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Introduction

Let QX denote the space of loops on a based topological space X. M.
Sugawara [8] called the order of the identity class 155 of QX in the group
[QX, QX] the loop-order of X, denoted by /(X), and proved ([8], Theorem 3)
that, for a Hurewicz fibration F—E— B, l(E) is a divisor of the multiple
I(B)-I(F).

The aim in this note is to determine, using a technique of Larmore and
Thomas [2], the loop-order of a total space obtained as a 2-stage Postnikov tower
and to discuss that of a space obtained as a 3-stage Postnikov tower.

In this note, let p denote a fixed prime. Let /(p) denote the mod p
Steenrod algebra, and let &: A(p)— A(p) denote the Kristensen map of degree
—1, which is a derivation and is given by

&(Sq") = Sq"~* (n=1) if p—2,
gA)=1, &P¥)=0 (k=0) if p>2,

(cf. [2], Proposition 3.5; [5]). We shall write &(a)=a.
Also denote by K,= K(Z,, n) the Eilenberg-MacLane complex of type
(Zs,n). Let E, and E, be principal fibre spaces with classifying classes

{01’ 02y vy 0,,,}: K,— >"'< Kn+rl,- ’ 0<r, =, < érmén—:;
ji=1

and
k

&
E ”?'Yi: >=<1 Kn+s,~_)Kn+r ’ § = Oész

i=1

IA
IA

sp<r=<n—3

respectively, where 6 and v, are cohomology operations of degree 7, and r—s;,

regarded as elements of _4(p), and z;: >k<K,,+s,—>K,,+si is the projection on the
i-th factor. We then obtain -

Theorem A. [(E,)=p*if, and only if, there exists j, | <j=<m, such that ;
does not belong to the left A(p)-module, J—Z A(p)0:, of A(p) generated by
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0, 50,

J
Theorem B. [(E,)=p* if, and only if, there exists i, 1 <i <k, such that ¥,

does not belong to the right A(p)-module, 5] Ye A(P), of A(p) generated by
Vit =5 Ve o

The following corollary is a restatement of Theorem 1.3 of L. Smith [5].

Corollary 1. Let E be a fibre space induced from the path-fibration on K,,,
by 0=0c,: K,—~K,,,, where 0<r=<n—3 and ., denotes the fundamental class.
Then I(E) is p* if, and only if, §0.

We next consider the situation shown in the diagram below:

oL E

ﬂla

(*) alox .1
)
4-%B

where we set

A= Km B = >’2 Kn+r,-’ L= Kn+s; 0<7‘1§7‘2<"' §7m§8§n—3 ’
i=1

o= {aU RS am}) a;ed(p), deg o;=17;,

B =0l=3(Qm:;)*B;, BicAp), degB;=s—r+1,

i=1

and where K and E are principal fibre spaces with classifying classes « and .
Let

Jr: .(31(Ker o; N Ker a,-) — Coker él (18‘_*_&,)

denote a secondary operation associated with the relation > [Bon+
i=1

(—1)*"""'B;&;]=0, which is deduced from Zm Bia;=0 by taking the map &.
i=1

Theorem C. Suppose that, for all i=1, -, m, &;= i A(p)ag.
k=1
1) If there exists j such that BjEE > BeA(P), then [ E)=p>.
xSt
2) Ifdeg B,>1 (i.e., s>r,) and if
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Y (Q2p)ZE0 mod 'Z:; [B:H™"i~(QK; Zp)+B:H™ i (QK; Zy)]
+(Qpy*H"**"%(Q4; Z,) ,

then I(E)=p*.
3) Iffor alli=1, -, m, B;c 3 BuA(p), and if deg B,y>1 and
k=j+1
(QP)*H”'H_Z(QA; Zp)c ﬁl ﬁ;H”'Hra(QK; Zp) ,

¥(Qp) = 0 mod 3} BH QK Z,),

then I(E)=p.
Corollary 2. Suppose that, for all i, &,& 5 A(p)ax and B:& 3 BuA(p)
and that the homogeneous part A(p) of degree s—1 is contained in ;.‘;11 BrA(p)+
i} A(p)ag.  If deg B,,>1 and the homogeneous part of A(p) of degree s—r; is
trivial for all i, then [(E)=p.
Theorem D. Suppose that there exists i such that &;¢E '2_1 A(p)ots.
If (.Qp)*[z’_"] (—1)y:8;a;]%=0 mod é B:H™"i"¥QK; Z,), then [(E)=p*; otherwise
(E)=p*.
Corollary 3. Suppose that there exists i such that &; & lij A(p)a.
1) I 3 (—1yBiau 3} {BuA(p)+ AP} and if
Eml Bi: 6:91 H™":73(Q*B) — H**~*(Q*B)
is monic, then [(E)=p°.
2) IE (1 Bae 33 {Bed(p)+AP)out, then (E)=p"
REMARK. 2’: B; is monic in each of the following cases:

1) Bi=S8q¢%, a,>a,>-->a,, a;=2(r;—r,—1) for p=2;
il) B; are of the form P% or AP% and are all distinct, and (2p—2)a;=

plri—r,—1) for p>2.

1. A basic theorem
In this note we work in the category of based spaces having the homotopy

types of CW complexes and based continuous maps, and we don’t distinguish
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between a map and the homotopy class it represents. Let z: E—~K be the
principal fibre space with §: K —L as classifying map and let j: QL—E denote
the fibre inclusion. Let p denote a fixed prime. A map of degree p¥(k>0) of
S=3S" yields the Puppe sequence

p* i q p*

S—S P S? S?
Form the commutative diagram
LS
9s* lpkf
K Ls
¢ |
eP
KP— P
4 +
'S S v l 05 J’ ’
ars Lops 5 ks 2 [
k# k§ k¥
(Q0)° I 7 i v
QKS QLS > ES Ks

where rows and columns are fibration sequences and # indicates induced maps of
function spaces.

We now assume that K and L are loop spaces. Larmore and Thomas [2]
have defined a sort of functional operation

@, [X, K5]N Ker (p*)5 N Ker 05 — [X, L5/0L[X, KS]+(pH)«[X, L]

by setting ®,=(¢")5x'0%(#*)5", with the property that, for x<[X, ES] such that
(p*)4mix=0,
(L1) phx = — 3 y(n§n) mod jEPHX, QLS

where we have made the adjoint identification [X, L5*]=[X, QLS] (cf. Theorem
3.2 of [3]).
In what follows we assume that
(1.2) (K) and [(L) are divisors of p*;
(1.3) [Q°L, Q’K]=0;

(14) [QL, Y] <~ Lt [QF, Y]( " [QK, Y] <—— oo [QL, Y]

is exact for Y=0°L and Q°K, (this condition may be verified using
Theorem 6.5 of Sugawara [7]).
Taking X=0QF, x=1, in (1.1), we then have
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Theorem 1.5. With the hypotheses (1.2), (1.3) and (1.4), we have
1) P*lar = —(Q))xPu(Q7) .
2) Write W(E) for the subset (Qr)*~ @ (Qx) of [AK, Q2L].
Then ¥ ,(E) is non-empty and is a coset of (Q0)*[QL, Q*L]+(Q%0)«[QK, QK] such
that p*14.=0 if, and only if,
Yu(E) =0mod (Q0)*[QL, Q’L]+(2%0)«[QK, QK] .
Proof. 1) 1is obvious by (1.1) and (1.2). Consider the commutative

diagram

[QE, QF]
GHN
0L, 157 2% 0o, 197 9 10m 1) 9 0k 1o 99" (ar qery
g% J % \020)* \(ﬂze)*
[QL, K5'] iz, 27 S (0F, 171 10, k] & [k, k]
qf,‘\ 0% T 6% (ij
L, k718 10 k7 (oL, 0]
i l )
0L, k5189 10, k9

Since (Q)*Qz=0=:%(Q))*(%) 'Qx and ¢} and the left 7% are monic by virtue of
(1.2) and (1.3), we see that (Qj)*®,(Q7)=0, and hence there exists y = [QK, QL]
with (Qz)*ye ®,(Qn), which shows that W,(E) is non-empty. By diagram-
chasing we may easily verify that (Qz)*~" Ker (Qf)«=(Qn)* (Q%)«[QE, QK]
coincides with (Q8)*[QL, Q’L]+4(Q%0)«[QK, Q?K]. The last assertion follows
from 1), since p*15=0 iff ®,(Qr)=Ker (Qj)x.

We note that the assignment §—¥,(E) is dual to Toda’s derivative 6 ([9],
p. 209).

2. Proofs of Theorems A and B

We may prove Corollary 1 in the introduction as follows. Let 8: K,—K,,.
Then, by Corollary 3.7 of [2], W ,(E)=(—1)"*"*'0.,_,. Hence our assertion
follows from 2) of Theorem 1.5.
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We now consider more general situation. Let

m

k
K= XKn+s~) L= _><Kn+r])

0=s5<55 <5, <0, <7, < - Z7,,<n—3,
0= {01) A m} )
0,=Nx80,:, 0,€A(p), degly=r1,—s,
where z;: K—>K,,,, is the projection on the i-th factor. Then Theorems A and

B are consequences of the following

Theorem 2.1. Let E be the principal fibre space with the above 6 as classifying
class. Then [(E)=p* if, and only if, there exist j and i, 1<j<m, 1<i<k, such
that

0,0 33 APt 3 0, A(p)

Proof. Introduce the diagram

XP,
Kn+rl s Kn+r 2XKn+r -1 ‘—X(Kn-&-s 2XKn+s 1)——’ ><Kn

l ¢ l 67 N l 7 l

s2 E P P
Kﬂ-l-rj > Kﬂ-l-rj ..>=<1Kn+3i ><K”+‘

+s;—1

where p; denotes the projection on the second factor, /; the injection and vertical
maps are homotopy equivalences as given in Proposition 3.3 of [2]. Here we
take the cofibre of p: S—S for P. ¢ is defined by

k ~
7’*(Ln+rj—-z>< 1) = gl ”‘t*[ajil'n+sl-—2>< 1+(_1)”+ri1 Xeji"ﬁ's,'—l] ’
E
¢*(1 X Ln+r,~—1) = 12=1 ”;k(]- X ejs'Ln+s,~-1) .

We see from Theorem 3.6 of [2] that the above diagram homotopy-commutes.

Apply [QE, ] to the above diagram. Since 9”——20,,7:, , 0P ={6%, ---, 65}

and since

Lia(Z (=)™ Q) *(Q7:)* s, o)

= (Z (=1 i(Qr)*( Q)40 jitnrs; -1 0)
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(i>:<11’;)*(0, Qm,7); 3 0, Ympr)) = Qr

P(0, Qma); -5 0, Qi) = (33 (— 1) A Q2) Qi) G stmes, 1 0)

by 8 ,(Qx)=0, it follows that the j-th component of ®,(Qz) has a representative
(@) 3} (— 1™ A F st 1. Hence

k ~
,_E:; (=)™ Qm:)*0 jitnss; -

represents the j-th component of ¥,(E).
Now, by the Kiinneth theorem, we compute (Q°0;)«[QK, QK]+
(Q°7 ;)x(Q0)*[QL, QL] as follows:

k
(Q%0,)x[QK, Q°K] = ; (Q%0,,)xH™ 1" (QK; Z))

k k
= {Z; 0,‘: Z} (Q”i)*atiLn+s,- -1 O E Uq(?) ’
deg oy = s,—s;—1},
(O )(QBOL, L] = H™"%(QL; Z,)(06,, -, 06,
= SYH™ i HZy, nt1,—15 Z,)(Q8))
k
El H™ i 3 Zy, ntr,—1; Z,)(0,:)(Qr;) .

13

m
t=

These complete the proof of Theorem 2.1.

In connection with Corollary 1 we examine some elements in the kernel of
the Kristensen map &: A(2)—A(2). Let Sq(z,, -+, ;) denote Sg’1---Sg’s. Then,
using the Adem relation Sg(2m—1, m)=0 (m=1), we may easily verify

Proposition 2.2. The following elements are in the kernel of &:
Sq(3k)+ ﬁ Sq(k—i, i), k=1;
Sq(6k--1)+Sg(6k, 1)+ z Sq(6k+1—2i, 2i)+j‘:;: Sq(6k—j, j, 1), k=1;
ﬁ Sq(6k--3—24, 2i+1)+ Z;V_}:Sq(6k+3—j, 1), k=1

0+ Sq(6k—1,2,1)4Sq(6k—2,3, 1)—}-Z:Sq(6k—2j+ 1,25, 1)+§]Sq(6k—r, r,2),

where



614 Y. Furukawa aND Y. NoMURA

Sq(6k-+2)+Sq(6k+1, 1)+Sq(6k, 2)+ Sq(6k—2, 4)
S +\j [Sq(6k—4i+3, 4i— 1)+ Sq(6k—4i-+2, 4i)] for k even,

Q —
Sq(6k—1,3)+ 33 [Sq(6k—4i+1, 4i-t1)+ Sq(6k—4, 4i+2]
l for k odd;
R+3) Sq(6k—2j+3, 2j+1, 1)+ 3 Sq(6k—1+3,7,2),
where

Sq(6k+5)+,3g Sq(6k—+5—i, i)+ [Sq(6k-+5—4, 4i)
R= +Sq(6k+4—41, 4i+1)] for k even,
(k,_ZlJ)/Z[SQ(6k—4i+ 3, 4i+2)+ Sq(6k—4i+ 2, 4i+3)] for k odd.

We mention some examples. The loop-order of the fibre space with classi-
fying class {S¢’s, --+, S¢i+}, 0<7,<i,<--- <1, is 4, but those of fibre spaces with
classifying classes S¢°+ Sq*Sq*, Sq¢'Sq*+ Sq¢*Sq*, Sq'+Sq*Sq'+Sq¢°Sq*+ Sq*S¢*Sq!
are 2. 'The loop-order of the fibre space with classifying class {P*, AP*} (k=1)
1s p.

3. Proof of Theorem C

First we prove 1). Introduce the commutative diagram

Ly
E,—E

”"1 ! 1”0

QOB —K— L

where the square is a pull-back. Observe that the fibre of /; is homotopy-equi-
valent to that of /, i.e., Q4. Since z,: E,—~QB is a principal fibration with 8=01
as classifying map, we have /(E;)=p” by Theorem B, and hence it follows from
the exact sequence
Ql
[QE, 0:4] —> [0E, 0E] 2% [aF, af

and from the (n+7, —2)-connectedness of E, that the order of QI is p* and I(E)
is a multiple of p>. Also, since [(K)=p by Theorem A, we see that [(E)=p*.

We now proceed to prove 2) and 3). Note that, in the situation (%), 6

m m
determines a secondary operation @: N Ker a;—Coker > 3; associated with the
i=1 =1

relation Zm] Bia;=0 (cf. Adams [1], Spanier [6]). Take the cofibre P of p*: S—S
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(k=1, 2). Applying the functor ( )* to the diagram (%), we see similarly that
0% determines a secondary operation

P: [X, AF]NKer of — [X, LF]/Im BP
associated with B7(Qa)’=0, where
(Qa)” = X (X 1H(= 1) a1 xa), 1xar),
B = S QDB X 1H(— 1) M(1xB), 1x B}, (=1, =0)
Let ¢: LP—Q’L denote a projection with #gf—~1 and let e: Q4 — A",
e: QB—BP denote injections with *e—~1. Then
afe = {(_‘1)”+r17\'ka1’ (2 PRI (_1)”+r"'7\4kam: am} ’

18P — z (QrF)*(B; X 14 (—1)* N (1% B))) -

Consider the following commutative diagram

Q
QB —2,QBP — QBP

Qll 17 ll"
3.1) ok T g Coge l p b i
A L
e (04

QA —— QA—> AP — BF

where p is the pull-back of p? by e, hence the principal fibration with classifying
map a’e. We denote by yr,(6) the secondary operation determined by 7€, which
is associated with (¢87)Q(afe)=0. Since a;(Qp)=0 yields @;(Qp)=0 for k=1

with @€ 31 A(p)er; and since ,—0, we may define P(0, Qp) and v4(6)(Qp).
Note that ,(6)(2p) is the first component of (0, Qp).
Lemma 3.2. Let k=1 or 2. Suppose deg B,,>1 for k=1. Then there

exists f: QK —K such that pf=Qp and tPEf represents both r,(0)(Qp) and ¥ (E).
Moreover, if k=2, i*¢f=1 and f(Ql)=I(Qe).

Proof. Assume first k=1 and deg B,,>1. Take x: QE—K? with tkx=n5.
Since [Q’L, KF]=0 by s>7,,, we have (Qj)*x=0, and hence we may pick
ye& [KS, KP] with x=(Qr)*y. Further, since [QK, 45°]=0, we may set
pPy=(0, 2) for 2=14pPy=(Qp)iky. We have
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(0, Q7)) = (0, 2)(Qx) = pPy(Qx) = p¥x = (0, (p7)°)
by #pfx=(pr)® and [QF, Q’°4]=0. Therefore,
z—QpsKer (Qr)* = (Q0)*[QL, Q4] = 0.
This gives rise to pfy=(0, Qp)=e(Qp), which yields f: QK—K with pf=Qp,
&f=y. Now @,(Qr) has, by definition, a representative (¢&)'67(x). Thus
D,(Qr) = t4¢hD,(QAm) D407 (x) = t:0°y(Qr) .

This shows that t§Py=t0F€f represents W, (E) and +r,(0)(Qp).

Next let k=2; then, afe—e(Qa) by virtue of the expression of ae, and
hence one gets an induced map &: QK — K* which makes the following diagram
homotopy-commute:

Ol Qp Qa
O°B— QK — QA — QB

o Lol e

aBP — kP, 4r BP

| o e e
Ql Qp Qo
OB—5 0K 5 04 =5 oB

Since 7fe~1, it follows from the five lemma that /% is a homotopy equivalence
with a homotopy inverse &: QK —QK. Thus, by factoring &, we may find
f: QK —K such that ee=¢f, pf=Qp, i*¢f~=1 and &f(Ql)=€l(Qe). Since the
fibre of e: QA—AF is homotopy-equivalent to the loop space of that of ## by
inspection of the relative mapping sequence for ife—1 (cf. [4], Lemma 2.1 (ii)),
and since the fibre of #* is 0?4, we see from [Q?B, Q*4]=0 that &x: [Q*B, K]—
[Q°B, K] is monic. This implies that f(Ql)~I(Qe). #*€¢f~1 implies i*Ef(Qr))
=Qr, hence 1¢%(q%) '07€ f(Qr) represents D,(Qr). q.e.d.

Now let k=1. We observe that

t4+BP[QK, QBP] Dt AP [QK, O°B]
= (Q*B)«[QK, O°B]
= (Q%0)4[QK, QK] by [QK, 024] =0,

and that, if B, 53 B, A(p) then

t+BP[QK, QBF] = (28)+[QK, O°B] .

Thus we may infer from Theorem 1.5, 2) that 4r,(8) (Qp) =0 mod 487 [QK, QBF]
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implies plgz740. Since (Qp) differs from +,(0)(Qp) by an element of
(pf)¥[Q4, Q°’L)=(Qp)*[Q4, Q’L], the assertions 2) and 3) of Theorem C are
obtained.

Corollary 2 is obtained from 3) of Theorem C, by noting that the sequence
m Qp)*
H™ Q' B)=H"*""*(X K,,+,‘_2)<—H”+S‘Z(QK)(<——p) H™**-*(QA) is exact and
H"**~*QA) is contained in ﬁ B; A(p)+Ker (Qp)*.
j=i+1

By the way, we examine the extent to which vr,(6)(Qp) may be altered with
0 being a universal example of a secondary operation associated with B(Qa)=0.

Proposition 3.3. (84 p*7)(Qp) = ¥(6) () - (Qp)*Q
Vi(0-+0*7)(Qp) = ¥:(0)(Qp) for vE[4, L]

Proof. Since ¢ can be delooped, we have

HOP+yPpF)ef = tOFPEf+tyPpFef

= tOPEf+tvFe(Qp)
= t0FEf+(Q% X 1)e(Qp) L 141X Q27 )e(Qp)
= t0PE 1 (Q7)(Qp) -

4. Proof of Theorem D

In this section let P and P’ be cofibres of p*: S—S and of p: S—S
respectively. Given a generalized Eilenberg-MacLane space Z, let

K7
A
Zs2 —> 7P —— 7§
t e
and
(] it
VA lnndy Adlendy A
t 4

denote product representations.
Introduce the following commutative diagram

e /
? —z—>P'—i——>Sz

S
5 £1”i i“’?\ﬂz
lon |
P’ > ¥

(4.1)
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in which rows and columns are Puppe sequences by the 3 x 3 lemma (cf. Nomura
[4], Lemma 1.2) and (1, p) and (0, #') are induced maps.

Lemma 4.2. (4.1) induces a fibration sequence

cr 8 o O L0 OO oy
which is homotopically equivalent to
1x0 0x1 TOx1)

K, ,xK, ,«<— K, ,xK, ,«<— K, ,XK,_ ,«— K, XK,
where T: K, XK,_,—>K,_,XK,_, denotes the switching map.

Proof. From the diagram (4.1) one can form the homotopy-commutative
diagram

Kfz_——_—Kﬁz
., 1
e ,ﬂflf .,
Ko LD O 00)
l l P
p‘.._ %] 2
K3 ¢<—K;3 PR K « —— K5

Then ¢(1, pffe H* ¥(KZL; Z,))=~H" (K, ,XK,_,; Zp) is a multiple of the
projection ¢: K, ,x K, ,—K,_,. Since #(1, p)f¢ =t'¢’*~1, it follows that
Y(1, p)t=t. This shows that (1,p)* is essentially 1X0 and that #0, )~
?(1, p)¥0,7')*=0. Hence (0,7’)* is essentially 0x 1 and, by #*(0, ¢')*~=0 and
?(0, ¢')'=(S?’)}, we see that (0, ¢’)* is homotopy-equivalent to T(0x 1).

Consider now the homotopy-commutative diagram

Bsp’
o | TOx 1) \(5)
, af , t
AP > BP BS*
10><1 o Joxa
K —i—s—> QA . ar % 5 pr
x| H . 11 0o |ixo0
K’ P ,.QA(X)eAP/a BP/

where K is, as in (3.1), the fibre of aPe and K’ is the fibre of af’(1x0)e. Note
that K’ is homotopy-equivalent to QA4 x QBF’ because of (1 X 0)e=0. The maps
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1x 0 induce a map X: K—K’.
Let f: QK —K be a map constructed in Lemma 3.2 for k=2. Then one

gets the homotopy-commutative diagram

a’B——‘Qi—» QB* B”
\0(1><0) T(0x1)] \
al 7 QB¥’ aBr ' % g
r w
ok—f g ° Al G L)
AN TN
04 —— K’ £ Sk U
P
(1x0)e p*
);PI

Since Xf(Ql):xl—(Q.e):l’Q(lxO)(Qe):O by Q(1x0)(Qe)=0, we may find f’:
QA—K’ such that

4.3) f(@Qp) =Xf
and so
(4.4) toPef = v'6% 'E’f’(Qp) .

Further, since p?’¢’ f’=0, there exists g: QA—>QB?’ such that
(4.5) Pg=gf.
Therefore, by (4.4) and 8/=3,
(4.6) tOFEf = t' BP'g(Qp) .
We next show that
(4.7) T(0x 1)g(Qp) = —ar'¢(Qp) .

For this purpose, introduce the commutative diagram
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0x1 0x1

P of P v
oBr —— sk P 40 % L pr
N 19(1><0)/ laer J1xo , ixo
Qd” -2 > B~ S K¥ 547 %, p¥

Apply the functor [QK, ] to the above diagram and observe that
afe(Qp) = afepf=afpfef=10, (1x0)e(Qp)=0.

Since, by Lemma 3.2, (4.3) and (4.5),
pref =e(Qp), (1, plef=1"g(Qp), (0x1)e(Qp)=e(Qp),

we can apply two kinds of functional operations to e(Qp)E[QK, AF] to yield
2(Qp)E[QK, QBP] and [T+(0x 1)]'a’¢(Qp)€[QK, BSF']. Thus, according
to Spanier [6],

—2(Qp) = [Tx(0x 1)4]*a®’¢'(Qp) mod a$F [QK, ASP']+(1 % 0)«[QK, BSF]

under the adjoint isomorphism. Hence (4.7) follows from the fact that
[QK, QAP 1=0 and [T(0 X 1)]4(1 X 0)x=0.
We now compute, by the expression for #3F" and aF’¢’ in §3,
£878(Qp) = (Qp)*g* 3 75 *(8;x 1H(—1)"1x B))
= (Qp)*g* 31 (—1)"*=5*(1x B;) mod (Qp)*(Q*B)«[2.4, O*B]
= (—1)"*(Qp)*g* 3] 7+ QB
— (_ 1)n+8(Qp)*g*(Qi")* iélnzklgj
= (=1 (Qp)*g*(¢T(0x1))* JEm]l 3B
= (_1)n+s+1(QP)*(t/aP/e/)* ﬁl ”3@@]_

= (=1 (@py B (~1yB,a;.
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This reveals that (—1)*** é_ (—1)"iB,;a, represents W,(E) by Lemma 3.2, since

(Qp)*(Q?B)«[Q4, Q°B] is contained in the indeterminacy, (Q%0)«[QK, Q’K]=
(Q°B)«[QK, O°B], of W,(E). Therefore, Theorem D follows from Theorem 1.5
and from the fact p*|/(E) is a consequence of the exact sequence

[QF, QK] <— O [QK, QK] <—— L0 [QL, QK] =0.

Corollary 3, 1) follows from Theorem D by inspecting the exact ladder

*
(0B, 0°B] «— [0k, o'B] <P (a4, 0B]

1(025)* l(ﬂzlg)* oy 1(9,2 8)x ( .
Hﬂ+s-2(ﬂzB) ¢ H”+S—2(QK) p Hn+s Z(QA) - Hﬂ+8—2(QB)
and by observing that the left hand (Q*B)4« may be identified with

31 8:: @H™1(QB) — H™*"H(Q'B).

5. Some examples

As an illustration of Theorems C and D in the introduction, we list some
relations in (p) to which the theorems are applicable:
i) Relations to which Theorem C, 1), is applicable:

(PXA)PP =0 (2<k<p),
(P?A)Pé+(k—1)APP*¢—(APP*-1)P' — 0 (1<k<p).

if) Relations to which Theorem C, 2) is applicable:
(APk?)PE-— PEO(APR™Y)— PEP-YAP®) = 0 (k=2, k%0 mod p,
>3, k<(p* '+ 2p—3)(p*—1)7").
iii) Relations to which Corollary 2 is applicable:

PP =0 (p>3),
Prpr+i_piripi —

iv) Relations to which Corollary 3, 2) is applicable:

Sg1Sq* S Sgt = 0 (k22),
Sq*k~1Sqk~*4 Sq*k~2Sqk~*- Sg**Sgk = 0 (k=4),
SqP4-Sqh=4 Sk Sq+ -+ Sqh-Sgt+ g Sgk = 0 (k=6).
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v) Relations to which Corollary 3, 1) is applicable:

E)=38 iff Sq*-3Sq* e N(2)SqH+Sg* ' A(2)
for Sg** 'S¢k =0 (k=1),
KE)=38 iff Sqg***S¢*"& A(2)Sq* "+ A(2)S¢*~*+A(2)Sq*
+ 8¢+ A2)+-Sg*A(2)+ S A(2)
for Sg**'Sq* °+4 Sg**Sq* '+ Sq*'Sqk =0 (k=9).
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