T_{\alpha'}S'=\sum_{T''}\oplus S_{\alpha''}$. If $\{T_{\alpha'}\}_{I'}$ and $\{S_{\alpha''}\}_{I''}$ are relatively semi-T-nilpotent, then T and S are in \mathfrak{A} , where $T_{\alpha'}$ and $S_{\alpha''}$ are completely indecomposable.

Proof. Let $M=T\oplus S$ and T', S' dense submodules of T and S, respectively. Then $M \approx T' \oplus S'$. We shall use the same notations as in the proof of Lemma 8 and put $N_1 = \varphi^{-1}(T')$, $N_2 = \varphi^{-1}(S')$. Since $\{M_{kj}\}_{K_1 \cup K_3}$ is locally semi-T-nilpotent,

$$M = M(1) \oplus M(3) \oplus T_1'' \oplus M(2) \oplus M(5) \oplus (N(1) \oplus N(3))' \oplus N(2) \oplus N(4)$$

= $M(1) \oplus M(3) \oplus T_1'' \oplus T'' \oplus S'', T = T_1' \oplus T'' \oplus T_1'' \text{ and } S = S'' \oplus S'''$

by Lemma 5, where $(N(1)\oplus N(3))' \subseteq N(1)\oplus N(3)$ and T'' (resp. S'') contains a dense submodule isomorphic to $M(2)\oplus M(5)$ (resp. $(N(1)\oplus N(3))'\oplus N(2)'\oplus N(4))$, where N(2)' is a summand of N(2); $N(2)' \approx \sum_{K_2} \sum_{J_{\beta_2'}} \oplus N_{\beta_2 j}$, (N(4)'=N(4))

in this case). Then a dense submodule of T'' is isomorphic also to $M(2) \oplus M(5) \oplus \sum_{K_2} \sum_{J_{\beta_2} - J_{\beta_2'}} \oplus N_{\beta_2 j}$. Put $N(2)'' = \sum_{K_2} \sum_{J_{\beta_2} - J_{\beta_2'}} \oplus N_{\beta_2 j}$, and $\overline{M} = M/(M(1) \oplus M(3) \oplus T_1'') (\approx M(2) \oplus M(5) \oplus (N(1) \oplus N(3))' \oplus N(2) \oplus N(4) \approx T'' \oplus S'')$. $\{N_{kj}\}_{K_2.J_k}$ is locally semi-T-nilpotent. We apply Lemma 5 to a decomposition $(N(2)') \oplus ((N(1) \oplus N(3))' \oplus N(4)) \oplus (M(2) \oplus N(2)'') \oplus (M(5)) = S'' \oplus T''$, then $\overline{M} \approx N(2)' \oplus S_1^{(4)} \oplus (N(1) \oplus N(3))' \oplus N(4) \oplus (M(2) \oplus N(2)'')' \oplus M(5) = N(2)' \oplus S_1^{(4)} \oplus S^{(4)} \oplus T^{(4)}$, where $S^{(4)}$ contains a dense submodule isomorphic to $(N(1) \oplus N(3))' \oplus N(4)$ and $T^{(4)}$ does a dense submodule isomorphic to $(M(2) \oplus N(2)'')' \oplus M(5)$ from the structure of M(i) and N(j), and $S'' = S_1^{(4)} \oplus S^{(4)} \oplus S_1^{(5)}$. T'' = $T^{(4)} \oplus T^{(5)}$. Accordingly $(N(1) \oplus N(3))' \oplus N(4) \oplus (M(2) \oplus N(2)'')' \oplus M(5) \approx S^{(4)} \oplus T^{(4)}$. Since J_k is finite for $k \in K_2$ and $\{N_{kj}\}_{K_2.J_k'}$ is locally semi-T-nilpotent, $(N(1) \oplus N(3))' \oplus N(4)$ and $(M(2) \oplus N(2)'')' \oplus M(5)$ satisfy the assumption in Lemma 7 (cf. the proof of Lemma 2). Hence, $S^{(4)} \approx (N(1) \oplus N(3))' \oplus N(4)$ and $T'' = T^{(4)} \oplus T^{(5)}$. T is in \mathfrak{A} from Lemma 5. Similarly, $S = S'' \oplus S'''$ and $S'' = S_1^{(4)} \oplus S^{(4)} \oplus S^{(5)}$.

Proof of Theorem. Since the condition 3) is symmetric, we may show that 1) is equivalent to 3). We assume 1). Then T and S are in \mathfrak{A} and hence, we obtain 3) from Lemma 8. We assume 3). Then T and S are again in \mathfrak{A} from Lemma 9. Hence, we have 1) from Lemma 8.

Proofs of Corollaries.

1: We assume S has the exchange property in M. Let $M=L\oplus L'$. Then $M=S\oplus L_1\oplus L_1'$ and $L=L_1\oplus L_2$, $L'=L_1'\oplus L_2'$. Since $L_1\oplus L_1'\approx T$ and $L_2'\oplus L_2\approx S$, L_1 (resp. L_2) contains a dense submodule isomorphic to a direct summand of T (resp. S). Conversely, we assume the above fact and 3) in Theorem. Then $S\approx \sum_{T'}\oplus M_{\alpha'}$ and $T\approx \sum_{T''}\oplus N_{\alpha''}$ from Lemma 9. We use the same notations as in the proof of Lemma 8, and put $S=N_1$ and $T=N_2$. Let $M=\sum_{K}\oplus L_{\epsilon}$ be any decomposition of M. Then $\overline{M}\approx M(2)\oplus M(5)\oplus \sum_{i=1}^{4}\oplus N(i)\approx \sum_{K} L_{\epsilon'}'$ by Lemma 3, where $L_{\epsilon}=L_{\epsilon'}\oplus L_{\epsilon''}'$. Again from Lemmas 2 and 3 we have $\overline{M}\approx M(2)\oplus M(5)\oplus \sum \oplus N(i)\oplus \sum \oplus L_{\epsilon''}''$, where $L_{\epsilon'}=L_{\epsilon'''}\oplus L_{\epsilon''}$. Hence,

$$\overline{\overline{M}} = \overline{M} / (\sum_{\mathbf{r}} \oplus L_{\mathbf{r}}''') \approx M(2) \oplus M(5) \oplus \sum_{i=3,4} \oplus N(i) \approx \sum_{\mathbf{r}} L_{\mathbf{r}}^{(4)} \dots \dots (***).$$

Now we shall apply the assumption to $L_{e}^{(4)}$. Put $L_{e}^{(4)}=L$. Then $L=L_{1}\oplus L_{2}$ and L_{i} contains a dense submodule L_{i}' which is isomorphic to a direct summand of N_{i} . Hence, $L_{1}'=M^{*}(2)\oplus M^{*}(5)\oplus N^{*}(3)$ and $L_{2}'=M^{*}(2)'\oplus N^{*}(3)'\oplus N^{*}(4)'$ from (***), where $M^{*}()$ and $M^{*}()'$ (resp. $N^{*}()$ and $N^{*}()'$) are isomorphic to direct summands of M() (resp. N()). On the other hand, $N^{*}(3)$ is isomorphic to a direct summand of N_{1} and hence of $M^{*}(3)$. Therefore, $N^{*}(3)$ has the exchange property in M by Lemma 3. Similarly, $M^*(2)'$ has the same property. Therefore, $N^*(3)$ and $M^*(2)'$ are direct summands of M (and hence of L) by [4], Proposition 2: $L_1 = N^*(3) \oplus L_1''$, $L_2 = M^*(2)' \oplus L_2''$ and L_1'' (resp. L_2'') contains a dense submodule isomorphic to $M^*(2) \oplus M^*(5)$ (resp. $N^*(3)' \oplus N^*(4)'$), (see the proof of Lemma 5). Accordingly $M(2) \oplus M(5) \oplus N(3) \oplus N(4) = \sum_{K} L_{\epsilon}^{(4)}{}_1'' \oplus L_{\epsilon}^{(4)}{}_2 = \sum_{K} (L_{\epsilon}^{(4)}{}_1'' \oplus N^*(3)_{\epsilon}) \oplus \sum_{K} (L_{\epsilon}^{(4)}{}_2'' \oplus M^*(2)_{\epsilon}') = \sum_{K} (M^*(2)_{\epsilon}' \oplus L_{\epsilon}^{(4)}{}_1'') \oplus \sum_{K} (N^*(3)_{\epsilon} \oplus L_{\epsilon}^{(4)}{}_2'')$. Therefore, we obtain from Lemma 7 that $\overline{M} \approx M(2) \oplus M(5) \oplus \sum_{K} (N^*(3)_{\epsilon} \oplus L_{\epsilon}^{(4)}{}_2'')$. Thus, $M = N_1 \oplus \sum_{K} (L_{\epsilon}''' \oplus N^*(3) \oplus L_{\epsilon}^{(4)}{}_2'')$ and $L_{\epsilon}''' \oplus N^*(3)_{\epsilon} \oplus L_{\epsilon}^{(4)}{}_2''$ is a direct summand of L_{ϵ} .

2 and 3: They are clear from Lemma 8.

4: Let $\{S_{2i-1}\}$ and $\{N_{2i}\}$ be countable subsets of $\{S_{\omega'}\}_{I'}$ and $\{N_{\omega''}\}_{I''}$, respectively and $\{f_{2i-1}: S_{2i-1} \rightarrow N_{2i}\}$, $\{g_{2i}: N_{2i} \rightarrow S_{2i+1}\}$ sets of non-isomorphisms. Since N_{2i} is injective, Ker $g_{2i} \pm 0$ is essential in N_{2i} . Hence, Ker $f_{2i-1}g_{2i-2}\cdots f_1 \cong$ Ker $g_{2i}f_{2i-1}\cdots f_1$ and so $\{f_{2i-1}, g_{2i}\}$ is T-nilpotent.

5: Let T' and S' be dense submodules of T and S, respectively. We take indecomposable summands T_1 and S_1 of T' and S'. Then $T=T_1\oplus T''$ and $S=S_1\oplus S''$ by [4], Proposition 2. Hence, $\operatorname{Hom}_R(S_1, T_1)=0$ or $\operatorname{Hom}_R(T_1, S_1)=0$.

EXAMPLES. 1. Let Z be the ring of integers and p, q primes. Then $\{Z/p^i\}_{1}^{\infty}$ and $\{Z/q^j\}_{1}^{\infty}$ are relatively T-nilpotent, but $\{Z/q^i\}_{1}^{\infty}$ is not T-nilpotent. Put $N_1 = \sum_{1}^{\infty} \bigoplus Z/p^{2i-1}$ and $N_2 = \sum_{1}^{\infty} \bigoplus Z/p^{2i}$. Then all Z/p^n have finite composition series, but N_i does not have the exchange property in $\sum_{1}^{\infty} \bigoplus Z/p^i$.

2. Let K be a field and R the ring of lower tri-angular and column summable matrices over K with degree. \aleph_0 Let $\{e_{ij}\}$ be a set of matrix units in R. We put $N_1 = \sum_{i=1}^{\infty} \bigoplus e_{2i-1} \sum_{2i-1}^{n} R$ and $N_2 = \sum_{i=1}^{\infty} \bigoplus e_{2i} \sum_{2i}^{n} R$. Then all $e_{ii}R$ are projective and noetherian (artinian), but N_i does not have the exchange property in $N_1 \bigoplus N_2$.

4. Appendix (The finite exchange property)

In §3 we have used Lemma 2 in [5]. However, I gave, in [5], only an idea of the proof of this lemma. In this section we shall give its proof as a more general form for the sake of completeness. Making use of a remark by K. Yamagata [12], [13], and [14], we shall deal with a relation between the finite exchange property and the exchange property and give generalizations of [6], Lemma 5 and [14], Theorem.

Let *M* be an *R*-module. In §2 we have defined the exchange property in *M* for a direct summand *N*. If we consider only decompositions $M = \sum_{\kappa} \bigoplus L_{\epsilon}$ with $|K| \leq m$ in that definition, we say *N* has the *m*-exchange property in *M*. In

[2] we have several properties on modules with *m*-exchange property (not necessarily in M), however they are note valid in our restricted case. Hence, we shall give proofs for some results in [2], if we are necessary to change some parts of proofs.

The following lemma is substantially due to K. Yamagata [9].

Lemma A.1. Let T be an R-module and $T=A_1\oplus A_2=M\oplus N$. We assume $M=\sum_{K}\oplus M_{\mathfrak{o}}$ and every $M_{\mathfrak{o}}$ has the finite exchange property (in the usual sense) and $A_1\cap M \neq (0)$. Then there exists a finite subset $\{1, 2, \dots, m\}$ in K such that $T=\sum_{i=1}^{m}\oplus M_i^*\oplus A_1^*\oplus A_2$, where $M_i^*\subseteq M_i(M_j^*\neq 0)$ for some j) and $A_1^*\subseteq A_1$.

Proof. There exists a finite subset $\{1, 2, \dots, m\}$ in K such that $A_1 \cap (\sum_{i=1}^{m} \oplus M_i) \neq (0)$. We put $M^{\triangle} = \sum_{i=1}^{m} \oplus M_i$, then M^{\triangle} has the finite exchange property by [2], Lemma 3.10. Hence, $T = M^{\triangle} \oplus A_1' \oplus A_2'$, where $A_i = A_i' \oplus A_i''$. Since $M^{\triangle} \cap A_1 \neq (0)$, $A_1' \neq A_1$ and so $A_1'' \neq (0)$. Put $\overline{T} = T/(A_1' \oplus A_2') = \overline{A_1}'' \oplus \overline{A_2}'' = \overline{M}^{\triangle}$. By [2], Lemma 3.10 $\overline{A_1}''$ has the finite exchange property and hence $\overline{T} = \overline{A_1}'' \oplus \sum_{i=1}^{m} \oplus \overline{M_i}'$, where $M_i = M_i' \oplus M_i''$.²⁾ Then $\overline{T} = \overline{T}/\sum \oplus \overline{M_i}' = \overline{A_1}'' = \sum_{i=1}^{m} \oplus \overline{M_i}'$. We may assume $\overline{\overline{M_1}}'' = (0)$. Then $A_1'' = A_1''' \oplus A_1^{iv}$ and $\overline{\overline{A_1}}'' = \overline{\overline{M_1}}'' = (0)$, $\overline{\overline{A^{iv}}} = \sum_{i>2}^{m} \oplus \overline{\overline{M_i}}''$. Accordingly $\overline{T} = \sum_{i=1}^{m} \oplus \overline{M_i}' \oplus \overline{A_1^{iv}} \oplus \overline{\overline{M_1}}''$. On the other hand, $\overline{A_2''}$ has also the finite exchange property. Hence, we have $\overline{T} = \overline{A_2}'' \oplus \overline{A_1^{iv*}} \oplus \sum_{i=1}^{m} \oplus \overline{M_i}'_i \oplus M_i^{i**}$, where $A_1^{iv*} \subseteq A_1^{iv} \oplus M_i \oplus (A_1^{iv*} \oplus A_1') \oplus A_2$ is a desired decomposition.

Lemma A.2 ([5], Lemma 1). Let T be an R-module and $T=N_1\oplus N_2$. We assume that N_1 has the m-exchange property in M and $T=N_1'\oplus N_2'$; $N_i'\approx N_i$, i=1, 2. Then N_1' has the m-exchange property in M.

It is clear (cf. the proof of Lemma 7).

Lemma A.3 ([2], Lemma 3.10). Let $T=B_1\oplus B_2\oplus B_3$ be *R*-modules. We assume B_1 has the *m*-exchange property in *T* and B_2 has the *m*-exchange property in $B_2\oplus B_3$. Then $B_1\oplus B_2$ has the *m*-exchange property in *T*.

It is clear.

730

²⁾ added in proof: Use \overline{A}_{2}'' instead of \overline{A}_{1}'' and we obtain $\overline{T} = \overline{A}_{2}'' \oplus \sum_{1}^{m} \oplus \overline{M}_{i}'$. Hence, $T = A_{1}' \oplus \sum_{1}^{m} \oplus M_{i}' \oplus A_{2}.$

Lemma A.4 ([2], Lemma 3.11). Let T be an R-module and N a direct summand of T. If N has the 2-exchange property in T, then N has the finite exchange property in T.

Proof. It is sufficient to show that N has the 3-exchange property in T. Let $T=N\oplus N_1=\sum_{i=1}^{3}\oplus A_i$. Then

$$T = N \oplus A_1' \oplus (A_2 \oplus A_3)'$$
,

where $A_1 = A_1' \oplus A_1'', A_2 \oplus A_3 = (A_2 \oplus A_3)' \oplus (A_2 \oplus A_3)''$ and $(A_2 \oplus A_3)'' = (A_2 \oplus A_3) \cap (N \oplus A_1')$. On the other hand, $N \approx A_1'' \oplus (A_2 \oplus A_3)''$ and $N_1 \approx A_1' \oplus (A_2 \oplus A_3)'$. Hence, $A_1'' \oplus (A_2 \oplus A_3)''$ has the 2-exchange property in T by Lemma A.2. Accordingly $T = (A_1 \oplus A_2) \oplus A_3 = A_1'' \oplus (A_2 \oplus A_3)'' \oplus (A_1 \oplus A_2)' \oplus A_3'$, where $(A_1 \oplus A_2)' \subseteq (A_1 \oplus A_2)$ and $A_3' \subseteq A_3$. Hence, since $(A_2 \oplus A_3)'' \oplus A_3' \subseteq A_2 \oplus A_3$,

$$A_2 \oplus A_3 = (A_2 \oplus A_3)'' \oplus A_3' \oplus D$$

where $D=(A_2\oplus A_3)\cap (A_1''\oplus (A_1\oplus A_2)')\subseteq (A_2\oplus A_3)\cap (A_1\oplus A_2)=A_2$, namely D is a direct summand of A_2 . Put $N\oplus A_1'=(A_2\oplus A_3)''\oplus K$. Then $T=N\oplus A_1'\oplus (A_2\oplus A_3)'=(A_2\oplus A_3)''\oplus K\oplus (A_2\oplus A_3)'=(A_2\oplus A_3)\oplus K=(A_2\oplus A_3)''\oplus A_3'\oplus D\oplus K=N\oplus A_1'\oplus D\oplus A_3'.$

The following theorem is a generalization of [6], Lemma 5.

Theorem A.1. Let $\{P_{\alpha}\}_{I}$ be an infinite set of R-modules which have the finite exchange property and $P = \sum_{T} \oplus P_{\alpha}$. Let I' be an infinite subset of I with infinite complement I-I'. We assume $P_{I'} = \sum_{T'} \oplus P_{\alpha'}$ has the 2 (finite)-exchange property in P. Then if we take any countable subsets $\{P_{2i-1}\}_{1}^{\infty}$ and $\{P_{2i}\}_{1}^{\infty}$ of $\{P_{\alpha}\}_{I'}$ and $\{P_{\alpha}\}_{I-I'}$, respectively and any sets of homomorphisms $f_i: P_i \rightarrow P_{i+1}$ such that for any direct summands X in P_{2i-1} (or Y in P_{2i}) $f_{2i-1}(X)$ (or $f_{2i}_{-1}^{-1}(Y)$) is not a direct summand, provided $f_{2i-1}(X) \neq (0)$ (or $f_{2i}_{-1}^{-1}(Y) \neq P_{2i-1}$) for all i (e.g. Im f_{2i-1} is small in P_{2i} or Ker f_{2i-1} is large in P_{2i-1}), then there exists n, depending on x in P_1 such that $f_n f_{n-1} \cdots f_1(x) = 0$.

Proof. We can prove the theorem similarly to [6], Lemma 5 and so we shall give a sketch of the proof. We shall use the same notations as in the proof of Lemma 7, changing M_{a} by P_{a} . Put $P_{i}' = \{p_{i}+f_{i}(p_{i}) | p_{i} \in P_{i}\} \subseteq P_{i} \oplus P_{i+1}$. Then $P = \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)} \oplus \sum_{1}^{\infty} \oplus P_{2i} \oplus P^{(2)} = \sum_{1}^{\infty} \oplus P_{2i-1} \oplus P^{(1)} \oplus \sum_{1}^{\infty} \oplus P_{2i}' \oplus$ $P^{(2)}$. Since $\sum_{1}^{\infty} \oplus P_{2i-2}' \oplus P^{(1)}$ has the finite exchange property in P from the assumption and Lemma A.2, we obtain from the decomposition above

$$P = \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)} \oplus X \oplus Y \oplus Z \qquad \cdots \cdots \cdots \cdots (1),$$

where $X \subseteq \sum_{1}^{\infty} \oplus P_{2i-1}$, $Y \subseteq \sum_{1}^{\infty} \oplus P_{2i'}$ and $Z \subseteq P^{(2)}$. We shall show X=(0). We assume contrary $X \neq (0)$. Then we have from Lemma A.1

$$P = \sum_{1}^{t} \oplus P_{2i-1}^{*} \oplus \sum_{1}^{\infty} \oplus P_{2i-1}^{'} \oplus P^{(1)} \oplus X^{'} \oplus Y \oplus Z \quad \dots \dots \dots (2),$$

where $P_{2i-1}^* \subseteq P_{2i-1}$ $(P_{2j-1}^* \neq (0)$ for some j) and $X' \subseteq X$, We consider the following modules and a decomposition of P:

$$P_1^* \oplus \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)} \text{ and } P = P_1 \oplus (\sum_{i \ge 2} \oplus P_{2i-1}) \oplus P^{(1)}$$
$$\oplus P_2' \oplus (\sum_{i \ge 2} \oplus P_{2i}') \oplus P^{(2)} \qquad \dots \dots \dots (3).$$

Since the former module has the finite exchange property in P by Lemma A.3 and [2], Lemma 3.10, we obtain from (3)

$$P = (P_1^* \oplus \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)}) \oplus P_1^{**} \oplus A \oplus P_2'^* \oplus B \oplus C,$$

where $P_1^{\$} = P_1^{*} \oplus P_1^{**}$ and $D = \sum_{i \ge 2} \oplus P_{2i-1}' \oplus P^{(1)} \oplus A \oplus B \oplus C \subseteq \sum_{i \ge 3} \oplus P_i$. Using only a fact $D \subseteq \sum_{i \ge 3} \oplus P_i$ in (4), we shall show that $P_1^{\$} = (0)$. Let x be in $P_1^{\$}$. If $f_1(x) \in (P_2'^* \oplus D)$, x = 0 from (4). Hence, $f_i | P_1^{\$}$ is monomorphic and

$$P_{2} = f_{1}(P_{1}^{\$}) \oplus N$$
(5),

where $N = \{x \in P_2 | f_2(x) \in D\}$, (see [6], Lemma 5). Furthermore

$$P_1 = P_1^{\$} \oplus f_1^{-1}(N)$$
(6),

since $f_1 | P_1^{\$}$ is monomorphic. Hence, $P_1^{\$} = (0)$ from (5), (6) and the assumptions. Therefore, $P_1^{*} = (0)$ in (2). Next, we consider similarly to (3)

$$P_3^* \oplus \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)} \text{ and } P = P_1 \oplus P_3 \oplus (\sum_{i \ge 3} \oplus P_{2i-1})$$
$$\oplus P^{(1)} \oplus P_2' \oplus P_4' \oplus (\sum_{i \ge 3} \oplus P_{2i}') \oplus P^{(2)} \qquad \dots \dots \dots (3').$$

Then $P = (P_3^* \oplus \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)}) \oplus P_1^{\triangle} \oplus P_3^{\triangle} \oplus A' \oplus P_2'^* \oplus P_4'^* \oplus B' \oplus C'$, where $P_{2i}'^* \subseteq P_{2i}', P_{2i-1}^{\triangle} \subseteq P_{2i-1}, A' \subseteq \sum_{i \ge 3} \oplus P_{2i-1}, B' \subseteq \sum_{i \ge 3} \oplus P_{2i}'$ and $C' \subseteq P^{(2)}$.

From the argument after (4) we know $P_1^{\Delta} = (0)$. Thus, we have

$$P = (P_1' \oplus P_2'^*) \oplus \{(P_3^{\$} \oplus P_3') + (P_4'^* \oplus D')\} \qquad \cdots \cdots \cdots (4'),$$

where $P_3^{\$} = P_3^{*} \oplus P_3^{\vartriangle}$ and $D' = \sum_{i \ge 3} P_{2i-1}' \oplus P^{(1)} \oplus A' \oplus B' \oplus C' \subseteq \sum_{i \ge 5} \oplus P_i$.

Applying the same arguments on $P_s \oplus P_s'$ and P_4 in (4') as ones after (4), we obtain $P_s = P_s = (0)$. Continuing those arguments, we have a contradiction to the assumption $X \neq (0)$ in (1). Therefore, we have from (1)

$$P = \sum_{1}^{\infty} \oplus P_{2i-1}' \oplus P^{(1)} \oplus Y \oplus P^{(2)} \text{ and } Y \subseteq \sum_{1}^{\infty} \oplus P_{2i}' \dots \dots \dots (7).$$

Hence, $\{f_i\}$ is locally T-nilpotent.

From Theorem A.1 and [10], [11] we have

Corollary 1. Let E be an injective module. If $\sum_{i=1}^{\infty} \oplus E_{2i}$ has the finite exchange property in $\sum_{i=1}^{\infty} \oplus E_i$; $E_i \approx E$ (e.g. E is \sum -injective), then the radical of $End_R(E)$ is locally T-nilpotent.

Corollary 1'. Let P be a projective module with finite exchange property. If $\sum_{i=1}^{\infty} \oplus P_{2i}$ has the finite exchange property in $\sum_{i=1}^{\infty} \oplus P_i$; $P_i \approx P$, then the radical of $End_R(P)$ is locally T-nilpotent.

Corollary 2 ([5], Lemma 2). Let $\{M_{\omega}\}_{I}$ be a set of completely indecomposable modules and $M = \sum_{I} \oplus M_{\omega}$. Put $N_{i} = \sum_{I_{i}} \oplus M_{\omega'}$, where $I = I_{1} \cup I_{2}$ and $I_{1} \cap I_{2} = \phi$. If N_{1} has the 2-exchange property in M, then $\{M_{\omega'}\}_{I_{1}}$ and $\{M_{\omega''}\}_{I_{2}}$ are relatively semi-T-nilpotent.

Proof. We may assume that I_i are infinite. Let $\{M_{2i-1}\}_{i=1}^{\infty}$ and $\{M_{2i}\}_{i=1}^{\infty}$ be any countable subsets of $\{M_{\alpha'}\}_{I_1}$ and $\{M_{\alpha''}\}_{I_2}$, respectively and $\{f_r: M_n \rightarrow M_{n+1}\}$ a set of non-isomorphisms. We shall show that f_{2i-1} satisfies the assumptions in Theorem A.1. Since M_i is completely indecomposable, M_i has the (finite) exchange property by [9], Proposition 1. If Ker f_{2i-1} is a direct summand of M_{2i-1} , Ker $f_{2i-1}=M_{2i-1}$ or Ker $f_{2i-1}=(0)$. The former case implies $f_{2i-1}=0$. We assume Ker $f_{2i-1}=(0)$. If Im f_{2i-1} is a direct summand of M_{2i} , then f_{2i-1} is isomorphic. Hence, Im f_{2i-1} is not direct summand of M_{2i} . Therefore, f_{2i-1} satisfies the assumptions in Theorem A.1.

Corollary 3. Let $\{M_{\alpha}\}_{I}$ and M be as in Corollary 2. For any subset I' of I we put $M_{I'} = \sum \bigoplus M_{\alpha'}$. Then the following statements are equivalent.

- 1) $\{M_{\alpha}\}_{I}$ is locally semi-T-nilpotent.
- 2) $M_{I'}$ has the 2-exchange property in M for any $I' \subseteq I$.
- 3) $M_{I'}$ has the finite exchange property in M for any $I' \subseteq I$.
- 4) $M_{I'}$ has the exchange property in M for any $I' \subseteq I$, (cf. [14]).

Proof. It is clear from Lemma A.5 and [8], Theorem.

Theorem A.2. Let $\{M_{\mathfrak{o}}\}_I$ be a set of completely indecomposable modules and $M = \sum_I \oplus M_{\mathfrak{o}}$. We put $M_{I'} = \sum_{I'} \oplus M_{\mathfrak{o}'}$ for some $I' \subseteq I$. Then the following statements are equivalent.

- 1) $M_{I'}$ has the 2-exchange property in M.
- 2) $M_{I'}$ has the finite exchange property in M.
- 3) $M_{I'}$ has the exchange property in M.
- 4) $M_{I-I'}$ has the exchange property in M.

Proof. $3 \rightarrow 2 \rightarrow 1$) are clear. We assume 1). Then $\{M_{\alpha'}\}_I$ and $\{M_{\alpha''}\}_{I-I'}$ are relatively semi-T-nilpotent by Corollary 2 to Theorem A.1. Hence, $M_{I'}$ (resp. $M_{I-I'}$) satisfies conditions in Corollary 1 of Theorem (cf. its proof) and so $M_{I'}$ and $M_{I-I'}$ have the exchange property in M.

Corollary 1. Let M be as above and $M=T\oplus S$. Then T has the exchange property in M if and only if so does S.

Corollary 2. Let $M = \sum_{T} \bigoplus M_{\infty}$ be as above. We assume $M = S \bigoplus T$ and any indecomposable direct summands of S are not isomorphic to direct summands of T. Then S has the 2-exchange property in M if and only if S has the exchange property in M.

Proof. Let S' and T' be dense submodules of S and T, respectively. Since $S' \oplus T' \approx M$, $M = \sum_{T'} \oplus M'_{\sigma'} \oplus \sum_{T''} \oplus M'_{\sigma''}; \sum_{T'} \oplus M'_{\sigma'} \approx S'$ and $\sum_{T''} \oplus M'_{\sigma''} \approx T'$. We assume S has the 2-exchange property in M. Then $M = S \oplus \sum_{T''} \oplus M'_{\sigma''}$ from the assumption, (cf. the proof of Lemma 6). Hence, $S \approx \sum_{T'} \oplus M'_{\sigma'}$ and $T \approx \sum_{T''} \oplus M'_{\sigma''}$. Therefore, S has the exchange property in M by Theorem A.2.

Corollary 3. Let $M = \sum \bigoplus M_{\omega}$. We assume $M_{\omega} \not\approx M_{\omega'}$ if $\alpha \neq \alpha'$. Then a direct summand S of M has the 2-exchange property in M if and only if S has the exchange property in M.

Corollary 4. Let $M = \sum_{T} M_{o} = S \oplus T$. We assume S has the exchange property in M. If $M = S_1 \oplus T_1$ and a dense submodule of S_1 (resp. T_1) is isomorphic to S (resp. T), then S_1 has the exchange property in M.

Proof. We may assume $S=M_{I'}$ and $T=M_{I''}$. Then $\{M_{a'}\}_{I'}$ and $\{M_{a''}\}_{I''}$ are relatively semi-T-nilpotent. Hence, S_1 and T_1 are in \mathfrak{A} by the assumption and Theorem. Therefore, $S_1 \approx S' \approx S$ $(T_1 \approx T' \approx T)$.

REMARKS. 1. If every direct summand of M is in \mathfrak{A} (e.g. all M_{ω} are countably generated), then Theorem A.2 shows that 2-exchange property in M of a direct summand is equal to the exchange property in M. Furthermore, it

734

is eqivalent to a fact that $\{M_{\alpha'}\}_{I'}$ and $\{M_{\alpha''}\}_{I-I'}$ are relatively semi-T-nilpotent. 2. Let $M = \sum \bigoplus M_{\alpha} = S \oplus T$ be as before. We assume that S has the

2-exchange property in M. Then the proof of Theorem A.1 shows that for any direct summands $\sum_{\kappa} \oplus M'_{\sigma'}$ and $\sum_{\kappa'} \oplus M'_{\sigma''}$ of S and T, respectively $\{M'_{\sigma'}\}_{\kappa}$ and $\{M'_{\sigma''}\}_{\kappa'}$ are relatively semi-T-nilpotent.

3. In the definition of relative semi-T-nilpotency in §1, we took a set of non-isomorphisms $\{f_i, g_i\}$. However, this definition is equivalent to a stronger one in which we assume only $\{f_i\}$ or $\{g_i\}$ is a set of non-isomorphisms, (cf. Theorem A.1).

4. Let $\{M_{a}\}_{I}$ be a set of completely indecomposable modules such that $\{M_{a}\}_{I}$ is locally semi-T-nilpotent. We assume $M = \sum_{I} \oplus M_{a}$ and $T = M \oplus N = \sum_{i=1}^{\infty} \oplus A_{i}$. Then we obtain, from [6], Lemma 8, decompositions $A_{i} = A_{i}' \oplus A_{i}''$ such that $(\sum_{i=1}^{\infty} \oplus A_{i}') \cap M = (0)$ and $\sum_{i=1}^{n} \oplus A_{i}''$ is isomorphic to a a direct summand of M. We further assume that N does not contain any direct summands isomorphic to some M_{a} in $\{M_{a}\}_{I}$. Then if we make use of the same argument in the proof of Lemma 7, we can prove $T = M \oplus \sum \bigoplus A_{i}'$, namely M has the \aleph_{0} -exchange property in T, because if $T \neq M \oplus \sum A_{i}'$, there exist a subset $\{M_{a}\}_{I}$ of $\{M_{a}\}_{I}$, an element $x \in M_{a_{1}}$ and a set of homomorphisms $f_{2i-1} \colon M_{a_{2i-1}} \to N$ and $f_{2i} \colon N \to M_{a_{2i}}$ such that $f_{2i}f_{2i-1} \cdots f_{1}(x) \neq 0$ for all i.

OSAKA CITY UNIVERSITY

References

- [1] G. Azumaya: Correction and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117–124.
- [2] P. Crawley and B. Jénnson: Refinements for infinite direct decomposition of algebraic systems, Pacific J. Math. 14 (1964), 797-855.
- [3] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [4] M. Harada: On categories of indecomposable modules II, ibid. 8 (1971), 309-321.
- [6] M. Harada and T. Ishii: On perfect rings and the exchange property, ibid. 12 (1975), 483-491.
- [7] T. Ishii: On locally direct summnds of modules, ibid. 12 (1975), 473-482.
- [8] H. Kanbara: On the Krull-Remak-Schmidt-Azumaya's theorem, ibid. 9 (1972), 409–412.
- R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.

- [10] R.B. Warfield Jr.: Decomposition of injective modules, Pacific J. Math. 31 (1969), 263-276.
- [11] R. Ware and J. Zelmanowitz: The radical of the endomorphism ring of projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.
- [12] K. Yamagata: The exchange property and direct sums of indecomposable injective modules, Pacific J. Math. 55 (1974), 301-318.
- [14] ————: On rings of finite representation type and modules with the finite exchange property, to appear in the above journal.