[p]-TYPICAL FORMAL GROUPS AND THE HOMOMORPHISM $\Omega_{*}^{U} \rightarrow \Omega_{*}^{S O}$

Shôrô ARAKI

(Received October 30, 1973)

In the present note we construct a $[p]$-typical formal group $F_{[p]}, p$ a prime, which is universal for [$p]$-typical formal groups over arbitrary ground rings; and we study structure of the ground ring of $F_{[p]}$ (Corollary 5). Using $F_{[2]}$ we describe the kernel of the forgetful homomorphism $S: \Omega_{*}^{U} \rightarrow \Omega_{*}^{S O}$ of complex structures (Corollary 7).

Our basic reference is [1] and we use the notations of [1] freely.

1. Universal [p]-typical formal group

Let U be the Lazard ring and F_{U} the universal one-dimensional formal group defined over U. As usual we identify U with the complex cobordism ring Ω_{*}^{U}. Then U is graded by non-negative even degrees (or by non-positive even degrees when we regard Ω_{*}^{U} as $U^{*}(p t)$).

Let p be a prime, R a commutative ring with 1 and F a (commutative onedimensional) formal group over R. By the terminology of [1] F is [p]-typical iff $\boldsymbol{f}_{p, F} \gamma_{0}=0$, where \boldsymbol{f}_{p} is the Frobenius operator and γ_{0} is the identity curve.

Let F be $[p]$-typical and $u: U \rightarrow R$ the unique unitary homomorphism of rings such that $u_{*} F_{U}=F$. By the notation of [1] we put

$$
\left(\boldsymbol{f}_{p, U} \gamma_{0}\right)(T)=\sum_{n \geq 1}^{F_{U}}\left(v_{n_{p}-1}^{(p)} T^{n}\right) .
$$

Then $v_{n_{p}-1}^{(n)} \in U_{2\left(n_{p}-1\right)}$. Now

$$
u_{*}\left(\boldsymbol{f}_{p, U} \boldsymbol{\gamma}_{0}\right)=\boldsymbol{f}_{p, F} \gamma_{0}=0
$$

Hence

$$
\sum_{n \geq 1}^{F}\left(u\left(v_{n_{p}-1}^{(p)}\right) T^{n}\right)=0,
$$

and by [1], Proposition 2.10, we obtain

$$
\begin{equation*}
u\left(v_{n_{p}-1}^{(p)}\right)=0 \quad \text { for all } n \geq 1 \tag{1.1}
\end{equation*}
$$

Let

$$
J_{p}=\left(v_{p-1}^{(p)}, v_{2 p-1}^{(p)}, \cdots, v_{p_{j}-1}^{(p)}, \cdots\right)
$$

the ideal of U generated by $v_{n_{p}-1}^{(p)}, n \geq 1$. By (1.1) u factorizes as the composition of the sequence

$$
\begin{equation*}
U \xrightarrow{\pi_{p}} U / J_{p} \xrightarrow{u_{p}} R . \tag{1.2}
\end{equation*}
$$

Define

$$
V_{[p]}=U \mid J_{p} \quad \text { and } \quad F_{[p]}=\pi_{p^{*}} F_{U}
$$

Then $u_{p^{*}} F_{[p]}=F$ and the homomorphism $u_{p}: V_{[p]} \rightarrow R, u_{p^{*}} F_{[p]}=F$, is unique by the uniqueness of u. And obviously $\boldsymbol{f}_{p, F_{[p]}} \gamma_{0}=0$. Thus we obtain

Proposition 1. $\quad F_{[p]}$ is a $[p]$-typical formal group over $V_{[p]}$ and universal for [p]-typical formal groups.

In [1] we observed a $[p]$-typical formal group over a $Z[1 / p]$-algebra which is universal for [$p]$-typical formal groups over $Z[1 / p]$-algebras. The present $[p]$ typical formal group $F_{[p]}$ differs from that of [1] as it is universal for [$\left.p\right]$-typical formal groups over arbitrary commutative rings with unities.

2. Structure of $\hat{\boldsymbol{U}} / \hat{\boldsymbol{J}}_{\boldsymbol{p}}$

Let

$$
\log _{U} T=\sum_{k \geq 0} m_{k} T^{k+1}, \quad m_{0}=1
$$

the logarithm of F_{U} over $U \otimes Q$ and put

$$
\hat{U}=Z\left[m_{1}, m_{2}, \cdots, m_{k}, \cdots\right]
$$

as in [1]. As usual we can identify \hat{U} with $H_{*}(M U)$. Then the inclusion map

$$
\begin{equation*}
U \subset \hat{U} \tag{2.1}
\end{equation*}
$$

is identified with the Hurewicz homomorphism

$$
\pi_{*}(M U) \rightarrow H_{*}(M U)
$$

Let p be a prime and put

$$
\hat{J}_{p}=\left(v_{p-1}^{(p)}, v_{2 p-1}^{(p)}, \cdots, v_{n_{p}-1}^{(p)}, \cdots\right)_{\hat{u}}
$$

the ideal of \hat{U} generated by $v_{n p-1}^{(p)}, n \geq 1$. In this section we observe structure of the quotient ring \hat{U} / \hat{J}_{p}.

Recall the relation (6.2) of [1]:

$$
\begin{equation*}
p m_{n_{p-1}}=v_{n_{p}-1}^{(p)}+\sum_{\substack{i j=n \\ 1 \leq i<n}} m_{j-1}\left(v_{i n-1}^{(p)}\right)^{j} \tag{2.2}
\end{equation*}
$$

This is the bașic relation we use here. This shows that

$$
\begin{equation*}
p m_{n_{p-1}} \in \hat{J}_{p} \tag{2.3}
\end{equation*}
$$

on one hand, and by an induction on n,

$$
\begin{equation*}
(1 / p) v_{n p-1}^{(p)} \in \hat{U} \tag{2.4}
\end{equation*}
$$

on the other hand.
Let p and q be different primes. For each integer $k \geq 1$ we have

$$
\begin{equation*}
p v_{p q k-1}^{(q)} \in \hat{J}_{p} \tag{2.5}
\end{equation*}
$$

Proof by induction on k. By (2.2) we have

$$
q m_{p q-1}=v_{p q-1}^{(q)}+m_{p-1}\left(v_{q-1}^{(q)}\right)^{p} .
$$

Hence

$$
p v_{p q-1}^{(q)}=q p m_{p q-1}-p m_{p-1}\left(v_{q-1}^{(q)}\right)^{p} \in \hat{J}_{p}
$$

by (2.3). Thus (2.5) is true for $k=1$. Now assume that $p v_{p q j-1}^{(q)} \in \hat{J}_{p}$ for $j<k$. Then by (2.2) we have

$$
p v_{p \& k-1}^{(q)}=p q m_{p q k-1}-\sum_{\substack{i j=p p \\ 1 \leq i<p k}} p m_{j-1}\left(v_{q i-1}^{(q)}\right)^{j}
$$

$p q m_{p q_{k-1}} \in \hat{J}_{p}$ by (2.3). For each term under the summation, if $p \mid j$ then $p m_{j-1}$ $\in \hat{J}_{p}$, and if $p X j$ then $p \mid i$ and $p v_{q i-1}^{(q)} \in \hat{J}_{p}$ by induction hypothesis. Thus

$$
p v_{p q k-1}^{(q)} \in \hat{J}_{p}, \quad \text { Q.E.D. }
$$

Here we recall Milnor basis of U. Let s_{n} denote the Chern number corresponding to $\sum t_{i}{ }^{n}$. As is well-known a series of elements $u_{n} \in U_{2 n}, n \geq 1$, forms a polynomial basis of U if it satisfies

$$
\begin{aligned}
s_{n}\left(u_{n}\right) & =q \text { when } n=q^{s}-1 \text { for some prime } q \\
& =1 \text { otherwise }
\end{aligned}
$$

Such a basis is called Milnor basis. We shall choose a Milnor basis in a specific form.

By (2.2) we see that

$$
\begin{equation*}
s_{n q-1}\left(v_{n q-1}^{(q)}\right)=q \tag{2.6}
\end{equation*}
$$

for any prime q and $n \geq 1$. First we choose

$$
\begin{equation*}
u_{n}=v_{q}{ }^{(q)}-1 \text { when } n=q^{s}-1, q \text { a prime. } \tag{2.7}
\end{equation*}
$$

Now let p be the specified prime. When $p \mid n+1$ and $n+1$ is not a power of p, choosing the smallest prime q dividing $n+1$ and differing from p, we can express n as $n=p q k-1, k$ a pitive integer. In such a case we put

$$
\begin{equation*}
u_{q p_{k-1}}=s v_{p q k-1}^{(q)}+t v_{p q k-1}^{(p)}, \tag{2.8}
\end{equation*}
$$

where s and t are integers such that $s q+t p=1$. Then

$$
s_{p q k-1}\left(u_{p q k-1}\right)=1
$$

by (2.6).
For remaining n, i.e., $p \nmid n+1$ and $n+1$ is not a prime power, we choose u_{n} arbitrarily so that $s_{n}\left(u_{n}\right)=1$.

Hereafter we use only the above special choice of Milnor basis. First of all we have

$$
\begin{equation*}
p u_{p q k-1} \in \hat{J}_{p} \tag{2.9}
\end{equation*}
$$

for elements of type (2.8), which follows from (2.5).
Put

$$
\begin{align*}
m_{n}^{\prime} & =(1 / q) u_{n} & & \text { when } n+1=q^{s}, q \text { a prime } \\
& =u_{n} & & \text { when } n+1 \text { is not a prime power. } \tag{2.10}
\end{align*}
$$

These are well defined elements of \hat{U} by (2.4) and

$$
\begin{equation*}
\hat{U}=Z\left[m_{1}^{\prime}, m_{2}^{\prime}, \cdots, m_{k}^{\prime}, \cdots\right] \tag{2.11}
\end{equation*}
$$

since $s_{k}\left(m_{k}^{\prime}\right)=1$.
For degrees of type (2.8) we observe the elements $p m_{p q k-1}^{\prime}-v_{p q}^{(p)}{ }_{k-1}^{()}$. These belong to \hat{J}_{p} by (2.9) and are decomposable in \hat{U} since s_{n}-numbers are zero. Thus by induction on $q k$ we can replace the ideal basis elements $v_{p q}^{(n)-1}$ of J_{p} by $p m_{p q k-1}^{\prime}$ for such degrees and we obtain

Proposition 2. $\hat{J}_{p}=\left(p m_{p n-1}^{\prime}, n \geq 1\right)$.
Corollary 3. \hat{U} / \hat{J}_{p} is a direct sum of copies of Z and $Z \mid p Z$ of which each direct summand is generated by a monomial of m_{k}^{\prime} 's. A monomial is of order p when it contains an element m_{k}^{\prime} with $p \mid k+1$ as a factor, and otherwise of infinite order.

3. Structure of $\boldsymbol{V}_{[p]}$

Under our special choice of Milnor basis of U we could choose a polynomial basis of \hat{U} so that its each element is a constant multiple of the corresponding element of the Milnor basis (cf., (2.10)-(2.11)).

Theorem 4. $J_{p}=\left(u_{p^{k}-1}, k \geq 1, p u_{n p^{-1}}, n \neq p^{s}\right)$.
Proof. Inductively on n we replace generators $v_{n_{p}-1}^{(p)}$ of J_{p} by the elements stated in Theorem. Since $u_{p-1}=v_{p-1}^{(p)}$ the replacement is already done for $n=1$. Assume the replacement is done for $k<n$. When $n=p^{s}$ it is done already. Suppose n is not a power of p Since $p u_{p n^{-1}}-v_{p n-1}^{(n)}$ is decomposable we can
express it as a polynomial of $u_{k}^{\prime} s$ such that $1 \leq k<p n-1$, say, P. The polynomial expression P^{\prime} of P in \hat{U} can be obtained by replacing each monomial in P by the corresponding monomial of m_{k}^{\prime} multiplied with a non-zero integer. Now $p u_{p n-1}$ $-v_{p n-1}^{(n)} \in J_{p}$ by (2.9). Then by Proposition 2 each summand of P^{\prime} belongs to \hat{J}_{p}. This implies that each monomial in P with non-zero coefficient contains a u_{m} with $m=p s-1$ as a factor and, when it contains no u_{m} with $m=p^{j}-1$ as a factor, then p divides its coefficient. Hence each summand of P belongs to J_{p} and $p u_{p^{n-1}}-v_{p n-1}^{(p)} \in J_{p}$. Now we can replace $v_{p n-1}^{(p)}$ by $p u_{p^{n-1}}$ in the system of generators of J_{p},
Q.E.D.

Corollary 5. $\quad V_{[p]}$ is a direct sum of copies of Z and $Z \mid p Z$ of which each direct summand is generated by a monomial of u_{n} 's such that $n \neq p^{s}-1$. A monomial is of order p when it contains an element u_{k} with $p \mid k+1$ as a factor, and otherwise of infinite order.

4. The forgetful homomorphism $\Omega_{*}^{U} \rightarrow \Omega_{*}^{S O}$

Let

$$
S: \Omega_{*}^{U} \rightarrow \Omega_{*}^{S O} \text { and } \Psi: \Omega_{*}^{S O} \rightarrow \mathfrak{N}_{*}
$$

be the forgetful homomorphisms of complex structures and orientations respectively. Milnor [2] observed that

$$
(\Psi \circ S)\left(\Omega_{*}^{U}\right)=\left(\Re_{*}\right)^{2},
$$

where $\left(\mathfrak{N}_{*}\right)^{2}$ is the subalgebra of $\mathfrak{\Re}_{*}$ consisting of bordism classes of manifold squares $N \times N$. Let M be a weakly complex $2 n$-manifold and $\Psi \circ S(M)=[N \times N]$. Then the Milnor's result shows that

$$
s_{n}(M) \equiv s_{n}^{\prime}(N) \quad \bmod 2
$$

where s_{n}^{\prime} denotes the Whitney number corresponding to $\sum t_{i}{ }^{n}$. Thus we have a polynomial basis $\left\{x_{n}, n \neq 2^{h}-1\right\}$ of \mathfrak{R}_{*} such that

$$
(\Psi \circ S)\left(u_{n}\right)=x_{n}^{2}, \quad n \neq 2^{h}-1
$$

and $\Psi \circ S$ induces an isomorphism

$$
\begin{equation*}
\Omega_{*}^{U} /\left(u_{2^{k}-1}, k \geq 1\right) \otimes Z / 2 Z \cong\left(\mathfrak{N}_{*}\right)^{2} . \tag{4.1}
\end{equation*}
$$

As we remarked in [1], §5, the oriented cobordism $\Omega^{*}(\quad)$ is complexoriented, [2]-typical and $S_{*} F_{U}=F_{S O}$. Thus S factorizes as the composition of the sequence

$$
\Omega_{*}^{U}=U \xrightarrow{\pi_{2}} V_{[2]} \xrightarrow{\Phi} \Omega_{*}^{S O} .
$$

By Corollary 5 we have

$$
\begin{equation*}
V_{[2]} \otimes Z / 2 Z=Z / 2 Z\left[u_{n}, n \neq 2^{h}-1\right] . \tag{4.2}
\end{equation*}
$$

By (4.1) and (4.2) we see that $\Psi \circ \Phi$ induces the isomorphism

$$
\begin{equation*}
V_{[2]} \otimes Z / 2 Z \cong\left(\Re_{*}\right)^{2} . \tag{4.3}
\end{equation*}
$$

By Corollary 5 we have

$$
V_{[2]} / \text { Tors }=Z\left[u_{2 n}, n \geq 1\right] .
$$

Then by [3], p. 180, we conclude that

$$
\begin{equation*}
\Phi / \text { Tors: } V_{[2]} / \text { Tors } \cong \Omega_{*}^{S O} / \text { Tors. } \tag{4.4}
\end{equation*}
$$

Finally by (4.3) and (4.4) we obtain
Theorem 6. $\Phi: V_{[2]} \rightarrow \Omega_{*}^{S O}$ is an injection.
Corollary 7. Ker $S=J_{2}, \operatorname{Im} S \cong V_{[2]}$.
Osaka City University

References

[1] S. Araki: Typical Formal Groups in Complex Cobordism and K-Theory, Lectures in Mathematics, Kyoto Univ., 6, Kinokuniya Book-Store, 1973.
[2] J. Milnor: Onthe Stiefel-Whitney numbers of complex manifolds and of spin manifolds Topology 3 (1965), 223-230.
[3] R.E. Stong: Notes on Cobordism Theory, Princeton Univ. Press, 1968.

