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Introduction

Let ΩX denote the space of loops on a based topological space X. M.
Sugawara [8] called the order of the identity class 1ΩX of ΩX in the group

[ΩX, ΩX] the loop-order of X, denoted by l(X), and proved ([8], Theorem 3)
that, for a Hurewicz fibration F-^E-*B, l(E) is a divisor of the multiple

The aim in this note is to determine, using a technique of Larmore and
Thomas [2], the loop-order of a total space obtained as a 2-stage Postnikov tower
and to discuss that of a space obtained as a 3-stage Postnikov tower.

In this note, let p denote a fixed prime. Let Jl(p) denote the mod p

Steenrod algebra, and let 8: Jl(p)^>^Λ(p) denote the Kristensen map of degree
— 1 , which is a derivation and is given by

if p = 2,

f ( Δ ) = l , £(P*) = 0 (A^O) if p>2,

(cf. [2], Proposition 3.5; [5]). We shall write €(a)=&.
Also denote by Kn = K(Zp,n) the Eilenberg-MacLane complex of type

(Zpy n). Let E1 and E2 be principal fibre spaces with classifying classes

and

respectively, where θ . and 7,- are cohomology operations of degree ry and r — siy

k
regarded as elements of Jl(p)> and m\ XKn+st->Kn+s. is the projection on the
i-th factor. We then obtain

Theorem A. l(E^)=p2 if, and only if, there exists jy l<^j<^m, such that Sj
J-1

does not belong to the left Jl(p)-module , ^Jί(p)θty of Jί(p) generated by
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Theorem B. l(E2)=p2if, and only if, there exists i, l<*ί^k, such that %•

does not belong to the right Jl(p\-module y 2
 rϊtt-Λ(P)y °f <-A(p) generated by

t = i + l

Ύi+i, — , ΎA

The following corollary is a restatement of Theorem 1.3 of L. Smith [5],

Corollary 1. Let E be a fibre space induced from the path-fibration on Kn+r

by θ=θίn: Kn-^Kn+r9 where 0<r^«— 3 and ιn denotes the fundamental class.

Then l(E) is p2 if, and only if, 0ΦO.

We next consider the situation shown in the diagram below:

where we set

A = Kn, B = X Kn+r., L = Kn+s>
ί = l '

«={«!, , am} , α, e cJ(/>), deg α, = r, ,

and where ̂  and £ are principal fibre spaces with classifying classes a and 0.

Let

ψ : Π (Ker α, Π Ker ($,-) -* Coker Σ (&+&)
ί=l ί=l

denote a secondary operation associated with the relation 2 [/S, α, +

(— l)*"~Vl~1/8ί#ί]=0, which is deduced from 2 βiai=0 by taking the map 6.

i-l

Σ
k = ι

Theorem C. Suppose that, for alli=\, , m,

1) //ίA^r^ ^Λώίί; ίwcA Z/iαί /βyφ Σ β*Jl(p), then l(E)=ρ2.

2} If deg /5W> 1 (ί.*., ί>rw) am/ //
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mod Σ [βiH^T^ίlK ZJ+frH'+T^ίlK; Zp)]

then l(E)=p".

3) If for all i=ί, -, m, &e Σ βkJί(p), and ifdeg βm> 1 and

, Zp)c. Σ βiH"+ri-3(ΩK; Zp) ,

= 0 mod Σ βiH^i-^flK , Zp) ,

l(E)=ρ.

Corollary 2. Suppose that, for all i, #,e 2 JL(ρ)ak and β^ 2 β»Λ(p)
* = 1 ^ m*--'*1

ίAαί £/?e homogeneous part ^JL(p) of degree s—l is contained in 2 βk^(P}Jr

k» tfdegβm>l and the homogeneous part of Jl(p) of degree s — rf is
k = ι

trivial for all i, then l(E)=p.

ί-l

Theorem D. Suppose that there exists i such that α, $ X] Jl(p)ak.
ft = l

If(Ωp)*\Σ(-iγ<βίδii]^()modΣβίH
n+r>-3(nK ,Zp), then l(E)=p3; otherwise

ί = l ί = 1

l(E)=p\

i-l

Corollary 3. Suppose that there exists i such that α,

Σ (- l)r A <5ί, Φ Σ

Σ βi θ Hn+rr\εϊtB) -> Ha+s-\ίl2B)
= =ί=l t = l

l(E)=p3.

2) If Σ (~ l)"' /3 A e
ί=l »=1

m

REMARK. 2 A is πionic in each of the following cases:
t = l

i) βi=Sqai, a,>a2> >am, ai^2(ri-r,-\) for p=2;
ii) βi are of the form Pα« or ΔPβ« and are all distinct, and (2p—2)ai

1. A basic theorem

In this note we work in the category of based spaces having the homotopy

types of CW complexes and based continuous maps, and we don't distinguish
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between a map and the homotopy class it represents. Let π: E-+K be the

principal fibre space with θ: K->L as classifying map and let j: ΩL-*E denote

the fibre inclusion. Let/) denote a fixed prime. A map of degree pk(k>0) of
S=Sl yields the Puppe sequence

Form the commutative diagram

L*

p,*»

Kp - > Lp

js

-» Es

\p»
j **

where rows and columns are fibration sequences and $ indicates induced maps of

function spaces.

We now assume that K and L are loop spaces. Larmore and Thomas [2]

have defined a sort of functional operation

Φk: [X, Ks] Π Ker (p*% Π Ker

by setting Φ*=(ίff)*1βJ(ίl)j;1, with the property that, for x<=[X, Es] such that

(p*)*

(1.1)

where we have made the adjoint identification [X, Ls2]— [X, ίlLs] (cf. Theorem

3.2 of [3]).

In what follows we assume that

(1.2) l(K) and /(L) are divisors of pk\

(1.3) [Ω2L, Ω2^]-0;

(Ω;)* (Ω r)* (Ωβ)*
(1.4) [Ω2L, Y] <̂ -̂ [Ω£, Y] 4 - β— [ΩK, Y] ^—^ [ΩL, Y]

is exact for Y=Ω2L and Ω2 ,̂ (this condition may be verified using

Theorem 6.5 of Sugawara [7]).

Taking X=ΩE, x=lΩE in (1.1), we then have
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Theorem 1.5. With the hypotheses (1.2), (1.3) and (1.4), we have

2) Write Ψk(E)for the subset (ΩTΓ)* 'Φ^ΩTΓ) of [ΩK, Ω2L].

Then Ψk(E) is non-empty and is a coset of (Ω0)*[ΩL, Ω2L]+(Ω2(9)*[Ω^, Ω2K] such
that ρklΩE=0 if, and only if,

ψk(E) =0 mod (Ω(9)*[ΩL, Ω2L]+(Ω2Θ)*[ΩK9 Ω2K].

Proof. 1) is obvious by (1.1) and (1.2). Consider the commutative
diagram

[ΩE, ΩE]

[Ω^L^^WL L*2]^*

Since (Ωj)*Ω7r=0=/Jc(Ω/)*(/^ί)~1Ω7r and q*% and the left /^ are monic by virtue of
(1.2) and (1.3), we see that (Ωj')*ΦΛ(Ωτr)=0, and hence there exists je [ΩK, Ω2L]
with (Ω7r)*jyeΦ/,(Ωτr), which shows that Ψk(E) is non-empty. By diagram-
chasing we may easily verify that (Ω r)*'1 Ker (Ω/)*=(Ω7r)*"1(Ω2ί)*[ΩJB, Ω2^]

coincides with (Ω(9)*[ΩL, Ω2L]+(Ω2<9)*[Ω./£, Ω2^]. The last assertion follows

from 1), since pklΩE=Q iff Φ^Ω rJ—Ker (Ω/)#.

We note that the assignment Θ-^Ψ^E) is dual to Toda's derivative 0 ([9],

/>. 209).

2. Proofs of Theorems A and B

We may prove Corollary 1 in the introduction as follows. Let θ: Kn-*Kn+r.

Then, by Corollary 3.7 of [2], Ψl(E)=(—l)n+r+lfftn_1. Hence our assertion

follows from 2) of Theorem 1.5.
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We now consider more general situation. Let

m

K — X Kn+s , L = X Kn+r ,
ι=l ' j=l '

0 = sltίs2<^ '<Lsk<r1<^r2<^ '<^rm^n— 3 ,

where τrt : K-+Kn+s. is the projection on the z-th factor. Then Theorems A and
B are consequences of the following

Theorem 2.1. Let E be the principal fibre space with the above θ as classifying
class. Then l(E)=p2 if, and only if, there exist j and iy l^j^m, l<^i^k, such

that

Proof. Introduce the diagram

where p{ denotes the projection on the second factor, I . the injection and vertical

maps are homotopy equivalences as given in Proposition 3.3 of [2]. Here we
take the cofibre of p: S-+S for P. φ is defined by

φ*(\ X ιn+rj-,) = Σ ̂ ?(1 X ̂ .̂  .,) .

We see from Theorem 3.6 of [2] that the above diagram homotopy-commutes.

Apply [Ω£, ] to the above diagram. Since 0?=Σ0£*ί> 0P= iθϊ> — ,
and since
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(XA )*(0, Ωfaw); •••; 0, Ω.(πkπ)) = ΩTΓ ,
ί = l

φ*(Q, ΩOr.w); - 0, Ω(τrA7r)) = (£(-l)^X«*)*(«*i)*^»*.,-i» 0)

by 0y(Ωτr)=0, it follows that thej-th component of Φ^ΩTΓ) has a representative

(Ω r)* Σ (- IΓ+'XΩTΓ,.)* .̂.- ,̂. -i Hence
=

represents the^'-th component of Ψ^J?).
Now, by the Kϋnneth theorem, we compute (Ω20 j)*[Ω,K, Ω2K]+

(Ω2τry)*(Ω0)*[ίlL, Ω2L] as follows:

; zp)

, Ω2L] = #"+

+''"2(̂ , »

»+rΓ\Zp, n+rt-l; Zp}(θti)(Clπ{) .

These complete the proof of Theorem 2.1.
In connection with Corollary 1 we examine some elements in the kernel of

the Kristensen map 8: JL(2)->Jl(2). Let Sq(il9 •-, iM) denote Sq^ -Sq^. Then,

using the Adem relation Sq(2m—l, m)=0 (m^>l), we may easily verify

Proposition 2.2. The following elements are in the kernel of 8:

Σ Sq(3k-i, i) , Λ ^ l ;
»=1

, 1)+ Σ 5^(6ft+l-2ί, 2f)+g Sq(6k-j, j, 1) ,

Σ Sq(6k+3-2i, 2ί+ 1)+ S^όA+S-;, , 1) , ft^ 1

Q+Sq(6k- 1, 2, l)+Sj(6*-2, 3, 1)+Σ Sq(6k-2j+ 1, 2>, l)+^S?(6ft-r, r, 2) ,

zc/zere
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Q =

where

Sq(6k+2)+Sq(6k+l, l)+Sq(6k, 2)+Sq(6k-2, 4)

+Σ [Sq(6k-4i+ 3, 4i-l)+Sq(βk-4i+2, 4ι)] for k even,

2]

for k odd\

(jfe-D/2

ΣSq(6k-l,3)

Sq(6k-2j+3, 2J+1,

^

'=4
-r+3, r, 2) ,

k/2

U-D/2

\ ι=l

-, + ί6*+S-4*, 4*)
ί=l » = 1

+ Sq(6k+4—4i, 4i+ 1)] /or k even,

— 4ί+3, 4i+2)+S0(6£— 4i+2, 4ί+3)] /or

We mention some examples. The loop-order of the fibre space with classi-
fying class {5̂ *1, •••, Sq'k}, 0</1^/2^ ^/Λ, is 4, but those of fibre spaces with
classifying classes Sq3+Sq2Sq\ Sq4Sq2+Sq2Sq\ Sq7+Sq*Sql+Sq5Sq2+Sq*Sq2Sql

are 2. The loop-order of the fibre space with classifying class {Pk, ΔPk} (k^jtl)

is p.

3. Proof of Theorem C

First we prove 1). Introduce the commutative diagram

where the square is a pull-back. Observe that the fibre of /0 is homotopy-equi-
valent to that of /, i.e., ΩA. Since τr0: E0-+ΩB is a principal fibration with β=θl
as classifying map, we have l(E0)=p2 by Theorem B, and hence it follows from
the exact sequence

, SVA] y OE]

and from the (n-\-rί — 2)-connectedness of E0 that the order of Ω/0 is p2 and /(£")
is a multiple of p2. Also, since l(K)=p by Theorem A, we see that l(E)=p2.

We now proceed to prove 2) and 3). Note that, in the situation (*), θ
m m

determines a secondary operation φ\ (Ί Ker α,— ̂ Coker ̂  β* associated with the
m

relation Σ &•<*,•=() (cf. Adams [1], Spanier [6]). Take the cofibre P oίpk: S^S
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(A=l, 2). Applying the functor ( )p to the diagram (*), we see similarly that
θp determines a secondary operation

φ: [X, Ap] Π Ker ap - [X, Lp]/Im βp

associated with /3p(Ωtf)p=0, where

(λ1= I, λ2 =
»=1

Let ί: LP->Ω2L denote a projection with ty*~ 1 and let e:
e: ΩJ3— >J3P denote injections with Λ~l. Then

Consider the following commutative diagram

Ωe
Ω2£ -

Ω / l I

(3-D

Bp

where p is the pull-back of pp by e, hence the principal fibration with classifying

map ape. We denote by ψk(θ) the secondary operation determined by tθp£, which

is associated with (*/3p)Ω(αp£)=0. Since #f (Ωρ)=0 yields αt (Ωρ)=0 for k=l
i-l

with ά^ 2 ^(P)aj an(i since λ 2=0> we maY define (̂0, Ωp) and

Note that ι/rAf(0)(Ωp) is the first component of <p(0, Ωp).

Lemma 3.2. L ί̂ ^=1 or 2. Suppose deg/5w>l /or k=l. Then there

exists/: ΩK-+R such that ρ/=Ωp and tθpSf represents both ψk(θ)(Ωρ) and Ψk(E).

Moreover, if k=2, i*£f~l andf(£ll)~Ί(Ωe).

Proof. Assume first &=1 and deg βm> 1. Take x: ΩE-^>KP with t^x=πs.
Since [Ω2L, Kp]= 0 by s>rm, we have (Ωj)*x=Q, and hence we may pick
ytΞ[Ks, Kp] with ^-(ΩTΓ)*^. Further, since [ΩK, As2] = Qy we may set

ppy= (0, #) for #==ί#ppy=(Ωp)i5c<y. We have
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(0, *(Ωτr)) = (0, *)(Ωτr) = ppy(Ωπ) = ppx = (0, (pπ)s)

by ι\ppx=(pπ)s and [Ω£, Ω2A]=Q. Therefore,

*-ΩpGΞKer (Ω r)* = (Ω0)*[ΩL, ίL4] = 0 .

This gives rise to ρpy=(*ΰ, Ωρ)=e(Ωρ), which yields /: ΩK-+R with pf=Ωρ,
8f=y. Now Φ^Ω r) has, by definition, a representative (ί*)"1^*). Thus

Φ^Ω r) -

This shows that tθpy=tθpβf represents Ψ^JE) and ψΊ(0)(Ωp).
Next let &=2; then, αpe~e(Ωα) by virtue of the expression of αp£, and

hence one gets an induced map e: ΩK-*KP which makes the following diagram
homotopy-commute :

Ω25

\ [
^ plp

- > Kp --> Ap -+ Bp

\ \i*

Since ί*^c±ίl, it follows from the five lemma that z% is a homotopy equivalence
with a homotopy inverse ξ: Ω^-^ΩJ .̂ Thus, by factoring £, we may find

/: ΩK-+K such that if=£/, p/=Ωρ, i*£/= 1 and εf(Ωΐ)^eϊ(Ωe). Since the
fibre of ^: ΩA-^>AP is homotopy-equivalent to the loop space of that of ί1 by
inspection of the relative mapping sequence for ί*£~l (cf. [4], Lemma 2.1 (ϋ)),
and since the fibre of z* is Ω*A, we see from [Ω25, Ω14]=0 that 6*: [Ω2β, .K]̂

[Ω2B, .K:F] is monic. This implies that/(Ω/)— ϊ(Ωe). i*6f—l implies P(εf(Ωπ))
^Ωπ, hence ^(^ '̂̂ ^/(ΩTΓ) represents Φ2(Ωτr). q.e.d.

Now let k=l. We observe that

t*βp[ΩK,

= (Ω2Θ)*[ΩK, Ω2K] by [ΩK, Ω2A] = 0 ,

and that, if &e 2 βjJL(p) then

Thus we may infer from Theorem 1.5, 2) that ψΊ(ί)(Ωp)^0 mod ̂ /5P
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implies ^>lQjB9^0. Since ψ(Ωρ) differs from 1/ (̂0) (Ωp) by an element of
(p/)*[O4, Ω2L]=(Ωp)*[Ω,4, Ω2L], the assertions 2) and 3) of Theorem C are
obtained.

Corollary 2 is obtained from 3) of Theorem C, by noting that the sequence
(Ωp)*

Hn+s-\Ω2B)=Hn+s-\χKn+ri_2)<-Hn+s-\ΩKy^Hn+s-2(ΩA) is exact and

H*+*~2(ΩA) is contained in Σ /9yJ?(/>)+Ker (Ωp)*.

By the way, we examine the extent to which ^k(θ) (Ωp) may be altered with
θ being a universal example of a secondary operation associated with β(Ωά)=Q.

Proposition 3.3.
, L].

Proof. Since t can be delooped, we have

t(θp+7pPPW = tθp8f+t<yppp8f

= tθpεf+tΎ

pe(Ωp) ^

X Ωγ>(Ωp)

4. Proof of Theorem D

In this section let P and P' be cofibres of p2: S^S and of p: S-*S
respectively. Given a generalized Eilenberg-MacLane space Z, let

and

denote product representations.

Introduce the following commutative diagram

s- T JL

,. I'

<4 » J J i J(0,;<) j

>SP'
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in which rows and columns are Puppe sequences by the 3x3 lemma (cf . Nomura
[4], Lemma 1.2) and (I9p) and (0, ί') are induced maps.

Lemma 4.2. (4.1) induces a fibration sequence

which is homotopically equivalent to

(OXl)

where T: Kn-lxKn_2-*Kn_2xKn_1 denotes the switching map.

Proof. From the diagram (4.1) one can form the homotopy-commutative
diagram

IfS2 ΊfS2

J^n J^n

ί*=o i! i't «*
\(SiΎ

Then t'(\,p')t<aHΛ-\Kr ,Zt)s*Hn-2(Kn^xKn-1 ,Zp) is a multiple of the
projection t: Kn_2 X Kn^-> KH^. Since ί'(l, pfq>=^t'q'*=zl, it follows that
^(l,/))*—^ This shows that (I,/))1 is essentially 1x0 and that ί(0, zv)f^

φ ,/>)"((), z')f^0. Hence (0, ij is essentially Ox land, by tv*(0, ?')'—° and

ί'(0, cf)*c^(Si')*, we see that (0, 2')* is homotopy-equivalent to Γ(0x 1).

Consider now the homotopy-commutative diagram

BSP'

R lA-ί-

fΛ ^ C\

A<"-^—

l o x l

»J'_i

K'-^-

where K is, as in (3.1), the fibre of ape and K' is the fibre of ap/(l X 0)e. Note
that K' is homotopy-equivalent to Ω^4 X ΩBP/ because of (1X G)e—Q. The maps
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1x0 induce a map %: R-+K'.

Let /: Ω,K-*Kbe a map constructed in Lemma 3.2 for k=2. Then one

gets the homotopy-commutative diagram

Since
ΩA-+K' such that

^Q by Ω(lxO)(ί>)^0, we may find/:

(4.3)

and so

(4.4) tθpBf ^ tfθ^ef^Λp) .

Further, since ppV//— 0, there exists #: Ω.A-^Ω.B^ such that

(4.5) lp'g^e'f.

Therefore, by (4.4) and θl=β,

(4.6)

We next show that

(4.7) Γ(0x l)g(ίlp) = -

For this purpose, introduce the commutative diagram
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βSP

l l x O
asp' i

Asp/——> Bsp'

Ap' ^±_^ BP'

|θxl |θx l
V pp ψ ap φ

—> /£* —ί—> ̂ p > βp

JΩίlxO^ |(l,/>)» j l x O f j l x O

Ωβp/ > Kpl > Apf ——> Bp'

Apply the functor \ΩK, ] to the above diagram and observe that

αpe(Ωp) — apepf ~ appp6f — 0 , (1X O)e(Ωp) — 0 .

Since, by Lemma 3.2, (4.3) and (4.5),

ppεf=e(Clp), (l./O'S/^/^Ωp), (Oxiχ(Ωp)^

we can apply two kinds of functional operations to e(flp)&[ΩK, Ap] to yield
g(£lp)ξΞ[ClK, OB1"} and [Γ*(0 X l)!l!]-Iαf>V(Ωp)e [ΩJC, .Bsi"]. Thus, according
to Spanier [6],

-g(ίlp) = [Γ^O X IJ^-^VCΩp) mod <4

under the adjoint isomorphism. Hence (4.7) follows from the fact that
[SIK, £IAP']=Q and [Γ(0x !)]*(! X 0)*=0.

We now compute, by the expression for t'βpl and αpV in §3,

= (flp)*g* π^βjX l+(- !)•+•! x

* Σ(-1)"+^Γ*(1 X/8y) mod

i))* Σ

Σ]
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This reveals that (— 1)5+1 2 (— l)ry£y#y represents Ψ2(E) by Lemma 3.2, since

(Ωp)*(Ω2/3)*[ΩA Ω2B] is contained in the indeterminacy, (Ω20)*[Ωί:, Ω,2K]=

(Ω2/3)*[Ωί:, Sl*B], of Ψ2(£). Therefore, Theorem D follows from Theorem 1.5

and from the fact p2 \ l(E) is a consequence of the exact sequence

[SIK, S1K\ — - [ΩL, Ω.K] = 0 .

Corollary 3, 1) follows from Theorem D by inspecting the exact ladder

(Ωp)*
- [SIK,

|(Ω2/3)*
ψ

and by observing that the left hand (Ω2/3)* may be identified with

m

x , βt: φ/2 i (Ω -β) —> H (Ω -o).
* = 1

5. Some examples

As an illustration of Theorems C and D in the introduction, we list some

relations in Jl(p) to which the theorems are applicable:

i) Relations to which Theorem C, 1), is applicable:

-l)P1 = 0(1 <k<p) .

ii) Relations to which Theorem C, 2) is applicable:

= 0 (A^2, k^O mod/),

iii) Relations to which Corollary 2 is applicable:

= Q

iv) Relations to which Corollary 3, 2) is applicable:

Sq2k-lSqk-l+Sq2k-2Sqk = 0 (ft ̂ 2) ,

Sq2k-*Sqk-*+Sq2k-2Sqk~2+Sq2k-*Sqk = 0

Sq2k-1Sqk-5+Sq2k-2Sqk^+Sq2k-3Sqk-3+Sq2k-6Sqk = 0
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v) Relations to which Corollary 3, 1) is applicable:

= 8 iff Sq2k~2Sqk-l^Jl(2)Sqk+Sq2k-ίJl(2)

for Sq2*-1Sqk = Q (*^1),

= 8 iff Sq2k-2Sqk-7$Jl(2)Sqk-6+Jl(2)Sq

k-4+Jl(2)Sqk

+Sq2k~1Jl(2)+Sq2k-*Jl(2)+Sq2k-7Jl(2)

for
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