Honda, T. Osaka J. Math. 12 (1975), 19-21

A FEW REMARKS ON CLASS NUMBERS OF IMAGINARY QUADRATIC NUMBER FIELDS

TAIRA HONDA

(Received February 28, 1974)

1. Let K be an imaginary quadratic number field with discriminant -d. As is well known, the class number h(d) of K is given by the formula

(1)
$$h(d) = -\frac{1}{d} \sum_{n=1}^{d} \chi(n)n$$
,

where χ is the Jacobi symbol modulo d.

Let us consider the case where d is a prime number such that $p \equiv 3 \pmod{4}$. Then

(2)
$$h(p) = -\frac{1}{p} \sum_{n=1}^{p-1} \chi(n)n$$
,

where χ is the Legendre symbol. From (2) we get

$$h(p) = -\frac{1}{p} \sum_{n=1}^{(p-1)/2} \{\chi(n)n + \chi(p-n)(p-n)\}$$

= $-\frac{1}{p} \sum_{n=1}^{(p-1)/2} \{2\chi(n)n - \chi(n)p\}$
= $-\frac{2}{p} \sum_{n=1}^{(p-1)/2} \chi(n)n + \sum_{n=1}^{(p-1)/2} \chi(n)$

Here it is well-known that

$$\sum_{n=1}^{(p-1)/2} \chi(n) = \{2 - \chi(2)\}h(p).$$

Summing up, we get

$$\{1-\chi(2)\}h(p) = \frac{2}{p}\sum_{n=1}^{(p-1)/2}\chi(n)n.$$

So, if $p \equiv -1 \pmod{7}$, it holds that

T. HONDA

(3)
$$h(p) = \frac{1}{p} \sum_{n=1}^{(q-1)/2} \chi(n)n.$$

Now denote by $\left\{\frac{n}{p}\right\}$ the frational part of n/p, i.e. $\left\{\frac{n}{p}\right\} = \frac{n}{p} - \left[\frac{n}{p}\right]$. Then we get

$$p\sum_{k=1}^{p-1}\left\{\frac{k^{2}}{p}\right\} = 2\sum_{n=1}^{p-1}n,$$

which implies

$$h(p) = -\frac{1}{p} \sum_{n=1}^{p-1} \chi(n)n$$

= $-\frac{1}{p} \{\sum_{n=1}^{p-1} n - \sum_{n=1}^{p-1} n\}$
 $\chi(n) = 1 \quad \chi(n) = -1$
= $-\frac{1}{p} \{\sum_{n=1}^{p-1} n - \sum_{n=1}^{p-1} n\}$
= $-\sum_{k=1}^{p-1} \{\frac{k^2}{p}\} + \frac{p-1}{2}.$

Thus we have

(4)
$$h(p) = \frac{p-1}{2} - \sum_{k=1}^{p-1} \left\{ \frac{k^2}{p} \right\}.$$

Consider the area S; 0 < x < p, $0 \le y < x^2/p$. Then (4) implies that h(p) is the error term in estimating the lattice points in S. Since the hyperbola $y^2 = x^2/p$ has no center, this implies the difficulty of estimation of h(p) comparative with the circle problem and the divisor problem.

2. Let p be the prime such that $p \equiv 3 \pmod{4}$ as before. Then we see easily $(p-1)/2! \equiv \pm 1 \pmod{p}$. Put $(p-1)/2! \equiv \varepsilon_p \pmod{p}$ with $\varepsilon_p = \pm 1$. Then $\varepsilon_p = +1$ iff the number of the set $\left\{1 \leq n \leq (p-1)/2; \left(\frac{n}{p}\right) = 1\right\}$ is even. From

$$h(p) = -\frac{1}{p} \sum_{n=1}^{p-1} \left(\frac{n}{p}\right) n$$

we have

$$h(p) = \frac{1}{2-\chi(2)} \sum_{n=1}^{(p-1)/2} \chi(n),$$

20

as is well known. Therefore if $\mathcal{E}_p = +1$,

$$h(p) = \frac{1}{2-\chi(2)} \left(\frac{p-1}{2} - 2s \right),$$

where s is the number of quadratic non-residue in [1, (p-1)/2]. Now

$$\frac{1}{2-\chi(2)}\cdot\frac{p-1}{2}\equiv 3 \pmod{4}$$

as is easily verified. Therefore we have

$$h(p) \equiv -1 \pmod{4}$$

regarding s is odd.

If $\mathcal{E}_p = -1$, we get

$$h(p) \equiv +1 \pmod{4}$$

in the same way.

Summing up, we have

$$h(p) \equiv -\varepsilon_p \pmod{4}$$
.

It seems that the number of p with $\varepsilon_p = +1$ is asymptocally the same as that of p with $\varepsilon_p = -1$.

OSAKA CITY UNIVERSITY

Added in proof; The congruence

$$h(p) = -\mathcal{E}_p \pmod{4}$$

is already known as the Jacobi-Mordell formula.