A FEW REMARKS ON CLASS NUMBERS OF IMAGINARY QUADRATIC NUMBER FIELDS

Taira HONDA

(Received February 28, 1974)

1. Let K be an imaginary quadratic number field with discriminant $-d$. As is well known, the class number $h(d)$ of K is given by the formula

$$
\begin{equation*}
h(d)=-\frac{1}{d} \sum_{n=1}^{d} \chi(n) n \tag{1}
\end{equation*}
$$

where χ is the Jacobi symbol modulo d.
Let us consider the case where d is a prime number such that $p \equiv 3(\bmod$ 4). Then

$$
\begin{equation*}
h(p)=-\frac{1}{p} \sum_{n=1}^{p-1} \chi(n) n \tag{2}
\end{equation*}
$$

where χ is the Legendre symbol. From (2) we get

$$
\begin{aligned}
h(p) & =-\frac{1}{p} \sum_{n=1}^{(p-1) / 2}\{\chi(n) n+\chi(p-n)(p-n)\} \\
& =-\frac{1}{p} \sum_{n=1}^{(p-1) / 2}\{2 \chi(n) n-\chi(n) p\} \\
& =-\frac{2}{p} \sum_{n=1}^{(p-1) / 2} \chi(n) n+\sum_{n=1}^{(p-1) / 2} \chi(n)
\end{aligned}
$$

Here it is well-known that

$$
\sum_{n=1}^{(p-1) / 2} \chi(n)=\{2-\chi(2)\} h(p) .
$$

Summing up, we get

$$
\{1-\chi(2)\} h(p)=\frac{2}{p} \sum_{n=1}^{(p-1) / 2} \chi(n) n .
$$

So, if $p \equiv-1(\bmod 7)$, it holds that

$$
\begin{equation*}
h(p)=\frac{1}{p} \sum_{n=1}^{(\rho-1 / 2} x(n) n . \tag{3}
\end{equation*}
$$

Now denote by $\left\{\frac{n}{p}\right\}$ the frational part of n / p, i.e. $\left\{\frac{n}{p}\right\}=\frac{n}{p}-\left[\frac{n}{p}\right]$.
Then we get

$$
p \sum_{k=1}^{p-1}\left\{\frac{k^{2}}{p}\right\}=2 \sum_{\substack{x=1 \\ x(x)=-1}}^{p-1} n,
$$

which implies

$$
\begin{aligned}
& h(p)=-\frac{1}{p} \sum_{n=1}^{p-1} \chi(n) n \\
& =-\frac{1}{p}\left\{\sum_{x=1}^{p-1} n-\sum_{x=1}^{p-1} n\right\} \\
& =-\frac{1}{p}\left\{\sum_{\substack{n=1 \\
x(n)=1}}^{p-1} n-\sum_{n=1}^{p-1} n\right\} \\
& =-\sum_{k=0}^{p-1}\left\{\frac{k^{2}}{p}\right\}+\frac{p-1}{2} \text {. }
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
h(p)=\frac{p-1}{2}-\sum_{k=1}^{p}\left\{\frac{k^{2}}{p}\right\} . \tag{4}
\end{equation*}
$$

Consider the area $S ; 0<x<p, 0 \leqq y<x^{2} \mid p$. Then (4) implies that $h(p)$ is the error term in estimating the lattice points in S. Since the hyperbola $y^{2}=x^{2} / p$ has no center, this implies the difficulty of estimation of $h(p)$ comparative with the circle problem and the divisor problem.
2. Let p be the prime such that $p \equiv 3(\bmod 4)$ as before. Then we see easily $(p-1) / 2!\equiv \pm 1(\bmod p)$. Put $(p-1) / 2!\equiv \varepsilon_{p}(\bmod p)$ with $\varepsilon_{p}= \pm 1$. Then $\varepsilon_{p}=+1$ iff the number of the set $\left\{1 \leqq n \leqq(p-1) / 2 ;\left(\frac{n}{p}\right)=1\right\}$ is even. From

$$
h(p)=-\frac{1}{p} \sum_{n=1}^{p-1}\left(\frac{n}{p}\right) n
$$

we have

$$
h(p)=\frac{1}{2-\chi(2)} \sum_{n=1}^{(p-1) / 2} \chi(n),
$$

as is well known. Therefore if $\varepsilon_{p}=+1$,

$$
h(p)=\frac{1}{2-\chi(2)}\left(\frac{p-1}{2}-2 s\right),
$$

where s is the number of quadratic non-residue in $[1,(p-1) / 2]$. Now

$$
\frac{1}{2-\chi(2)} \cdot \frac{p-1}{2} \equiv 3(\bmod 4)
$$

as is easily verified. Therefore we have

$$
h(p) \equiv-1 \quad(\bmod 4)
$$

regarding s is odd.
If $\varepsilon_{p}=-1$, we get

$$
h(p) \equiv+1 \quad(\bmod 4)
$$

in the same way.
Summing up, we have

$$
h(p) \equiv-\varepsilon_{p}(\bmod 4) .
$$

It seems that the number of p with $\varepsilon_{p}=+1$ is asymptocally the same as that of p with $\varepsilon_{p}=-1$.

Osaka City University

Added in proof; The congruence

$$
h(p)=-\varepsilon_{p}(\bmod 4)
$$

is already known as the Jacobi-Mordell formula.

