K-GROUPS OF SYMMETRIC SPACES I

Haruo MINAMI

(Received February 14, 1975)

Introduction

In this paper we consider the unitary K-groups of compact homogeneous spaces of Lie groups and in particular, we lay emphasis on the compact symmetric spaces.

For a compact connected Lie group G with $\pi_{1}(G)$ torsion-free as a symmetric space it is known that the K-group $K^{*}(G)$ of G is an exterior algebra on the elements of $K^{-1}(G)$ induced by the basic representations of G [2], [3], [7]. Making use of this result Hodgkin constructed the Kunneth formula spectral sequence in equivariant K-theory [8], [9]. This spectral sequence is our main tool in the present study. Besides we find some examples of the K-groups of symmetric spaces in [5].

The main theorem of this paper is the following
Theorem A. Let G be a compact connected simply-connected Lie group together with the involutive automorphism σ and K the subgroup of G consisting of fixed points of σ. When we write M for the homogeneous space G / K, we have
(i) There are elements $\rho_{1}, \cdots, \rho_{l}$ of $R(G)$ such that

$$
\begin{aligned}
& \sigma^{*}\left(\rho_{k}\right)=\rho_{k}(r+1 \leqq k \leqq l) \quad \text { for some } r \text { and } \\
& R(G)=Z\left[\rho_{1}, \cdots, \rho_{r}, \sigma^{*}\left(\rho_{1}\right), \cdots, \sigma^{*}\left(\rho_{r}\right), \rho_{r+1}, \cdots, \rho_{l}\right]
\end{aligned}
$$

(ii) The natural homomorphism $\alpha: Z \underset{R(G)}{\otimes} R(K) \rightarrow K^{0}(M)$ becomes a monomorphism (Section 1) and if we identify an element of $Z \underset{R(G)}{\otimes} R(K)$ with its image by α, then we can write

$$
K^{*}(M)=\Lambda\left(\beta\left(\rho_{1}-\sigma^{*}\left(\rho_{1}\right)\right), \cdots, \beta\left(\rho_{r}-\sigma^{*}\left(\rho_{r}\right)\right)\right) \otimes(Z \underset{R(G)}{\otimes} R(K))
$$

where $\beta\left(\rho_{k}-\sigma^{*}\left(\rho_{k}\right)\right)$ is the element of $K^{-1}(M)$ induced by the representations ρ_{k} and $\sigma^{*}\left(\rho_{k}\right)$ in (i) for $k=1, \cdots, r($ Section 1).
(iii) $K^{*}(M)$ is torsion-free.

The arrangement of this paper is as follows.

In section 1 we describe the definitions of the α-and β - elements of $K^{*}(M)$ in Theorem A and summarize some of the facts on the Künneth formula spectral sequence.

In sections $2-4$ we give a remark (Theorem 2.1) on Snaith's collapsing theorem ([14], Theorem 5.5) for the Künneth formula spectral sequence in equivariant K-theory. Professor V.P. Snaith informed the author that Theorem 2.1 is known to him and the author agreed with him in an outline of a proof. For a proof of Theorem A we have need of Proposition 4.1 obtained as a corollary to the proof of Theorem 2.1.

Sections 5-8 are devoted to the proof of Theorem A.

1. The a and β constructions and the spectral sequence

Let G be a compact Lie group and H a closed subgroup of G. The K-group of the homogeneous space G / H has two kind of elements induced by the unitary representations of G and H.

Over G / H we have the canonical principal H-bundle η. Then, for an H vector space V, the vector bundle with fibre V associated with η defines an element $\alpha(V)$ of $K^{0}(G / H)$. Thus η defines a homomorphism of rings $\alpha: R(H) \rightarrow$ $K^{0}(G / H)$ and we see that α is clearly factored through the natural projection $R(H) \rightarrow Z \underset{R(G)}{\otimes} R(H)$ where $R(G)$ (resp. $R(H))$ is the complex representation ring of G (resp. H) ([1], [9] §9). We shall denote this factored homomorphism $Z \underset{R(G)}{\otimes} R(H) \rightarrow K^{0}(G / H)$ by the same letter α.

The other elements are defined in the following way. Consider a representation of G viewed as a homomorphism of G to the unitary group $U(n)$. If $\rho_{1}, \rho_{2}: G \rightarrow U(n)$ are representations of G agreeing on H, then we can define a $\operatorname{map} f: G / H \rightarrow U(n)$ by $f(g H)=\rho_{1}(g) \rho_{2}(g)^{-1}$ for $g H \in G / H$. Then the composition of f and the inclusion of $U(n)$ to the stable unitary group forms an element of $K^{-1}(G / H)$. We denote this element by $\beta\left(\rho_{1}-\rho_{2}\right)$.

Suppose that G is a compact connected Lie group such that $\pi_{1}(G)$ is torsion-free and let K_{G}^{*} denote the equivariant K-theory associated with G [13]. In [8], [9], Hodgkin constructed a strongly convergent spectral sequence

$$
\begin{equation*}
E_{2}^{*, *}=\operatorname{Tor}_{R(G)}^{* * *}\left(K_{G}^{*}(X), K_{G}^{*}(Y)\right) \Rightarrow F_{G}^{*}(X ; Y) \tag{1.1}
\end{equation*}
$$

and showed that there is a natural transformation λ of $F_{G}^{*}(X ; Y)$ to $K_{G}^{*}(X \times Y)$ and if either X or Y is a free G-space then λ is an isomorphism ([8], Propositions 6.3 and 7.2).

In particular, when $X=G$ and $Y=G / H$, a homogeneous space, in the spectral sequence (1.1), (1.1) becomes

$$
\begin{equation*}
E_{2}^{*, 0}=\operatorname{Tor}_{R(G)}^{*, 0}(Z, R(H)) \Rightarrow K^{*}(G / H) \tag{1.2}
\end{equation*}
$$

because of $K_{G}^{*}(G / H)=R(H)$.

2. A collapsing theorem for (1.2)

We have the following
Theorem 2.1. Let G be a compact connected Lie group such that $\pi_{1}(G)$ is torsion-free and H a closed connected subgroup of G. Then the spectral sequence

$$
E_{2}^{*, 0}=\operatorname{Tor}_{R(G)}^{*, 0}\left(Z, R(H) \Rightarrow K^{*}(G / H)\right.
$$

collapses.
From now we write $E_{r}^{* \cdot *}(X ; Y)_{G}$ for the r-th term of the spectral sequence (1.1) and also $\left\{E_{r}^{* \cdot *}(X ; Y)_{G}\right\}$ for this spectral sequence.

To prove Theorem 2.1 we reduce this theorem to Theorem 5.5 of [14] (which requires the conditions that $H^{*}(B G, Z)$ and $H^{*}(B H, Z)$ are polynomial algebras). For this purpose we prepare two lemmas.

Lemma 2.1. Let T be a maximal torus of H in Theorem 2.1. If the spectral sequence

$$
E_{2}^{*, 0}=\operatorname{Tor}_{R(G)}^{* / 0}(Z, R(T)) \Rightarrow K^{*}(G / T)
$$

collapses, then so does the spectral sequence

$$
E_{2}^{*, 0}=\operatorname{Tor}_{R(G)}^{*, 0}(Z, R(H)) \Rightarrow K^{*}(G / H)
$$

Proof. The natural projection $G / T \rightarrow G / H$ induces a morphism of the spectral sequences

$$
\left\{\varphi_{r}\right\}:\left\{E_{r}^{*, *}(G, G / H)_{G}\right\} \rightarrow\left\{E_{r}^{*, *}(G, G / T)_{G}\right\}
$$

For a proof of Lemma 2.1 it is sufficient to to prove that φ_{2} is injective. However it follows easily from the facts that $\varphi_{2}=\operatorname{Tor}_{R(G)}^{*, *}\left(1, i^{*}\right)$ where i^{*} is the restriction of $R(H)$ to $R(T)$ and $R(H)$ is a direct summand of $R(T)$ as an $R(G)$ module (via restriction).
q.e.d.

By choosing unitary representations of G suitably, we can embed G into a finite product of unitary groups U such that if we denote this embedding by $i: G \rightarrow U$, then

$$
\begin{equation*}
i^{*}: R(U) \rightarrow R(G) \quad \text { is surjective. } \tag{2.1}
\end{equation*}
$$

Let X be a compact, locally contractible G-space of finite covering dimension. Then we have

Lemma 2.2. Suppose that the spectral sequence

$$
E_{2}^{*, *}=\operatorname{Tor}_{R(U)}^{*, *}\left(Z, K_{G}^{*}(X)\right) \Rightarrow K^{*}(U \underset{G}{\times} X)
$$

collapses, then so does

$$
E_{2}^{* * *}=\operatorname{Tor}_{R(G)}^{* \cdot *}\left(Z, K_{G}^{*}(X)\right) \Rightarrow K(X)
$$

3. Proof of Lemma 2.2

Here we shall give a proof of Lemma 2.2.
Let L be a compact connected Lie group. We define $I(L)$ to be the kernel of the augumentation $\varepsilon: R(L) \rightarrow Z$ of $R(L)$ and $J(L)$ the quotient $I(L) /(I(L))^{2}$. Then we know that if the fundamental group of L is torsion-free then $J(L)$ is a free abelian group of rank l where l is the rank of L ([7], Lemma 4.2).

From (2.1) we see obviously that the homomorphism induced by i^{*}

$$
\begin{equation*}
i_{1}^{*}: J(U) \rightarrow J(G) \quad \text { is surjective } \tag{3.1}
\end{equation*}
$$

Define $J(U, G)=\operatorname{Ker} i_{1}^{*}$. We can choose a basis $\xi_{1}, \cdots, \xi_{l}, \nu_{1}, \cdots, \nu_{s}$ for $J(U)$ such that $i_{1}^{*}\left(\xi_{1}\right), \cdots, i_{1}^{*}\left(\xi_{l}\right)$ form a basis $J(G)$ and ν_{1}, \cdots, ν_{s} a basis for $J(U, G)$. For brevity we denote the representatives of these elements in $R(U)$ by the same notation and then we may assume that

$$
\begin{equation*}
i^{*}\left(\nu_{k}\right)=0 \quad \text { for } \quad k=1, \cdots, s \tag{3.2}
\end{equation*}
$$

Then we have the Koszul complex given by

$$
\begin{equation*}
C^{*}=\Lambda\left(x_{1}, \cdots, x_{s}, y_{1}, \cdots, y_{l}\right) \otimes R(U) \tag{3.3}
\end{equation*}
$$

where $d\left(x_{i}\right)=\nu_{i}(1 \leqq i \leqq s), d\left(y_{j}\right)=\xi_{j}(1 \leqq j \leqq l)$ and d is a derivation.
Proof of Lemma 2.2. The inclusion $X \rightarrow \underset{G}{X} X$ induces a morphism $\left\{\phi_{r}\right\}$ of $\left\{E_{r}^{*, *}(U, \underset{G}{U \times} X)_{U}\right\}$ to $\left\{E_{r}^{*, *}(U, X)_{G}\right\}$.

Using (3.3) we have isomorphisms

$$
\begin{align*}
E_{2}^{*, *}(U, U \times X)_{U} & =\operatorname{Tor}_{R,(U)}^{* *}\left(Z, K_{G}^{*}(X)\right) \\
& \cong H^{*}\left(C_{R}^{*} \otimes_{R(U)} K_{G}^{*}(X)\right) \tag{3.4}\\
& \cong \Lambda\left(x_{1}, \cdots, x_{s}\right) \otimes \operatorname{Tor}_{R(G)}^{* \cdot *}\left(Z, K_{G}^{*}(X)\right) \quad \text { by }(3.2) .
\end{align*}
$$

Next we consider $E_{2}^{*, *}(U, X)_{G}$. For this we need that

$$
\begin{equation*}
K^{*}(U / G) \quad \text { is torsion-free. } \tag{3.5}
\end{equation*}
$$

Suppose that (3.5) is true for the moment. Then we have an isomorphism

$$
\begin{align*}
E_{2}^{* * *}(U, X)_{G} & =\operatorname{Tor}_{R(G)}^{* * *}\left(K^{*}(U / G), K_{G}^{*}(X)\right) \\
& \simeq K^{*}(U / G) \otimes \operatorname{Tor}_{R(G)}^{* *}\left(Z, K_{G}^{*}(X)\right) \tag{3.6}
\end{align*}
$$

from (2.1) and (3.5).
From (3.4) and (3.6) we see that ϕ_{2} induces an epimorphism from the torsion-part of $E_{2}^{*, *}(U, U \times \underset{G}{ } X)_{U}$ to that of $E_{2}^{*, *}(U, X)_{G}$, and therefore we see by the assumption that $E_{2}^{* * *}(U, X)_{G}$ consists of permanent cycles. Moreover when we consider the morphism of the spectral sequences

$$
\psi_{r}:\left\{E_{r}^{*, *}(U, X)_{G}\right\} \rightarrow\left\{E_{r}^{*, *}(G, X)_{G}\right\}
$$

induced by the embedding of G to U, it is easy to see that $E_{2}^{*, *}(G, X)_{G}$ also consists of permanent cycles.

It remains to prove (3.5). Put $X=G$ in the above. Then, from Lemma 7.3 of [8], it follows that $\left\{E_{r}^{*, *}(U, U)_{U}\right\}$ collapses, and (3.6) when $X=G$ follows from the facts that $\operatorname{Tor}_{R(G)}^{*}{ }^{*}(Z, Z)$ is torsion-free ([8], Lemma 7.2). Hence we see that $\left\{E_{r}^{*, *}(U, G)_{G}\right\}$ collapses by using the above argument and so $K^{*}(U / G)$ is isomorphic to a subgroup of $K^{*}(U)$. This shows (3.5). Therefore Lemma 2.2 is proved.

4. Proof of Theorem 2.1 and a corollary

Proof of Theorem 2.1. Putting $X=G / T$ in Lemma 2.2 where T is a maximal torus of H, Lemmas 2.1 and 2.2 imply that $\left\{E_{r}^{*, *}(G, G / H)_{G}\right\}$ collapses because $\left\{E_{r}^{*, *}(U, U / T)_{U}\right\}$ does so by Theorem 5.5 of [14].
q.e.d.

Next we describe a result obtained from the proof of Lemma 2.2.
Proposition 4.1 (Cf. [5], Proposition 2.3).
Let G and H be as in Theorem 2.1. Suppose that $\pi_{1}(H)$ is torsion-free and the restriction $i^{*}: R(G) \rightarrow R(H)$ is surjective. Then we have
(i) There exist elements ν_{1}, \cdots, ν_{s} of $R(G)$ such that $i^{*}\left(\nu_{k}\right)=0$ for $k=1, \cdots$, s and $\pi\left(\nu_{1}\right), \cdots, \pi\left(\nu_{s}\right)$ form a basis for the free abelian group $\operatorname{Ker}(J(G) \rightarrow$ $J(H))$ where π is the composition of the natural projections $R(G) \rightarrow I(G) \rightarrow$ $J(G)$.
(ii) $K^{*}(G / H)$ is an exterior algebra on $\beta\left(\nu_{1}\right), \cdots, \beta\left(\nu_{s}\right)$.

Proof. By Theorem 2.1 the spectral sequence

$$
E_{2}^{*, 0}=\operatorname{Tor}_{R(G)}^{*, 0}(Z, R(H)) \Rightarrow K^{*}(G / H)
$$

collapses. Here we consider the E_{2}-term of this spectral sequence. In section 3 we can substitute the pair (G, H) for the pair (U, G) by the assumption and put $X=$ a point. Then we have an isomorphism

$$
E_{2}^{*, 0}(G, G / H)_{G} \cong \Lambda\left(x_{1}, \cdots, x_{s}\right)
$$

by using the notation of (3.4) and we see that the edge homomorphism of this
spectral sequence sends x_{j} to $\beta\left(\nu_{j}\right)$ for $j=1, \cdots, s$ (See [9], §10). This completes the proof.

5. The classification of symmetric spaces

Let G, K, σ and M be as in Theorem A and let $j: K \rightarrow G$ be the inclusion of K throughout the remainder of this paper.

We know that K is connected ([11, I], Theorem 3.4 in Chapter IV). Now if K is of maximal rank, then we can easily check Theorem A as follows: Since the restriction $i^{*}: R(G) \rightarrow R(K)$ is injective, all elements of $R(G)$ are fixed by σ^{*}, and since $R(K)$ is a stably-free module as an $R(G)$-module [12], we see that

$$
\begin{equation*}
\alpha: Z \underset{R(G)}{\otimes} R(K) \rightarrow K^{*}(G / K) \quad \text { is an isomorphism } \tag{5.1}
\end{equation*}
$$

from the spectral sequence (1.2) ($[9], \S 9$) and $Z \underset{R(G)}{\otimes} R(K)$ is trorsion-free.
Therefore it suffices to prove Theorem A when $\operatorname{rank} G>\operatorname{rank} K$. When M is a simply-connected Lie group as a symmetric space, we refer the reader to [2] and [3] or [7]. $\quad M$ is simply-connected and so it is a direct product of irreducible symmetric spaces. Hence we consider only the irreducible symmetric spaces such that rank $G>\operatorname{rank} K$. According to the classification of irreducible symmetric spaces [6], such irreducible symmetric spaces are the following six types:

AI	$S U(n) / S O(n)$
$A I I \quad$	$S U(2 n) / S p(n)$
$B D I(a)$	$S p i n(p+q) / S p i n(p) \times S p i n(q) \quad$ (where p and q are odd and
	$\left.Z_{2}=\{(1,1),(-1,-1))\right\}$
$B D I I(a)$	$S p i n(n) / S p i n(n-1) \quad$ (where n is even $)$
EI	$E_{6} / P S p(4)$
EIV	E_{6} / F_{4}

6. Proofs for AII, BDII(a) and EIV

The symmetric spaces of types $A I I, B D I I(a)$ and $E I V$ have the properties such that $\pi_{1}(K)$ is torsion-free and $i^{*}: R(G) \rightarrow R(K)$ is surjective. Hence we can apply Proposition 4.1 to this case.

Here we describe Proposition 4.1 for the above three symmetric spaces explicitly.

Type $A I I(M=S U(2 n) / S p(n))$. Let I_{n} denote the $n \times n$ unit matrix and put $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$. Then σ is given by

$$
\sigma(g)=J \bar{g} J^{-1} \quad \text { for } \quad g \in S U(2 n)
$$

where \bar{g} is the complex conjugate of g.
Using the notation in [10] we have

$$
\begin{equation*}
R(S U(2 n))=Z\left[\lambda_{1}, \cdots, \lambda_{2 n-1}\right] \quad \text { and } \quad R(S p(n))=Z\left[\lambda_{1}, \cdots, \lambda_{n}\right] \tag{6.1}
\end{equation*}
$$

([10], Theorems 3.1 and 6.1 in §13). Then it is clear that

$$
\begin{equation*}
i^{*}\left(\lambda_{k}\right)=i^{*}\left(\lambda_{2 n-k}\right)=\lambda_{k} \quad \text { and } \quad \sigma^{*}\left(\lambda_{k}\right)=\lambda_{2 n-k} \quad \text { for } \quad k=1, \cdots, n . \tag{6.2}
\end{equation*}
$$

From (6.2) we see easily that i^{*} is surjective and $\pi\left(\lambda_{k}-\lambda_{2 n-k}\right)(1 \leqq k \leqq n-1)$ form a basis for the free abelian group $\operatorname{Ker}(J(S U(2 n)) \rightarrow J(S p(n)))$. Therefore we get from Proposition 4.1 that

Proposition 6.1. The notation being as in (6.1)),

$$
K^{*}(S U(2 n) / S p(n))=\Lambda\left(\beta\left(\lambda_{1}-\lambda_{2 n-1}\right), \cdots, \beta\left(\lambda_{n-1}-\lambda_{n+1}\right)\right) .
$$

Type $\operatorname{BDII}(a)(M=\operatorname{Spin}(2 n) / \operatorname{Spin}(2 n-1)) . \quad \sigma$ is given by

$$
\sigma(g)=-e_{2 n} g e_{2 n} \quad \text { for any } \quad g \in \operatorname{Spin}(2 n)
$$

where $e_{2 n}$ is the generator of the Clifford algebra $C_{2 n}$ in the $2 n$-th position ([10], §11).

From Theorem 10.3 in $\S 13$ of [10],

$$
\begin{align*}
& R(\operatorname{Spin}(2 n))=Z\left[\lambda^{1}\left(\rho_{2 n}\right), \cdots, \lambda^{n-2}\left(\rho_{2 n}\right), \Delta_{2 n}^{+}, \Delta_{2 n}^{-}\right] \tag{6.3}\\
& R(\operatorname{Spin}(2 n-1))=Z\left[\lambda^{1}\left(\rho_{2 n-1}\right), \cdots, \lambda^{n-2}\left(\rho_{2 n-1}\right), \Delta_{2 n-1}\right]
\end{align*}
$$

using the same notation. Then we can easily verify that

$$
\begin{array}{ll}
i^{*}\left(\lambda^{k}\left(\rho_{2 n}\right)\right)=\lambda^{k}\left(\rho_{2 n-1}\right)+\lambda^{k-1}\left(\rho_{2 n-1}\right) \quad(1 \leqq k \leqq n-2), \\
i^{*}\left(\Delta_{2 n}^{ \pm}\right)=\Delta_{2 n-1}, & \\
\sigma^{*}\left(\lambda^{k}\left(\rho_{2 n}\right)\right)=\lambda^{k}\left(\rho_{2 n}\right) \quad(1 \leqq k \leqq n-2) \quad \text { and } \tag{6.4}\\
\sigma^{*}\left(\Delta_{2 n}^{ \pm}\right)=\Delta_{2 n}^{ \pm} .
\end{array}
$$

From (6.4) we see that i^{*} is surjective and the element $\Delta_{2 n}^{+}-\Lambda_{2 n}^{-}$holds the conditions required in (i) of Proposition 4.1 and therefore we have by Proposition 4.1

Propositiom 6.2. The notation being as in (6.3),

$$
K^{*}(\operatorname{Spin}(2 n) / \operatorname{Spin}(2 n-1))=\Lambda\left(\beta\left(\Delta_{2 n}^{+}-\Delta_{2 n}^{-}\right)\right)
$$

Type $\operatorname{EIV}\left(M=E_{6} / F_{4}\right)$. We look at the Dynkin diagrams of E_{6} and F_{4} with the irreducible representations corresponding to the vertexes and their dimensions written next to the vertexes:

where $\overline{\lambda^{k} \rho^{\prime}}\left(k=1\right.$ or 2) is the greatest component of $\lambda^{k} \rho^{\prime}$ (See Supplement and Table 30 of [4]).

The involutive automorphism σ of E_{6} for $E I V$ is the normal extension of a symmetry of the Dynkin diagram E_{6} indicated by the arrow in the diagram (6.5) (See [11, II], p. 130). Hence it follows immediately that

$$
\begin{equation*}
\sigma^{*}\left(\lambda^{k} \rho_{1}\right)=\lambda^{k} \rho_{2}(1 \leqq k \leqq 3) \quad \text { and } \quad \sigma^{*}\left(A d_{E_{6}}\right)=A d_{E_{6}} . \tag{6.6}
\end{equation*}
$$

Consider the highest weights of ρ_{1} and ρ^{\prime} and their dimensions, then we get

$$
\begin{equation*}
i^{*}\left(\rho_{1}\right)=\rho^{\prime}+1 \tag{6.7}
\end{equation*}
$$

and moreover we obtain

$$
\begin{equation*}
i^{*}\left(A d_{E_{6}}\right)=A d_{F_{4}}+\rho^{\prime} \tag{6.8}
\end{equation*}
$$

by enumerating the all weights of the adjoint representations $A d_{E_{6}}$ and $A d_{F_{4}}$.
From (6.7) and (6.8) we see that $i^{*}: R\left(E_{6}\right) \rightarrow R\left(F_{4}\right)$ is surjective because of $R\left(F_{4}\right)=Z\left[\rho^{\prime}, \lambda^{2} \rho^{\prime}, \lambda^{3} \rho^{\prime}, A d_{F_{4}}\right][15]$, and therefore from (6.6) and Proposition 4.1 follows

Proposition 6.3 (Cf. [5]). The notation being as in the diagram (6.5),

$$
K^{*}\left(E_{6} \mid F_{4}\right)=\Lambda\left(\beta\left(\rho_{1}-\rho_{2}\right), \beta\left(\lambda^{2} \rho_{1}-\lambda^{2} \rho_{2}\right)\right) .
$$

7. Proofs for $\operatorname{BDI}(a)$ and $E I$

Let L be a compact connected Lie group, H be a closed connected subgroup of maximal rank of L and $j: H \rightarrow L$ the inclusion of H. Then,

Proposition 7.1. For a compact L-space X, there is a natural homomorphism of $K_{L}^{*}(X)$-modules $j_{*}: K_{H}^{*}(X) \rightarrow K_{L}^{*}(X)$ such that $j_{*}(1)=1$, and therefore $j_{*} j^{*}$ is an identity isomorphism where j^{*} is the restriction $K_{L}^{*}(X) \rightarrow K_{H}^{*}(X)$.

Proof. The proof is immediate from Proposition (3.8) of [13].

Type $B D I(a)(M=\operatorname{Spin}(2 m+2 n+2) / \operatorname{Spin}(2 m+1) \times \operatorname{Z} \operatorname{Sin}(2 n+1)) . \quad \sigma$ is given by

$$
\sigma(g)=-\left(e_{1} \cdots, e_{2 m+1}\right) g\left(e_{2 m+1} \cdots e_{1}\right)
$$

for any $g \in \operatorname{Spin}(2 m+2 n+2)$ where e_{k} is the generator of the Clifford algebra $C_{2 m+1}$ in the k-th position for $k=1, \cdots, 2 m+1$ ($\left.[10], \S 11\right)$. Then we have

$$
\begin{align*}
& \sigma^{*}\left(\lambda^{k}\left(\rho_{2 m+2 n+2}\right)\right)=\lambda^{k}\left(\rho_{2 m+2 n+2}\right) \quad(1 \leqq k \leqq m+n-1), \tag{7.1}\\
& \sigma^{*}\left(\Delta_{2 m+2 n+2}^{ \pm}\right)=\Delta_{2 m+2 n+2}^{ \pm}
\end{align*}
$$

using the notation in (6.3).
Put $\quad G=\operatorname{Spin}(2 m+2 n+2), \quad K=\operatorname{Spin}(2 m+1) \times \operatorname{Spin}(2 n+1), \quad G_{1}=\operatorname{Spin}$ $(2 m+2 n+1)$ and $K_{1}=\operatorname{Spin}(2 m+1) \times \operatorname{Spin}(2 n)$, then we have an isomorphism induced by the external product homomrphism

$$
\begin{equation*}
K^{*}\left(G / G_{1}\right) \underset{R\left(G_{1}\right)}{\otimes} R\left(K_{1}\right) \cong K^{*}\left(G / K_{1}\right) \tag{7.2}
\end{equation*}
$$

by use of the Kunneth formula spectral sequence in $K_{G_{1}}^{*}$ ([8], [9] and [12]). Furthermore, since the restriction $R(G) \rightarrow R\left(G_{1}\right)$ is surjective, we have isomorphisms

$$
\begin{align*}
K^{*}\left(G / K_{1}\right) & \cong K^{*}\left(G / G_{1}\right) \otimes\left(Z_{R(G)}^{\otimes} R\left(K_{1}\right)\right) \quad \text { by }(7.2) \\
& \cong \Lambda\left(\beta\left(\Delta_{2 m+2 n+2}^{+}-\Delta_{2 m+2 n+2}^{-}\right)\right) \otimes\left(Z_{R(G)} \otimes_{R} R\left(K_{1}\right)\right) \quad \text { by Prop. } 6.2 \tag{7.3}\\
& \simeq \Lambda\left(\beta\left(\Delta_{2 m+2 n+2}^{+}-\Delta_{2 m+2 n+2}^{-}\right)\right) \otimes\left(Z_{R(G)}^{\otimes} R\left(K_{1}\right)\right)
\end{align*}
$$

Let $j^{*}: K^{*}(G / K) \rightarrow K^{*}\left(G / K_{1}\right)$ be the homomorphism induced by the projection $G / K_{1} \rightarrow G / K$ and $j_{*}: K^{*}\left(G / K_{1}\right) \rightarrow K^{*}(G / K)$ the homomorphism of $K^{*}(G / K)$-modules mentioned in Proposition 7.1. $K^{*}\left(G / K_{1}\right)$ is torsion-free by (7.3) and j^{*} is injective by the property of j_{*}. Therefore,

$$
\begin{equation*}
K^{*}(G / K) \text { is torsion-free. } \tag{7.4}
\end{equation*}
$$

Here we have a natural homomorphism of rings

$$
\varphi: \Lambda\left(\beta\left(\Delta_{2 m+2 n+2}^{+}-\Delta_{2 m+2 n+2}^{-}\right)\right) \otimes(Z \underset{R(G)}{\otimes} R(K)) \rightarrow K^{*}(G / K)
$$

which is well-defined by (7.4). Then φ is injective because $j^{*} \varphi$ is so, and also it is easy to see that φ is surjective by the fact that $j_{* j}{ }^{*}=$ identity. Hence we conclude that

Proposition 7.2. The notation being as in (6.3), $K^{*}(\operatorname{Spin}(2 m+2 n+2) /$ $\left.\operatorname{Spin}(2 m+1) \underset{Z_{2}}{\times} \operatorname{Spin}(2 n+1)\right)$ is torsion-free and equals the ring

$$
\Lambda\left(\beta\left(\Delta_{2 m+2 n+2}^{+}-\Delta_{2 m+2 n+2}^{-}\right)\right) \otimes\left(Z \underset{R(\operatorname{Spin}(2 m+2 n+2))}{\otimes} R\left(\operatorname{Spin}(2 m+1) \times \underset{Z_{2}}{\otimes} \operatorname{Spin}(2 n+1)\right)\right)
$$

Type $E I\left(M=E_{6} / P S(4)\right) . \quad \sigma$ is the composition of the involutive automorphism of E_{6} for $E I V$ and the inner automorphism (See [11, II], $p .131$). So we have from (6.6)

$$
\begin{equation*}
\sigma^{*}\left(\lambda^{k} \rho_{1}\right)=\lambda^{k} \rho_{2}(1 \leqq k \leqq 3) \quad \text { and } \quad \sigma^{*}\left(\mathrm{~A} d_{E_{6}}\right)=A d_{E_{6}} \tag{7.5}
\end{equation*}
$$

using the notation the diagram (6.5).
From the argument in p. 131 of [11, II] we know that E_{6} has $S p(3) \times{ }_{Z_{2}} S U(2)$ as a subgroup which is contained in $\operatorname{PSp}(4)$ and F_{4} where Z_{2} is the subgroup of $S p(3) \times S U(2)$ consisting of $(1,1)$ and $(-1,-1)$.

Setting $G=E_{6}, K=P S p(4), G_{1}=F_{4}$ and $K_{1}=S p(3) \times S U(2)$ the similar argument to $\operatorname{BDI}(a)$ shows that

Proposition 7.3. The notation being as in the diagram (6.5), $K^{*}\left(E_{6} / P S p(4)\right)$ is torsion-free and equals the ring

$$
\Lambda\left(\beta\left(\rho_{1}-\rho_{2}\right), \beta\left(\lambda^{2} \rho_{1}-\lambda^{2} \rho_{2}\right)\right) \otimes\left(Z \underset{R\left(E_{6}\right)}{\otimes} R(P S p(4))\right)
$$

8. Proof for $A I$

In the case of $A I$-type, σ is given by $\sigma(g)=\bar{g}$ for any $g \in S U(n)$ where \bar{g} is the complex conjugate of g.

From Theorems 3.1 and 10.3 in $\S 13$ of [10], we have

$$
\begin{align*}
& R(S U(n))=Z\left[\lambda_{1}, \cdots, \lambda_{n-1}\right], \\
& R(S O(2 m+1))=Z\left[\lambda_{1}, \cdots, \lambda_{m}\right] \quad \text { where } \lambda_{k}=\lambda^{k}\left(\rho_{2 m+1}\right)(1 \leqq k \leqq m), \\
& R(S O(2 m))=Z\left[\lambda_{1}, \cdots, \lambda_{m-1}, \lambda_{m}^{+}, \lambda_{m}^{-}\right] / \sim \quad \text { where } \lambda_{k}=\lambda^{k}\left(\rho_{2 m}\right) \tag{8.1}\\
& (1 \leqq k \leqq m-1) \quad \text { and } \quad \lambda_{m}^{ \pm}=\lambda_{ \pm}^{m}\left(\rho_{2 m}\right)
\end{align*}
$$

using the same notation.
First we consider the case when n is odd. Put $n=2 m+1$. Then,

$$
\begin{equation*}
i^{*}\left(\lambda_{k}\right)=i^{*}\left(\lambda_{2 m+1-k}\right)=\lambda_{k} \quad \text { and } \quad \sigma^{*}\left(\lambda_{k}\right)=\lambda_{2 m+1-k} \text { for } k=1, \cdots, m \tag{8.2}
\end{equation*}
$$ clearly.

Using the Koszul complex

$$
C^{*}=\Lambda\left(x_{1}, \cdots, x_{2 m}\right) \otimes R(S U(2 m+1))
$$

where $d\left(x_{k}\right)=\tilde{\lambda}_{2 m+1-k}\left(=\lambda_{2 m+1-k}-\varepsilon\left(\lambda_{2 m+1-k}\right)\right)(1 \leqq k \leqq 2 m)$ and d is a derivation, we shall show

$$
\begin{equation*}
\operatorname{Tor}_{R(S U(2 m+1))}^{*, 0}(Z, S O(2 m+1))=\Lambda\left(x_{1}-x_{2 m}, \cdots, x_{m}-x_{m+1}\right) . \tag{8.3}
\end{equation*}
$$

For a proof we define $E_{l}(1 \leqq l \leqq 2 m)$ to be the subcomplex $\Lambda_{R(S O(2 m+1))}$ $\left(x_{1}, \cdots, x_{l}\right)$ of $C^{*} \underset{R(S U(2 m+1))}{\otimes} R(S O(2 m+1))$. Then there exist a natural short exact sequence of complexes

$$
0 \rightarrow E_{l} \rightarrow E_{l+1} \rightarrow E_{l+1} / E_{l} \rightarrow 0
$$

and an isomorphism of complexes

$$
E_{l} \cong E_{l+1} / E_{l}
$$

defined by the correspondence $z \rightarrow z x_{l+1}, z \in E_{l}$ for $=1, \cdots, 2 m-1$. This permits us to apply the induction on l and then we obtain

$$
\begin{aligned}
& H^{*}\left(E_{l}\right)=R(S O(2 m+1)) /\left(\tilde{\lambda}_{1}, \cdots, \tilde{\lambda}_{l}\right) \\
& H^{*}\left(E_{m+l}\right)=\Lambda\left(x_{m-l+1}-x_{m+l}, \cdots, x_{m}-x_{m+1}\right)
\end{aligned}
$$

for $l=1, \cdots, m$. Thus (8.3) is proved.
From [9], §10 it follows that the element $x_{k}-x_{2 m+1-k}$ converges to $\beta\left(\lambda_{k}-\lambda_{2 m+1-k}\right)$ in the spectral sequence (1.2) for $k=1, \cdots, m$. Hence we have

Proposition 8.1. The notation being as in (8.1),

$$
K^{*}(S U(2 m+1) / S O(2 \mathrm{~m}+1))=\Lambda\left(\beta\left(\lambda_{1}-\lambda_{2 m}\right), \cdots, \beta\left(\lambda_{m}-\lambda_{m+1}\right)\right) .
$$

In a similar way when n is even, we can prove the following
Proposition 8.2. The notation being as in (8.1),

$$
K^{*}(S U(2 m) / S O(2 m))=\Lambda\left(\beta\left(\lambda_{1}-\lambda_{2 m-1}\right), \cdots, \beta\left(\lambda_{m-1}-\lambda_{m+1}\right)\right) \otimes \Lambda\left(\tilde{\lambda}_{m}^{+}\right)
$$

$$
\text { where } \tilde{\lambda}_{m}^{+}=\lambda_{m}^{+}-\frac{1}{2}\left(\frac{2 m}{m}\right) \text {. }
$$

This completes the proof of Theorem A.
Osaka City University

References

[1] M.F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. of Symposia in Pure Math., Differential Geometry, Amer. Math. Soc., 1961, 7-38.
[2] M.F. Atiyah: On the K-theory of compact Lie groups, Topology 4 (1965), 95-99.
[3] S. Araki: Hopf structures attached to K-theory: Hodgkin's theorem, Ann. of Math. 85 (1967), 508-525.
[4] E.B. Dynkin: Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39-166; Amer. Math. Soc. Transl. (2) 6 (1957), 245-378.
[5] B. Harris: The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc. 131 (1968) 323-332.
[6] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[7] L. Hodgkin: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
[8] —: An equivariant Kuinneth formula in K-theory, University of Warwick preprint, 1968
[9] —: Künneth formula spectral sequence, University of London King's College preprint, 1972.
[10] D. Husemoller: Fibre Bundles, McGraw-Hill, Inc., 1966.
[11] O. Loos: Symmetric Spaces I, II, W.A. Benjamin, Inc., 1969.
[12] H.V. Pittie: Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199-203.
[13] G. Segal: Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. (Paris) 34 (1968), 129-151.
[14] V.P. Snaith: Massey products in K-theory II, Proc. Camb. Phil. Soc. 69 (1971), 259-289.
[15] I. Yokota: Exceptional Lie group F_{4} and its representation rings, J. Fac. Sci. Shinshu Univ. 3 (1968), 35-60.

